
$P++ gesture recognizer

$P++ Gesture Recognizer Pseudocode
Radu-Daniel Vatavu

University Stefan cel Mare of Suceava
Suceava 720229, Romania

vatavu@eed.usv.ro

$P++ builds on top of the $P gesture recognizer1, to which
it adds (1) one-to-many point matchings and (2) processing
of the gesture shape structure. In the following pseudocode,
Point is a structure that exposes x, y, and strokeId prop-
erties. strokeId is the stroke index a point belongs to (1, 2,
...) and is filled by counting pen down/up events.

Recognizer main function. Match points against a set of
templates by employing the Nearest-Neighbor classification rule.

$P++Recognizer (Points C, Templates templates)

1: n← 32
2: Normalize(C, n)
3: score←∞
4: for each T in templates do
5: Normalize(T , n) // should be pre-processed
6: d← min (Cloud-Distance(C, T),Cloud-Distance(T,C))
7: if score > d then
8: score← d
9: result← T

10: return 〈result, score〉

Cloud matching function. Match two point clouds (points and
template) by performing one-to-many alignments. Returns the
minimum alignment cost.

Cloud-Distance (Points C, Points T , int n)

1: matched← new bool[n]
2: sum← 0
3: // match points from cloud C with points from T ; 1-to-many

matchings allowed
4: for i = 1 to n do
5: min←∞
6: for j = 1 to n do
7: d← Point-Distance(Ci, Tj)
8: if d < min then
9: min← d

10: index← j
11: matched[index]← true
12: sum← sum+min
13: // match remaining points T with points from C; 1-to-many

matchings allowed
14: for each j such that not matched[j] do
15: min←∞
16: for i = 1 to n do
17: d← Point-Distance(Ci, Tj)
18: if d < min then min← d
19: sum← sum+min
20: return sum

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin.

Gesture normalization. Gesture points are resampled, scaled
with shape preservation, and translated to origin. Normalized
turning angles are computed.

Normalize (Points points, int n)

1: points← Resample(points, n)
2: Scale(points)
3: Translate-to-Origin(points, n)
4: Compute-Normalized-Turning-Angles(points, n)

1
http://dx.doi.org/10.1145/2388676.2388732

Compute-Normalized-Turning-Angles (Point C, int n)

1: C1.θ ← 0, Cn.θ ← 0
2: for i = 2 to n− 1 do

3: τ ← (Ci+1.x−Ci.x)·(Ci.x−Ci−1.x)+(Ci+1.y−Ci.y)·(Ci.y−Ci−1.y)
‖Ci+1−Ci‖·‖Ci−Ci−1‖

4: Ci.θ ← 1
π arccos (τ)

5: return

Points resampling. Resample a points path into n evenly spaced
points. We use n = 32.

Resample (Points points, int n)

1: I ← Path-Length(points) / (n− 1)
2: D ← 0
3: newPoints← points0
4: for each pi in points such that i ≥ 1 do
5: if pi.strokeId == pi−1.strokeId then
6: d← Euclidean-Distance(pi−1, pi)
7: if (D + d) ≥ I then
8: q.x ← pi−1.x +((I −D)/d) · (pi.x - pi−1.x)
9: q.y ← pi−1.y +((I −D)/d) · (pi.y - pi−1.y)

10: q.strokeId ← pi.strokeId
11: Append(newPoints, q)
12: Insert(points, i, q) // q will be the next pi
13: D ← 0
14: else D ← D + d
15: return newPoints

Path-Length (Points points)

1: d← 0
2: for each pi in points such that i ≥ 1 do
3: if pi.strokeId == pi−1.strokeId then
4: d← d + Euclidean-Distance(pi−1, pi)
5: return d

Points rescale. Rescale points with shape preservation so that
the resulting bounding box will be ⊆ [0..1]× [0..1].

Scale (Points points)

1: xmin ←∞, xmax ← 0, ymin ←∞, ymax ← 0
2: for each p in points do
3: xmin ← Min(xmin, p.x)
4: ymin ← Min(ymin, p.y)
5: xmax ← Max(xmax, p.x)
6: ymax ← Max(ymax, p.y)
7: scale← Max(xmax − xmin, ymax − ymin)
8: for each p in points do
9: p← ((p.x −xmin)/scale, (p.y −ymin)/scale, p.strokeId)

Points translate. Translate points to the origin (0, 0).

Translate-to-Origin (Points points, int n)

1: c← (0, 0) // will contain centroid
2: for each p in points do
3: c← (c.x + p.x, c.y + p.y)
4: c← (c.x/n, c.y/n)
5: for each p in points do
6: p← (p.x - c.x, p.y - c.y, p.strokeId)

Point distance. Computes the distance between two points by
considering their x, y coordinates, but also the turning angles θ.

Point-Distance (Point a, Point b)

1: return
(
(a.x− b.x)2 + (a.y − b.y)2 + (a.θ − b.θ)2

) 1
2

Project no. PN-II-RU-TE-2014-4-1187, financed by UEFISCDI, Romania.

http://dx.doi.org/10.1145/2388676.2388732

