
Free-hand point-cloud gesture recognizer

Free-Hand Gesture Recognizer Pseudocode
Elena-Gina Craciun

University Stefan cel Mare of Suceava
Suceava 720229, Romania

ginac@eed.usv.ro

Ionela Rusu
University Stefan cel Mare of Suceava

Suceava 720229, Romania
ionelar@eed.usv.ro

Radu-Daniel Vatavu
University Stefan cel Mare of Suceava

Suceava 720229, Romania
vatavu@eed.usv.ro

Our free-hand recognizer extends the $P gesture recognizer1

to 3-D gestures performed by the hand in mid-air. In the
following pseudocode, HandPose is a structure that exposes
x and y coordinates for each finger of the hand, such as
delivered by the Leap Motion controller2. The pseudocode
follows the main structure of the $P++ recognizer.

Recognizer main function. Match C against a set of templates
by employing the Nearest-Neighbor classification rule.

FreeHand-Recognizer (List<HandPose> C, Templates templates)

1: n← 32
2: Normalize(C, n)
3: score←∞
4: for each T in templates do
5: Normalize(T , n) // should be pre-processed
6: d← min (Cloud-Distance(C, T),Cloud-Distance(T,C))
7: if score > d then
8: score← d
9: result← T

10: return 〈result, score〉

Cloud matching function. Match two HandPose clouds (C
and T) by performing one-to-many alignments between their hand
poses. Returns the minimum alignment cost.

Cloud-Distance (List<HandPose> C, List<HandPose> T , int n)

1: matched← new bool[n]
2: sum← 0
3: // match hand poses from cloud C with poses from T ; 1-to-many

matchings allowed
4: for i = 1 to n do
5: min←∞
6: for j = 1 to n do
7: d← HandPose-Distance(Ci, Tj)
8: if d < min then
9: min← d

10: index← j
11: matched[index]← true
12: sum← sum + min
13: // match remaining hand poses T with poses from C; 1-to-many

matchings allowed
14: for each j such that not matched[j] do
15: min←∞
16: for i = 1 to n do
17: d← HandPose-Distance(Ci, Tj)
18: if d < min then min← d
19: sum← sum + min
20: return sum

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin.

Gesture normalization. Gesture points are resampled, scaled
with shape preservation, and translated to origin.

Normalize (List<HandPose> gesture, int n)

1: gesture← Resample(gesture, n)
2: Scale(gesture)
3: Translate-to-Origin(gesture, n)

1
http://dx.doi.org/10.1145/2388676.2388732

2
https://www.leapmotion.com/

Gesture resampling. Resample a gesture path into n evenly
spaced hand poses. We use n = 32.

Resample (List<HandPose> gesture, int n)

1: I ← Path-Length(gesture) / (n− 1)
2: D ← 0
3: newGesture← gesture0
4: for each handi in gesture such that i ≥ 1 do
5: d← HandPose-Distance(handi−1, handi)
6: if (D + d) ≥ I then
7: // interpolate two hand poses
8: q ← handi−1 + ((I −D)/d) · (handi − handi−1)
9: Append(newGesture, q)

10: Insert(newGesture, i, q) // q will be the next handi

11: D ← 0
12: else D ← D + d
13: return newGesture

Path-Length (List<HandPose> gesture)

1: d← 0
2: for each handi in gesture such that i ≥ 1 do
3: d← d + HandPose-Distance(handi−1, handi)
4: return d

Gesture rescale. Rescale gesture with shape preservation so
that the resulting bounding box will be ⊆ [0..1]× [0..1]× [0..1].

Scale (List<HandPose> gesture)

1: xmin ←∞, xmax ← 0, ymin ←∞, ymax ← 0
2: for each hand in gesture do
3: for i = 1 to hand.numFingers do
4: xmin ← Min(xmin, hand.xi)
5: ymin ← Min(ymin, hand.yi)
6: xmax ← Max(xmax, hand.xi)
7: ymax ← Max(ymax, hand.yi)
8: scale← Max(xmax − xmin, ymax − ymin)
9: for each hand in gesture do

10: for i = 1 to hand.numFingers do
11: hand.xi ← (hand.xi −xmin)/scale
12: hand.yi ← (hand.yi −ymin)/scale

Translate. Translate gesture to the origin.

Translate-to-Origin (List<HandPose> gesture, int n)

1: c← (0, 0) // will contain centroid
2: for each hand in gesture do
3: for i = 1 to hand.numFingers do
4: c← (c.x + hand.xi, c.y + hand.yi)
5: c← (c.x/n/numFingers, c.y/n/numFingers)
6: for each hand in gesture do
7: for i = 1 to hand.numFingers do
8: hand.xi ← hand.xi −c.x
9: hand.yi ← hand.yi −c.y

Hand pose distance. Computes the distance between two hand
poses as the sum of Euclidean distances between their fingers’
coordinates.

HandPose-Distance (HandPose a, HandPose b)

1: d← 0
2: for i = 1 to a.numFingers do
3: d← d + ‖ai − bi‖
4: return d

Project no. PN-II-RU-TE-2014-4-1187, financed by UEFISCDI, Romania.

http://dx.doi.org/10.1145/2388676.2388732
https://www.leapmotion.com/

