$P++ gesture recognizer

$P++ Gesture Recognizer Pseudocode

Radu-Daniel Vatavu
University Stefan cel Mare of Suceava
Suceava 720229, Romania
vatavu@eed.usv.ro

$P++ builds on top of the $P gesture recognizer', to which
it adds (1) one-to-many point matchings and (2) processing
of the gesture shape structure. In the following pseudocode,
POINT is a structure that exposes x, y, and strokeld prop-
erties. strokeld is the stroke index a point belongs to (1, 2,
..) and is filled by counting pen down/up events.

. Recognizer main function. Match points against a set of .
. templates by employing the Nearest-Neighbor classification rule.

$P+-+RECOGNIZER (POINTS C, TEMPLATES templates)

1: n <+ 32
: NORMALIZE(C, n)
. score <— o0
for each T in templates do
NORMALIZE(T', n)
d < min (CLOUD-DISTANCE(C, T'), CLOUD-DISTANCE(T', C))
if score > d then
score < d
result < T
: return (result, score)

SRR IR R AR N

"

i Cloud matching function. Match two point clouds (points and :
. template) by performing one-to-many alignments. Returns the :
: minimum alignment cost.

COMPUTE-NORMALIZED-TURNING-ANGLES (POINT C, int n)

1: 01_9%0, Cn_(,'(fo
2: fori=2ton—1do

3. o (Cit1.0=Ci.0) (Ci.a—Ci—1.2)+(Cit1.4=Ci.y) (Ciy—Ci_1.y)

[Citi=Cill-Tci=Ci1l

4: Ci.0 + L arccos(r)
5: return

ts resampling. Resample a points path into n evenly spaced !

\ points. We use n = 32.

RESAMPLE (POINTS points, int n)

1: I < PATH-LENGTH(points) / (n — 1)
2: D+ 0

3: newPoints < pointsg

4: for each p; in points such that ¢ > 1 do

5: if p;.strokeld == p;_;.strokeld then

6: d < EUCLIDEAN-DISTANCE(p;—1, pi)

7: if (D +d) > I then

8: g.x < pi—1.x +((I — D)/d) - (pi-x - pi—1.X)
9: q.y + pi—1.y +((I = D)/d) - (pi-y - pi—1.y)
10: q.strokeld <— p;.strokeld

11: APPEND(new Points, q)

12: INSERT (points, i, q)

13: D+ 0

14: else D+ D +d

15: return newPoints

CLoUD-DISTANCE (PoINTS C, POINTS T, int n)

1: matched < new bool[n]
2: sum < 0

4: for i =1 ton do

5: min <— oo

6: for j =1ton do

7 d < POINT-DISTANCE(C}, Tj)
8 if d < min then

9: min < d

10: index < j

11: matched[index] < true

12: sum <+ sum + min

13:

14: for each j such that not matched[j] do
15: min <— oo

16: for i =1 ton do

17: d < POINT-DISTANCE(C}, T)
18: if d < min then min < d
19: sum <— sum + min

20: return sum

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin.

Gesture normaliz . ure poi mpled, :
. with shape preservation, and translated to origin. Normalized :
! turning angles are computed. :

Normalize (POINTS points, int n)

1: points < RESAMPLE(points, n)

2: SCALE(points)

3: TRANSLATE-TO-ORIGIN(points, n)

4: COoMPUTE-NORMALIZED- TURNING-ANGLES(points, n)

1http ://dx.doi.org/10.1145/2388676.2388732

PATH-LENGTH (POINTS points)

1: d«0

2: for each p; in points such that i > 1 do

3: if p;.strokeld == p;_1.strokeld then

4: d < d + EUCLIDEAN-DISTANCE(p;—1, P;)
5: return d

SCALE (POINTS points)

1t Timin < 00, Tmaz < 0, Ymin 00, Ymaz < 0
2: for each p in points do
Tmin < MIN(Tmin, P-X)
Ymin 4= MIN(Ymin, p-y)
Tmaz < 1\'L'\X(Inzamv p.x)
Ymazx I\/IAX(ymamv p-Y)
scale + I\'IAX(w'mam — Tmin, Ymazx — y'min)
: for each p in points do
p <+ ((p-x —Tmin)/scale, (p.y —Ymin)/scale, p.strokeld)

© 0D W

TRANSLATE-TO-ORIGIN (POINTS points, int n)

c <+ (0,0)
: for each p in points do
c+ (cx + px, cy + p.y)
¢+ (c.x/n, cy/n)
for each p in points do
p < (px - c.x, p.y - c.y, p.strokeld)

SoRwhe

. Point distance. Computes the distance between two points by

y coordinates, but also the turning angles 6.

POINT-DISTANCE (POINT a, POINT b)

ol

1: return ((a.z — b.2)% + (a.y — b.y)? + (a.0 — b.0)?)

Project no. PN-II-RU-TE-2014-4-1187, financed by UEFISCDI, Romania.

http://dx.doi.org/10.1145/2388676.2388732

