Session 4: Touch and Gesture

ICMI’18, October 16-20, 2018, Boulder, CO, USA

'FTL, an Articulation-Invariant Stroke Gesture Recognizer with
Controllable Position, Scale, and Rotation Invariances

Jean Vanderdonckt
Université catholique de Louvain
Louvain Research Institute in
Management and Organizations
Louvain-la-Neuve, Belgium
jean.vanderdonckt@uclouvain.be

Paolo Roselli
Universita degli Studi di Roma
Matematica Dipartimento
Roma, Italy
Université catholique de Louvain
Institut de recherche en
mathématique et physique
Louvain-la-Neuve, Belgium
roselli@mat.uniroma2.it
paolo.roselli@uclouvain.be

Jorge Luis Pérez Medina
Universidad de las Américas
Intelligent & Interactive Systems Lab
Quito, Ecuador
Université catholique de Louvain
Louvain Research Institute in
Management and Organizations
Louvain-la-Neuve, Belgium
jorge.perez.medina@udla.edu.ec
jorge.perezmedina@uclouvain.be

P2

N)LSD A

) (Ag;0,03
Training =0.02
gesture p

Pe

P1P2P3,) (AP2P3P4:
Ad,050,
=0.04

||:> P2 Py _’Pz o p;’ Ps
P3 P3 p P3 v P3 A4 7
p; Ps P4 P1 Ps Pa Py Pa > Pe
(
6

) (

P4 R <::|| 92
d3 q3
1
A4 4
ds
AP3P4P5:) (Ap4p5p61)
A Aqgs
939405 929495 Candidate
=0.0001 =0.03 gesture
A6 96

Figure 1: !FTL geometric interpretation: training and candidature gestures are sampled with their points, betWeen-points vec-
tors initiate basic triangles, Local Shape Distance (LSD) computes their respective similarity.

ABSTRACT

Nearest neighbor classifiers recognize stroke gestures by comput-
ing a (dis)similarity between a candidate gesture and a training set
based on points, which may require normalization, resampling, and
rotation to a reference before processing. To eliminate this expen-
sive preprocessing, this paper introduces a vector-between-vectors
recognition where a gesture is defined by a vector based on geomet-
ric algebra and performs recognition by computing a novel Local
Shape Distance (LSD) between vectors. We mathematically prove
the LSD position, scale, and rotation invariance, thus eliminating
the preprocessing. To demonstrate the viability of this approach,
we instantiate LSD for n=2 to compare !FTL, a 2D stroke-gesture
recognizer with respect to $1 and $P, two state-of-the-art gesture
recognizers, on a gesture set typically used for benchmarking. !FTL
benefits from a recognition rate similar to $P, but a significant
smaller execution time and a lower algorithmic complexity.

KEYWORDS

Stroke gesture recognition; Articulation invariance; Isometricity;
Isochronicity; Isoparameterization; Local Shape Distance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICMI ’18, October 16-20, 2018, Boulder, CO, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5692-3/18/10...$15.00
https://doi.org/10.1145/3242969.3243032

125

ACM Reference Format:

Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez Medina. 2018. !FTL,
an Articulation-Invariant Stroke Gesture Recognizer with Controllable Po-
sition, Scale, and Rotation Invariances. In ICMI ’18: 2018 Int’l Conference on
Multimodal Interaction, Oct. 1620, 2018, Boulder, CO, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3242969.3243032

1 INTRODUCTION

Gesture-based user interfaces [10, 14, 53], which are largely sup-
ported by operating systems, have become widely used in many
domains of interactivity, such as hand recognition [27, 34], diagram
sketching [16, 31], user interface prototyping [17], on-line food
order [8], handwriting [26], and mobile commands [43]. Operating
systems usually support a closed vocabulary of standard gestures,
thus raising the need to integrate new, potentially user-defined,
gestures to form an expandable vocabulary. Gesture recognizers
rely on several techniques, such as machine learning [14], data
mining [13, 25], template-based matching [56], and pattern recog-
nition [20, 28]. Many recognizers, but not all, adhere to the Nearest
Neighbor Classification (NNC) [20], which recognizes a candidate
gesture issued by a user among a finite set of reference gestures, re-
ferred to as the training set, by computing a distance between them.
The k-Nearest Neighbors algorithm (k-NN) is a non-parametric
method used for classifying an object with respect to a class of
objects among its k nearest neighbors [25]. In 1-NN, its simplified
version with k=1, the candidate object is simply assigned to the
class of that single nearest neighbor. Probably the most prolific
NNC manifestation for stroke recognition is the $-family of recog-
nizers [1, 32, 33, 44, 51, 57, 57, 63] thanks to a series of significant
advantages demonstrated.

https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/3242969.3243032

Session 4: Touch and Gesture

Efficient implementation. NNC algorithms imply only basic
mathematical operations and functions, as opposed to complex tri-
gonometric functions, feature extraction [45], filtering techniques,
machine learning with training and calibration [14]. These algo-
rithms lead to an affordable implementation in nearly all program-
ming languages, benefit from a small amount of lines of code and a
reasonable order of computational complexity.

Low execution time. The average time required to recognize a
candidate gesture from a training set is very low, with no observed
negative effect on lagging [9], such as for low-end devices.

High recognition rate. The estimated percentage of gestures
that are correctly recognized by a gesture recognizer on a training
set is high, typically ranging from 90%up to 99% for some datasets
in some particular contexts of use [2, 56, 63].

Low memory consumption. The amount of RAM used for
recognizing gestures is very limited. NNC processes a simple data
structure based on an efficient implementation, thus consuming a
limited amount of resources [58, 63].

Possible geometric interpretation. A candidate gesture is rec-
ognized as soon as it is near (or close) to a reference gesture in terms
of points captured for both gestures. Since no particular machine
learning or modeling technique is used, the algorithm is subject to
a straightforward geometric interpretation that is manageable and
understandable by human being while being easily processable by
machine algorithms, although they need less points than human to
recognize a gesture [56].

Independence of the algorithm with respect to the train-
ing set. When the training set is edited, such as for adding a new
gesture, for removing an existing one, or for modifying one, the
algorithm remains untouched contrarily to other techniques which
need to be trained again on the resulting set, restructured on the
underlying model, or updated on an expanded search graph [57].

Gesture adaptation. A gesture-based user interface is adaptable
by the end user for editing the training set (e.g., when a system-
provided gesture is replaced by a user-defined gesture to remember
it better) and/or adaptive by the system when gesture-based com-
mands could be redefined (e.g., a new function is offered through a
new gesture, existing gestures are re-purposed, synthetic gestures
[36] enrich the training set, the system suggests a new, sufficiently
distinguishable from others, gesture that the end user may accept,
reject, or modify) [48].

These requirements are particularly suitable for devices suffering
from low computational power, such as ring devices, game con-
trollers, wrist watches, body-mounted devices, and finger, hand,
wrist, arm-based wearable devices. For all these advantages, the
$-family of gesture recognizers [44] has been proved successful
in the community to assist practitioners (e.g., designers, develop-
ers, usability engineers, human factors experts) in incorporating
gesture-based user interfaces in today’s interactive applications.

A gesture is captured by an input device as raw data defined as
G = {pi=(xi, yi, zi, t;)}, i € n={1, ..., n} where x;,y;, z; are the 3D
Cartesian coordinates of each gesture point, ¢; is the time stamp.
When a gesture is captured on an interactive surface, like in pen-
based computing [35], z; is not captured. Sometimes ¢; is also op-
tional when the gesture shape matters more than its motion or ¢;
is fed with a continuous identifier ID;. When a gesture is captured
by an input device with more parameters, like 6DOF for optical 3D

126

ICMI’18, October 16-20, 2018, Boulder, CO, USA

trackers, pressure, velocity, acceleration, etc., G is then character-
ized by an-Dvector: G = {piz(xi, Yis Zis Pils Pi2s -+ Pijs ---s Pim>» tj)}
where p;;j denotes the j* h variable of the i*" point. The variables
could be either captured (e.g., 3D coordinates and time stamp) or
calculated (e.g., the velocity is the first derivative of position with
respect to time, the acceleration is the second derivative, and the
rate of change of acceleration, also known as jerk, is the third
derivative). Gestures can be represented as sets of points or fea-
tures [16, 27, 45] with comparable recognition rates [63]. NNC may
require a combination of the following pre-recognition steps:

e Normalization: all points need to fit in the D=[0..1]> ¢ R?
unit square to be properly compared. This normalization is
sometimes mandatory [57].

e Resampling: all points of any candidate gesture need to be
resampled into a set of equally-distanced points according
to the reference gesture in the training set. Resampling in
the arc length domain is preferred to resampling in time in
order to make recognizers invariant to articulation speed
[56], but should be captured with the same sampling rate.

o Rotation to a reference point: to be effectively compared, a
candidate gesture needs to be rotated to a reference point,
such as 0°, with respect to the centroid, or to any reference
angle according to which the training set has been recorded.

These three pre-processing steps can ensure NNC position, scale,
and rotation invariance, but negatively affect its overall perfor-
mance and its complexity. In order to address these challenges, we
contribute NNC for stroke gesture recognition by fundamental and
practical contributions:

o Instead of a point-based gesture representation, any gesture
is defined by vectors expressed with respect to three proper-
ties: isochronicity, isometricity, and iso-parametrization.

o Instead of a point-to-point computation, a Local Shape Dis-
tance (LSD) distance measures the dissimilarity of two or
more gestures represented as n-D vectors.

o Instead of being position, scale, and rotation variant, the
LSD distance is mathematically proved as being position,
scale, and rotation invariant after applying respectively a
translation, a homogeneous dilatation, and a rotation for
any 2D, 3D, or nD gesture, thus eliminating the need for the
three pre-processing steps.

e !FTL, an algorithm for 2D stroke gesture recognition based
on an instantiation of the general LSD formula for n=2, with
its pseudo-code for implementation in any language (Fig. 1).

e A GeoGebra implementation of !FTL for illustrative and
pedagogical purposes that visually demonstrates position,
scale, and rotation invariance on 8 points.

e A JavaScript implementation of !FTL in an application soft-
ware for assisting practitioners when organizing gestures
into an appropriate gesture set. Both the GeoGebra and the
JavaScript implementations are publicly available.

e An experiment comparing !FTL with respect to $1 [63] and
$P [56], two state-of-the-art NNC recognizers of the $-family
on a benchmarking gesture set. This experiment is not aimed
at showing that !FTL is superior to $P or any other recognizer,
but that the requirements are similarly satisfied.

Session 4: Touch and Gesture

(c)

ICMI’18, October 16-20, 2018, Boulder, CO, USA

Figure 2: Vector-based representation: (a) a basic gesture, (b) the ordered couple of vectors for a basic gesture, (c) the corre-
sponding triangle, (d) the three points of a triangle, (e-j) the six possible corresponding basic gestures.

2 RELATED WORK

To better characterize algorithm invariance, we define isometric-
ity as the property of a gesture set to hold a set of n-equally dis-
tanced points: Vi € n—1,d(p;, pi+1) = constant e.g., ||pi+1 — pill =
ﬁ 2 lpi+1 — pill. We define isochronicity as the property of a
gesture set to hold a set of n equally-timestamped points, i.e., Vi €
n=1, ||ti—tis1]| = constant,e.g. ||tis1—til = 725 21, (tiv1—to)l.
We also define isopara-metrization as the property of two or more
gestures/sets to contain the same amount of points, i.e. VG =
{piti=1,...n, H={qj}j=1,...,m : m=n. Two gesture sets can be isopa-
rameterized whether they are isometric or not, isochronic or not.
Several distances have been investigated to compute the similar-
ity between the candidate gesture and a reference one. We hereby
summarize them with respect to the distance used.

The Euclidean distance computes the similarity between two
gestures as a sum of Euclidean distances between pairs of corre-
sponding points. Since this distance offers a straightforward geo-
metric interpretation, it received a lot of attention and has been
extensively researched and demonstrated in many recognizers: Ru-
bine [45], $1 [63], $3 [33], $N [1], Enhanced $N [32], $P [57], $P+
[55], $V [65], Penny Pincher [51], 1F [57], 1 [26], SHARK? [35],
Rubine 2D and 3D combined in iGesture [47]. Most of them belong
to the $-family of recognizers!. No assumption is made with respect
to the nature of points, which may represent position or something
else, provided that isometricity is preserved. The Euclidean distance
can be used in both 2D [1, 2, 11, 35, 63] and 3D [33] setups. For
example, Flower Menus [6] investigated NNC for a gesture-based
command selection to reveal a recognition rate of 99% for the first
24 commands (i.e. straight and bent gestures), 96.5% for the first
40 commands (cusped gestures added), and of 93% for all the com-
mands. Since all gestures were differentiated by the direction and
shape, only position invariance was desired. A gesture shortcut
could be attached to a menu item instead of a keyboard shortcut
in order to increase its remembrance [4]. Since each gesture was
attached to a pull-down menu of a desktop application, thus re-
maining located at the same place with the same orientation, only
scale invariance was a barrier to recognition. Yamaji [65] intro-
duced scale variance: a small right arrow will be recognized for
movie forward and a large right arrow for fast forward. $P [57] was
augmented into $V [65], a scale dependent recognizer, by adding
calculation considering classes of scales for the same gesture, thus
requiring more classifiers.

!See http://depts.washington.edu/madlab/proj/dollar/impact.html

127

The Angular Cosine computes the similarity between two ges-
tures by calculating the angle between the n-dimensional vectors
represented by the points in the gesture. The distance has been
shown to work well for both 2D and 3D gestures respectively in
ProTractor [38], $N-ProTractor [2], and ProTractor3D [34].

Dynamic Time Warping (DTW) generalizes point-to-point
computation of the Euclidean distance while minimizing cost align-
ment between two gestures [5, 51, 60, 63]. JackKnife [52] has been
proved useful for multimodal recognition with a low sampling.

A String distance: computes the similarity between two ges-
tures represented as strings of characters. The Simple Gesture Rec-
ognizer (SIGeR) [50] classified pen-based gestures on a MS Tablet
PC by comparing a direction-based representation of a gesture can-
didate made up of four directions (L=left,R=right, U=up, D=down)
to a regular expression such as (NE|E|SE) + (NW|N|NE) + (SW|W]|
NW) + (SE|S|SW), where letters indicate the four compass direc-
tions (i.e., E=East, W=West, N=North, and S=South). This classifier
is therefore very sensitive to position, scale, and rotation. G-Gene
[12] also relies on a directional representation of gesture to perform
partial uni-stroke recognition at run-time.

The Levenshtein distance: computes the similarity between
two strings representing a gesture based on directions by comput-
ing how many character insertions, deletions, and substitutions
are required to transform the candidate gesture into the reference
gesture. As such, it is a particular string distance. Coyette et al.
[17] computed the Levenshtein distance (a distance measuring the
character permutations and changes between two strings) between
the two strings representing the candidate gesture and reference
gestures. Each stroke is then used in CALI [21], a gesture recognizer
based on primitives between shapes (e.g., a triangle included in a
rectangle). This recognizer is position invariant, but is scale and
rotation dependent. To recognize the same gesture in any direction,
the gesture string should be transformed (e.g., a vertical symmetry
replaces 1=North by 5=South, 2 = North-East by 4=South-East) for
all configurations required. UsiGesture [7] relies on the Stochas-
tic Levenshtein distance [8], which extends the previous one by
considering a probabilistic model of the modifications, with only a
marginal win observed in some specific cases.

The Hausdorff distance computes the similarity between two
gestures by calculating the maximum of all the minimum Euclidean
distances between each point of the candidate set to all points in
the reference set [46]. Some derivatives of this distance have been
also explored, such as the Modified Haussdorff and the Haussdorf-
Besicovitch, a measure of the local size of a set of numbers [19, 31].

http://depts.washington.edu/madlab/proj/dollar/impact.html

Session 4: Touch and Gesture

Other distances [42] have been investigated with less systematic
approach and success, such as the Mahalanobis distance (a measure
used in computer vision), the Jaro-Winkler distance (a measure used
in semantic web) [54]. But different drawbacks, such as sensitivity
to outliers, variance to position, scale or rotation, divergence in
extreme cases, lack of convergence in simplistic cases, unsatisfying
performance have been observed. Already investigated distances
and unexplored ones add more to the complexity and the confusion
in choosing the right distance. In conclusion, NNC exhibits a high
recognition rate with different geometric distances: Euclidean dis-
tance [57], Levenshtein distance [8, 17], angular cosine [48], DTW
[16, 51], minimum-cost point cloud alignments [60]. Experiments
have been conducted for 2D [56] and 3D [59, 64].

3 VECTOR-BASED GESTURE RECOGNITION
3.1 Why Vectors?

A gesture is by definition expressing a motion between an initial
point and a final point with several characteristics such as position,
scale, direction, curvature, pressure in case of a pressure-sensitive
device, tangential acceleration, all of them can be subject to feature
extraction and classification [13, 53]. A point-based representation
of a gesture has the advantage of significantly simplifying a ges-
ture to a series of points, thus reducing the gesture recognition to
a comparison of two series of points. This approach works well
particularly for static characters, like symbols, letters, simple com-
mands, where the gesture shape is more important than the gesture
motion. A point-based representation looses a lot of information
which can be exploited or not depending on constraints imposed on
the recognition, such as for position, scale, and rotation variations.
For instance, a human signature is known to be easily recognized
by a human forger imitating the gesture shape, but would be hardly
recognized when motion is considered. A vector is a geometric
object that intrinsically holds some motion expression such as a
direction and a magnitude [31]. Vectors adequately represent the
following quantities and properties that are particularly suitable
[18,29-31]:

e Position in space: position vectors define the positions of
points by their displacement from any origin O.

o Direction in space: vectors indicate orientation of lines (such
as strokes) and surfaces normals to planes. Only direction is
important, magnitude is ignored.

o Displacement, velocity, and force: vectors specify in which
direction, over what distance, and at what velocity a gesture
can be issued or what force is acting on it. Those vectors are
not concerned with the starting point of the position, and
are called free vectors.

3.2 Basic Definitions

The continuous trace of two consecutive non-trivial translations
of a point will be called basic gesture (Fig. 2a). A basic gesture in a
finite dimensional affine space can then be formalized by a ordered
couple (4, V) of two non-zero free vectors # and ¥ € R™ (Fig. 2b).
A basic gesture (i, U) generates a well precise (eventually triv-
ial) oriented triangle, whose third oriented side is the free vector
—(u + 0) (Fig. 2c). However, a well precise (possibly non trivial)
triangle, having points A, B and C as distinct vertices (Fig. 2d) can
be generated by six possibly different basic gestures. If we denote

128

ICMI’18, October 16-20, 2018, Boulder, CO, USA

a=C-B, ng—C, ¢=B-A, then we have six basic gestures (Fig. 2e-j):
(@, 4), (@b), (b,7), (—d,—7), (-¢,—b), and (—b, —a), respectively. In
particular, basic gestures in an affine plane correspond to ordered
couples (i, 3) of two non-zero free vectors i=(uy,uz) € R? and
¥=(v1,v2) € R%. There is a one-to-one correspondence between
vectors in R? and complex numbers in C; more precisely, to each
free vector ¥ = (x1,x2) € R2 corresponds the complex number
x = x1+ixy € C, and vice versa (i is the imaginary unit such that
i? = —1). The shape of an ordered triangle, traced by a basic gesture
(i, U), can be encoded by the complex number [37] obtained as the
quotient { € C of the complex numbers u, v € C corresponding to
vectors i, U € R of the basic gesture (i, ¥). Every oriented triangle
is characterized up to similarity by a single complex number, called
shape [37]. Analogously, we define the quotient J € C as the sim-
ilarity ratio of the basic gesture (i, ¥). Let us recall the properties
and correspondences between the metrics in R? and C: the norm of
a free vector ¥ € R? and the modulus of its corresponding complex
number x € C coincide:

1% = V7% = V)? + (@)? = Vxx = [xlc where

e X -y = (x1y1) + (x2y2) is the scalar product between X =
(x1,x2) € R? and § = (y1,y2) € R?,
e x*=x1 —ixy € C is the complex conjugate of x=x1 + ix; € C.
Thus, also the distance between two vectors X, ij € R? and the
distance between the two corresponding complex numbers x,y € C
coincide: |¥ — 4| = |x — y|c, that is, R? and C are isometric.

3.3 Local Shape Distance between Gestures
Inspired by the Global Shape Distance (GSD) [11, 53], the dissim-
ilarity (not the similarity!) between two basic gestures (a, I;) and
(4, D), defined as the Local Shape Distance, denoted by the symbol
LSD((d, l;), (i1,9)), is defined as the Euclidean distance between the
similarity ratios of the basic gestures (d, l;) and (4, 0). Equations
and their demonstrations can be found in Appendix B.

3.4 Invariance of the Local Shape Distance

In order to demonstrate the invariance properties of LSD, let us use
function LSD to compare two basic gestures (@, b) and (i, 7) laying
on a same affine plane. LSD is said to be articulation-invariant
because it satisfies the following properties [28].

Point-number and stroke-number invariance. LSD is com-
puted on a set of vectors that are either continuous (a basic gesture)
or a series of continuous ones (a series of basic gestures). If no stroke
exists between the ending point of a gesture stroke and the starting
point of the next stroke, no vector is created and the LSD remains
unaffected. Therefore, both single-stroke and multi-stroke gestures
are supported. Although the sampling limit can be pushed to 8
points [57], a 32 point-sampling represented a viable compromise
between recognition rate and execution time.

Stroke-order invariance. LSD is computed on vectors created
from one or many series of points, provided that isoparameteri-
zation is ensured. How the points are considered and thus how
vectors are defined for computing the LSD does not affect LSD.
Thus, stroke-order invariance is supported. For instance, the house
in Fig. 5 is sketched as a multi-stroke gesture with different orders
of strokes: the house parts could be drawn in any order.

Session 4: Touch and Gesture

/ Triangle poli1: Polygon

B o000

Figure 3: GeoGebra implementation: scale invariance.

Stroke-direction invariance. LSD is not symmetric: it can hap-
pen that LSD(d, E, ¢, (j) # LSD(E, a, (j, ¢). An oriented gesture can
be transformed into its unoriented version and redirected into a ref-
erence vector in one direction. Instead, a simpler and more efficient
approach is preferred: since only the denominator differs for both
LSD(a, l;, c, E) and LSD(I;, a, (Z ¢), we compute the symmetrized ver-
sion which is independent of the local direction (See Equation (2)
in appendix B). One can also observe that both LSD and LSDsym

depends on the lengths of vectors 4, I_; ¢, and 07 Such sensitivity to
the length of each basic gesture is valuable when the points of the
corresponding ordered triangle faithfully represents the isochrone
sampling of a real gesture. The sampling offered by a real-world de-
vice is rarely isochrone. Equally spaced successive sampled points,
i.e. isometric points, do not correspond to equally time-spaced
points of the gesture, i.e. to isochrone points. In order to reduce this
potential bias, we define a LSD independent on the lengths of the
vectors in the basic gestures: V(a, l;), (, 07), the Normalized Local
Shape Distance (NLSD) is defined by the Equation (3) in Appendix
B. NLSD is symmetric: NLSD((d, b), (¢, d)) = NLSD((b, @), (d, ©)).

Position Invariance. This is ensured by proving that a trans-
lation preserves LSD. The translation performed by a free vector
T of a basic gesture (&, E) (corresponding to a oriented triangle of
vertices A, B and C) produces a basic gesture (a’, b ’) (corresponding
to a oriented triangle of vertices A’=A + 7, B’=B +f and C'=C + 7).
Any translation f does not affect the basic gesture, as we have that
@'=d and b'=b.

Scale Invariance. This is ensured by proving that a homoge-
neous dilation preserves LSD (See Equation (4) in Appendix A.2).

Rotation Invariance. This is ensured by proving that a rotation
preserves LSD. One can note that:

e Every counter-clockwise rotation R, in the Euclidean plane
R? of a radian angle ¢€R corresponds to a counter-clockwise
rotation R, in the isometric complex plane C of equal angle.

e Recalling the Euler’s formulas e = cosa+isina, e @th) =
e!®¢!P the complex number R, (x) can be obtained through-
out the complex multiplication Ry (x) = e!*x.

e The ratio of two complex numbers, both rotated by a same
angle, is equal to their original ratio (See the Equations (5)
and (6) in Appendix B).

One can verify that the general LSD defined in (1) has the same
invariance properties in any finite dimensional non-degenerate
quadratic space.

129

ICMI’18, October 16-20, 2018, Boulder, CO, USA

DSL = 0.49
LSD = 0.19

LSDym = 0.34

Point
© A=(43134)

Q@ A= (248376

@ A,=(1815)

@ ° !
Figure 4: GeoGebra implementation: rotation invariance.

(6.4)

4 ALGORITHMS AND IMPLEMENTATIONS

To demonstrate the applicability of (N)LSD for gesture recognition,
equation (1) was instantiated to n=2 and implemented into !FTL, a
2D gesture recognizer based on (N)LSD.

GeoGebra Implementation. GeoGebra is a Dynamic Mathe-
matics Software (DMS) for teaching and learning mathematics by
bridging some gaps between geometry, algebra and calculus. LSD,
NLSD and !FTL were implemented in a GeoGebra geometry appli-
cation 2 to visually demonstrate the position, scale, and rotation
invariance. Fig. 3 reproduces a screen shot where a first gesture is
recorded as a reference gesture and a second gesture is acquired as
a candidate gesture. The LSD is automatically computed between
these two basic gestures: when any edge of the candidate gesture
is moved, the corresponding point location is updated as well as its
corresponding vectors, and so does the distance value. When the
candidature gesture is translated, dilated (Fig. 3) or rotated (Fig. 4)
by direct manipulation, the distance remains unaltered. The rota-
tion could be animated step by step, by a scale at any desired angle.
The sampling is fixed to 8 points, as recommended in [56].

JavaScript Implementation. The appropriate management of
gestures into one or several training sets that can be effectively used
later on in corresponding interactive systems is a process that is
assisted by a dedicated software developed for helping practitioners
in their responsibility to produce the entire material required for
a gesture-based user interface, such as a gesture library [22]. This
follows the tradition of computer-aided design tools for gesture
recognition initiated and continued by representative examples
such as gdt [39], GART [41], Magic [5], GestureBar [10], UsiGesture
[8], GDATK [59], GestureSplit [40], Gesture Recognition Toolkit
[23], RATA gesture [13], Gestimator [66] and most recently by
JackKnife [52]. The system has been developed as a cross-device
responsive application which can be accessed from any device.

Fig. 5 reproduces a screen shot of the on-line environment for
managing gesture samples and gesture sets with four recognizers:
IFTL with LSD, FTL with NLSD, $1 [1] and $P [56]. Any gesture
set can be created, edited, deleted, and loaded for testing. In this
example, a house captured as a multi-stroke gesture is recognized
with a full success (total dissimilarity: LSD=0 and NLSD extremely
low) both with an execution time t<1 msec. Note that $1 and $P
recognize the same gesture with a distance d=0.99, respectively
d=1, and an execution time of +=0.89 msec, resp. t=3.73 msec.

2www.geogebra.org/geometry

www.geogebra.org/geometry

Session 4: Touch and Gesture

Function LOC
LSD calculation 12
NLSD calculation 12
Interpolation 14
Scalar product 1
Gesture recognition 93
Total with all functions without comments 132

Table 1: Lines of code for !'FTL.

Appendix A provides the !FTL pseudo-code used for implement-
ing the JavaScript and the GeoGebra versions. Table 1 shows how
the JavaScript implementation is distributed in terms of lines of
code (LOC): 132 LOC basically implements !FTL in a grand total of
219 LOC for the whole recognizer including comments and blank
lines. This is comparable with $1, $N and $P which respectively
require 100 LOC, 200 LOC, and 70 LOC [57]. Regarding the order
of the computational complexity, the simplified form of $P needs
O(n®) time to recognize a gesture where n is the number of sam-
pled points, thus representing a polynomial complexity. In regard,
IFTL only needs O(n) since it computes LSD by summing up consec-
utive basic gestures, where each basic gesture involves three points.
IFTL is linear with respect to both the amount of basic gestures and
the amount of points, the same complexity as for $1.

5 EXPERIMENT

By following the methodology from the literature [1, 2, 57, 62, 63],
we conducted an experiment to show that !FTL performance is
aligned with $1 [1] and $P [57] for multi-stroke, two state-of-the-
art recognizers belonging to the $-family. At the submission time
of this paper, $P was the last member of this family and the most
flexible and efficient. $Q [58], an optimized version of $P for low-
end devices, appeared in September 2018 and was therefore not
included in the comparison. PennyPincher [51] was not included
for two reasons: "Penny Pincher is scale invariant, though unlike
other recognizers it is not rotation invariant” ([51], p. 201, c1); due
to the normalization of vectors to 1, two "L"-shaped vectors, one
with a short arm and one with a long arm, cannot be distinguished.

5.1 Apparatus

We employed Niclcon [62], a publicly-available large gesture set
consisting of 14,005 uni- and multi-stroke gestures produced by
35 participants for 14 symbol types: accident, bomb, car, casualty,
electricity, fire, fire brigade, flood, gas, injury, paramedics, person,
police, and roadblock. This gesture set was considered more chal-
lenging than other sets because of its variety and complexity and
because it contains dynamic gestures, not just static shapes like in
HHReco [28] (e.g., arch, hexagon, heart, moon, pentagon, ellipse,
square). We employed an Apple MacBook 13” running a Intel Core
i5 2.9 GHz processor and running the macOS Sierra V10.12.6 oper-
ating system. The RAM was 8 Go DDR3 memory with 1867 MHz.
Google Chrome V60.0.3112.101 was used in its 64 bits version.

130

ICMI’18, October 16-20, 2018, Boulder, CO, USA

house 32

T R W oo
e R R ol o |

Orientation

- Distance: 0 Time: 0.3400000000037835 milliseconds). - (IFTL(NLSD): house - Distance: 5e-8
0. mooooooomu mllllueonds) ($1: house - Distance: 0.99871657 Time: 0.8900000000066939 mllllseeond:) (SP house -
Distance: '399999999979627 milliseconds). v

Figure 5: !FTL JavaScript in its environment.

5.2 Design and Measures

When downloading NicIcon, we noticed that participants #26 and
#32 were absent from the announced 35 participants and that some-
times up to 51 gestures were available for a single symbol, although
an average of 30 was published. Thus, to preserve fairness, we
counted on the 33 participants with complete, aligned data. Beyond
these variations in number of samples per class, for instance up to
51 samples for a single class, we decided to keep all gestures on a
sampling of 32 points [57]. Our user-dependent scenario was there-
fore with a design setup as follows: 33 participants X 14 symbols X
30 gesture samples per class (minimum) X 4 recognizers (!FTL+LSD,
IFTL+NLSD, $1, and $P) = 55,440 samples. The total sampling is
certainly above since some symbols were recorded with [30, ..., 51]
samples, which were all considered. For each gesture class, one
sample was randomly selected for testing while keeping the 29
other samples for training. This process was repeated for all sam-
ples within each class, execution times and recognition rates were
computed individually for each participant. Results were averaged
into an execution time and a recognition rate per participant, thus
resulting into at least 55,440 samples X 30 permutations = 1,663,200
elementary tests. The hypotheses formulated for this experiment
were the following:

H11=LSD and NLSD will be faster than $1 and $P for NicIcon. Their
execution times, measured in msec., will be smaller than their coun-
terparts for $1 and $P.

H,1=LSD and NLSD will be more accurate than $1 and $P for Nicl-
con. Their recognition rates, measured in percentage, will be higher
than their counterparts for $1 and $P.

Hs31=NLSD will be faster than LSD for Niclcon.

Hy1=NLSD will be more accurate than LSD for Niclcon.

The JS implementation was used on the above platform to run the
testing, accepting the NicIcon XML files and producing CSV log
files structured as follows and imported into MS Excel:

Date: accident_4/09/2017 @ 10:45:47 - ALL
Records: 33 (NicIcon)

File name: accident.xml, -, -, -

Iteration: undefined Gesture evaluated=accident
Number of Points:32, Threshold: Infinity, -

Recognizers: LSD, NLSD, $1, $P
Amount of Samples: 30, 30, 30, 30, -, -, -
Distance: 75.89, 7.05, 0, 0.09, -, -, -

Execution time:
Recognition rate:

1, @25, 0, 5y Ty Ty T
10, 26.66, @, 3.33, -, -, -

Session 4: Touch and Gesture

$.
X

o.oslr . . = .

0.00

n, N

ICMI’18, October 16-20, 2018, Boulder, CO, USA

| B
’ B g B

2l

Fire Gas Police Flood Paramedics Injury Casual(v Electricity Bomb Person Accident Roadblock Brigade (fire) ok
0.20 /\/ (f Ak \
8 018 IFTL(LSD) ‘FTL(NLSD)
- - 0.1489
g 0.16 fL\
Xk %

= o4 —

g 012 0.1018
.— 010

+ f%

0.08

g —_— 0.0556
.= 006 ~—— —

'S - < = . — — 0.0377

S5 o004 —— =

O S —

L 002

x

Wi o.00

Fire Gas Car Police Flood Paramedics Injury Casualty Electricity Bomb Person Accident Roadblock Brigade (fire) iFm(Lsp) FTL(NLSD) $1 s
w=ir=FTL(LSD) 0.070381 0.064071 0.064100 0.053559 0.055374 0.054628 0.054649 0.051926 0.055598 0.054240 0.054456 0.043675 0.049825 0.051413
=0=IFTL(NLSD) 0.063827 0.048641 0.040105 0.038199 0.038045 0.037758 0.035377 0.035350 0.034161 0.032526 0.031795 0.031471 0.030743 0.029110

$1
SP

0.150730
0.180918

0.119833
0.146096

0.106092
0.137762

0.102808
0.138997

0.101202
0.134848

0.083672
0.128040

0.084842
0.128432

0.111328
0.132216

0.077763
0.129474

0.117197
0.125543

0.106863
0.127418

0.077834
0.125320

0.107753
0.343423

0.077173
0.123921

Figure 6: Box and Whisker plot, average execution times by gesture by recognizer (confidence interval with « = 0.05).

5.3 Results and Discussion

5.3.1 Execution Time. Fig. 6 presents the Box and Whisker plot
and the average execution times delivered by the four recognizers
for all NicIcon gesture classes in decreasing order of the NLSD
execution time, which has the lowest curve, followed by LSD, $1, and
$P respectively. A Student’s t-Test (independent two-sample) was
computed between all six possible pairs of recognizers to compare
execution times for (N)LSD and $-conditions.

First of all, there was a very highly significant difference in the
execution times for !FTL(LSD) (M=.0556, SD=.0388, Median=.0406)
and !FTL(NLSD) (M=.0377, SD=.0421, Median=.0210) conditions;
df= 458, t=9.09, p<.001***, Pearson’s p=.45. These results sug-
gest that using NLSD instead of LSD does have a positive effect
on execution time, which supports H3;. Next, there was a very
highly significant difference in the execution times for !FTL(LSD)
and $1 (M=.1017, SD=.0675, Median=.0873) conditions; d f =458,
— 15.56, p<.001***, Pearson’s p=.39. There was also a signif-
icant difference in the execution times for $1 and $P (M=.1489,
SD=.0848, Median=.1147); d f =458, t= — 23.93, p < .001***, Pear-
son’s p=0.26. These results suggest that LSD is faster than $1,
which is in turn faster than $P for this dataset. Then, starting
again from !FTL(NLSD), it is highly significantly faster than $P
(df=458,t=—27.51,p < .001***, Pearson’s p=0.20) and $1 (df =458,
t=—21.93, p < .001"**, Pearson’s p=0.42). Apart from some cases
such as the “Fire” and “Police” classes, the main quartile of LSD is
never really overlapping with the NLSD one, and there is little or no
overlapping between the intervals of the (N)LSD family and those
of the $-family. (N)LSD is faster than $1 and $P, which supports
Hy.

131

A one-way (single factor on recognizer) ANOVA also gave for
the execution time: p<0.05 with Scheffe = 0.1400 > Tukey’s HSD =
0.0105 > Fisher’s LSD = 0.0079. For the post-hoc tests, all cells had
significant mean differences, e.g. !FTL vs $P: 0.0933, $P vs $1: 0.0472.
To estimate the importance of the execution time, we also computed
Cohen’s d index [15], which defines the effect size as the extent to
which the phenomenon is found within the population or, in the
context of statistical significance testing, the degree to which the
null hypothesis is false. The following values have been obtained
for all pairs: d(LSD, NLSD)=.44, d(LSD, $1)=.84, d(LSD, $P) = 1.41,
d(NLSD, $1)=1.14, d(NLSD, $P)=1.66, and d($1, $P)=.62. Accord-
ing to the general guidelines for interpreting the effect size intro-
duced by Cohen himself, i.e. small (0.2), medium (0.5), and large
(0.8), the effect between LSD and NLSD has a small size, but all
other comparisons revealed a large size, apart between $1 and $P
which is medium. Let us compare the most efficient members of
their respective families, i.e. NLSD and $P. With a Cohen’s d of
1.66, 95% of the NLSD condition will be above the mean of the $P
condition (Cohen’s Us), 42% of the two groups will overlap, and
there is a 87% chance that a randomly selected NLSD participant
will have a higher score than a $P one (probability of superiority).

Cohen’s d assumes [15] that the two samplings share the same
equal size and similar variances. Variances are close but not similar.
Thus, we computed Glass’s A index [24] suited for heteroscedas-
tic samplings (with unequal variances) to confirm the initial im-
pression: A(LSD, NLSD)=.46, A(LSD, $1) = 1.19, A(LSD, $P)=2.40,
A(NLSD, $1)=1.52, A(NLSD, $P) = 2.64, and also A($1, $P) = .70.
These more strict values confirm the previously established Cohen’s
ones. Both Hy; and Hs; are supported.

Session 4: Touch and Gesture

100.00 Bamame
90.00
80.00
70.00
60.00
50.00
$1

——IFTL(LSD) ——!FTL(NLSD) $p

40.00
30.00

20.00

Recognition rate (in %)

10.00

8 WA=k &

Fire Gas Flood Electricity ~ Bomb

0.00

0

Casualty FParameaics

R syt e

p()(@% Qo A B

Person

ICMI’18, October 16-20, 2018, Boulder, CO, USA

97.00

95.134683 95.165910 95.163731

96.00
93.171814

B 95.00
94.00
93.00
92.00
91.00

90.00

89.00

Roadblock Injury Accident Brigade (fire) IFTL(LSD) !FTL{NLSD) $1 sp

Figure 7: Box and Whisker plot, average recognition rate by gesture by recognizer (confidence interval with « = 0.05).

5.3.2 Recognition rate. Fig. 7 presents the Box and Whisker plot
and the recognition rates delivered by the four recognizers for all
Niclcon gesture classes in decreasing order of the NLSD condition.
The !'FTL(NLSD) recognizer delivered the best average recogni-
tion rate (95.1659%) for the user-dependent scenario followed by
IFTL(LSD) with 95.1346%. $P and $1 came next with 95.1637% and
93.1718%, respectively. A Student’s t-Test (independent two-sample)
was computed between all six possible pairs of recognizers to com-
pare recognition rates for (N)LSD and $-conditions.

There was no significant difference in the recognition rates
for IFTL(LSD) (M=95.1346%, SD=15.5366%, Median=100%) and $P
(M = 95.1637%, SD=15.5332%, Median=100%) conditions; t= —
1.4, p=0.08, Pearson’s p=0.99. These results suggest that using
LSD instead of $P does does not influence recognition rate. Simi-
larly, there was no significant difference in the recognition rates
for !FTL(NLSD) (M=95.1659%, SD=15.5338%, Median=100%) and
IFTL(LSD); t= — 1.53, p=0.06, Pearson’s p=0.97. !FTL(NLSD) is
neither more accurate than $P (¢=1, p=0.15, Pearson’s p=0.99)
nor than $1 (M=93.1718%, SD=17.1065%, Median=100%); t=7.00,
p=0.08, Pearson’s p=0.93). Confidence intervals of 95% (a¢=.05) of
respective recognizers largely overlap on each other, but largely
with $1, but not totally.

Fig. 7 shows that the four recognizers share almost the same
values for the average recognition rate (of the order of 95% with a
similar standard deviation of 15%), apart from $1, which is slightly
inferior to the other with an average of the order of 93% and a
standard deviation of 17%. These results suggest that the global
behaviors of LSD, NLSD, and $P are surprisingly similar in terms
of recognition: not only they share the same average and standard
deviation, but also they see their maximum rate on the same classes
(e.g., from Fire” to "Casualty”) and comparable variations on more
challenging classes (e.g., "Accident” and “Fire Brigade”). These last
gestures are more challenging because of their similarity, but also
because the dataset itself contains samples which are not very close
to the original gesture. So, when a gesture class contains samples
which do not reflect very well the original gestures, it is challenging
in the same way for all recognizers and they all behave the same
with respect to this complexity.

In conclusion, Hy; and Hy; are not supported: (N)LSD are not
more accurate than their $-family counterparts, but they are aligned
with their performance on the Niclcon dataset.

132

6 CONCLUSION

This paper presented a novel Local Shape Distance (LSD and NLSD)
that computes the dissimilarity between gestures represented as
n-dimensional vectors with several properties: point-number and
stroke-number invariance, stroke-order and stroke-direction invari-
ance, position, scale, and rotation invariance. An instantiation of
LSD (and NLSD) to n=2 gave rise to !FTL, a 2D vector-based gesture
recognizer with its pseudo-code and two implementations. This
work will benefit practitioners by providing a new gesture recog-
nizer satisfying the requirements in a comparable way (e.g., high
recognition rate, small execution time, low resource consumption,
and low algorithm complexity with geometric interpretation) while
preserving the invariance properties. If for any reason a gesture
should become for instance scale variant, the constraint can be
imposed on the vectors without any loss of generality and without
complexifying the recognizer with additional computations.

IFTL can be subject to several optimizations, such as those of $P
[56] and $Q [58]. A stopping criteria can be defined to recognize
a gesture as soon as a threshold of vectors are computed similar,
thus eliminating the need to consider all vectors. In this way, a
gesture can be recognized while being issued, even before it ends,
thus improving its execution time. This enables gesture feedforward
[61] (instead of immediate feedback after recognition, feedforward
provides guidance while the gesture is being issued) and gesture
mnemonics [3] where end users expect an immediate response time
(= 1sec) to avoid the lagging effect [9]. A second optimization
concerns the combination of LSD and !FTP with DTW [52], which
can be effectively and efficiently combined since DTW optimizes the
point sampling before processing. This represents a very promising
area to investigate. Finally, we will consider Conditional Random
Fields (CRF) [49] for inverting the recognition process: as opposed to
NNC where a near neighbor should emerge from the classification
of objects, CRF proposes a discrete classifier that predicts the near
neighbor for a single sample without considering all samples.

ACKNOWLEDGMENTS

The two first authors would like to thank Laetitia Vanderdonckt
and Maria Roselli for becoming friends and initiating the meeting
of their fathers, which gave rise to this fortuitous collaboration. The
authors would also like to warmly thank the anonymous referees
for their valuable comments and helpful suggestions.

Session 4: Touch and Gesture

REFERENCES

(1]

A

(3

=

[4

=

[10

(1

[12

[13]

[14]

(15

[16]

[17]

(18

[19]

Lisa Anthony and Jacob O. Wobbrock. 2010. A Lightweight Multistroke Recog-
nizer for User Interface Prototypes. In Proceedings of Graphics Interface 2010 (GI
’10). Canadian Information Processing Society, Toronto, Ont., Canada, Canada,
245-252. http://dl.acm.org/citation.cfm?id=1839214.1839258

Lisa Anthony and Jacob O. Wobbrock. 2012. $N-protractor: A Fast and Accurate
Multistroke Recognizer. In Proceedings of Graphics Interface 2012 (GI °’12). Cana-
dian Information Processing Society, Toronto, Ont., Canada, Canada, 117-120.
http://dl.acm.org/citation.cfm?id=2305276.2305296

Caroline Appert and Olivier Bau. 2010. Scale Detection for a Priori Ges-
ture Recognition. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’10). ACM, New York, NY, USA, 879-882. https:
//doi.org/10.1145/1753326.1753456

Caroline Appert and Shumin Zhai. 2009. Using Strokes As Command Shortcuts:
Cognitive Benefits and Toolkit Support. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI "09). ACM, New York, NY, USA,
2289-2298. https://doi.org/10.1145/1518701.1519052

Daniel Ashbrook and Thad Starner. 2010. MAGIC: A Motion Gesture Design
Tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA, 2159-2168. https://doi.org/10.1145/
1753326.1753653

Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2008. Flower Menus: A New
Type of Marking Menu with Large Menu Breadth, Within Groups and Efficient
Expert Mode Memorization. In Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI '08). ACM, New York, NY, USA, 15-22. https://doi.org/10.
1145/1385569.1385575

Francois Beuvens and Jean Vanderdonckt. 2012. Designing Graphical User Inter-
faces Integrating Gestures. In Proceedings of the 30th ACM International Conference
on Design of Communication (SIGDOC ’12). ACM, New York, NY, USA, 313-322.
https://doi.org/10.1145/2379057.2379116

Francois Beuvens and Jean Vanderdonckt. 2012. UsiGesture: An environment
for integrating pen-based interaction in user interface development. In Sixth
International Conference on Research Challenges in Information Science, RCIS 2012,
Valencia, Spain, May 16-18 2012, Colette Rolland, Jaelson Castro, and Oscar Pastor
(Eds.). IEEE, 1-12. https://doi.org/10.1109/RCIS.2012.6240449

Ugo Braga Sangiorgi, Vivian Genaro Motti, Francois Beuvens, and Jean Van-
derdonckt. 2012. Assessing Lag Perception in Electronic Sketching. In Pro-
ceedings of the 7th Nordic Conference on Human-Computer Interaction: Mak-
ing Sense Through Design (NordiCHI ’12). ACM, New York, NY, USA, 153-161.
https://doi.org/10.1145/2399016.2399040

Andrew Bragdon, Robert Zeleznik, Brian Williamson, Timothy Miller, and
Joseph J. LaViola, Jr. 2009. GestureBar: Improving the Approachability of
Gesture-based Interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "09). ACM, New York, NY, USA, 2269-2278.
https://doi.org/10.1145/1518701.1519050

Xiang Cao and Shumin Zhai. 2007. Modeling Human Performance of Pen Stroke
Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI "07). ACM, New York, NY, USA, 1495-1504. https://doi.org/10.1145/
1240624.1240850

Alessandro Carcangiu and Lucio Davide Spano. 2018. G-Gene: A Gene Alignment
Method for Online Partial Stroke Gestures Recognition. Proc. ACM Hum.-Comput.
Interact. 2, EICS, Article 13 (June 2018), 17 pages. https://doi.org/10.1145/3229095
Samuel hsiao-heng Chang, Rachel Blagojevic, and Beryl Plimmer. 2012.
Rata.Gesture: A Gesture Recognizer Developed Using Data Mining. Artif. In-
tell. Eng. Des. Anal. Manuf. 26, 3 (Aug. 2012), 351-366. https://doi.org/10.1017/
50890060412000194

Mauricio Cirelli and Ricardo Nakamura. 2014. A Survey on Multi-touch Gesture
Recognition and Multi-touch Frameworks. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces (ITS °14). ACM, New
York, NY, USA, 35-44. https://doi.org/10.1145/2669485.2669509

J. Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd Edition.
Lawrence Erlbaum, Hillsdale.

Paul Corey and Tracy Hammond. 2008. GLADDER: Combining Gesture and
Geometric Sketch Recognition. In Proceedings of the 23rd National Conference
on Artificial Intelligence - Volume 3 (AAAI'08). AAAI Press, 1788-1789. http:
//dl.acm.org/citation.cfm?id=1620270.1620354

Adrien Coyette, Sascha Schimke, Jean Vanderdonckt, and Claus Vielhauer.
2007. Trainable Sketch Recognizer for Graphical User Interface Design.
Springer Berlin Heidelberg, Berlin, Heidelberg, 124-135. https://doi.org/10.1007/
978-3-540-74796-3_14

Leo Dorst, Daniel Fontijne, and Stephen Mann. 2007. Geometric Algebra for
Computer Science: An Object-Oriented Approach to Geometry (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

M.-P. Dubuisson and A. Jain. 1994. A Modified Hausdorff distance for object
matching. In Proceedings of the 12th IAPR International Conference on Pattern
Recognition (IAPR ’94). IEEE Press, 566-568. http://ieeexplore.ieee.org/document/
576361/

133

[20]

[21

[22]

[23

[25

[26

[27

™
&

[29]

[30

[31

[33

[34

[35

[36]

(37]

[38

%
20,

[40]

[41]

ICMI’18, October 16-20, 2018, Boulder, CO, USA

Richard O. Duda, Peter E. Hart, and David G. Stork. 2000. Pattern Classification.
Wiley & Sons, New York.

Manuel J. Fonseca and Joaquim A. Jorge. 2001. Experimental evaluation of an
on-line scribble recognizer. Pattern Recognition Letters 22, 12 (2001), 1311-1319.
https://doi.org/10.1016/S0167-8655(01)00076-9

Bruno Galveia, Tiago Cardoso, Vitor Santor, and Yves Rybarczyk. 2015. To-
wards the creation of a Gesture Library. EAI Endorsed Transactions on Creative
Technologies 15, 3 (6 2015). https://doi.org/10.4108/ct.2.3.e3

Nicholas Gillian and Joseph A. Paradiso. 2014. The Gesture Recognition Toolkit.
J. Mach. Learn. Res. 15, 1 (Jan. 2014), 3483-3487. http://dl.acm.org/citation.cfm?
1d=2627435.2697076

G.V. Glass, B. McGaw, and M.L. Smith. 1981. Meta-Analysis in Social Research.
Sage, Beverly Hills.

Trevor Hastie, Robert Tibshirani, and Jérome Friedman. 2009. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
Berlin.

J. Herold and T. F. Stahovich. 2012. The 1&Cent; Recognizer: A Fast, Accurate, and
Easy-to-implement Handwritten Gesture Recognition Technique. In Proceedings
of the International Symposium on Sketch-Based Interfaces and Modeling (SBIM
’12). Eurographics Association, Goslar Germany, Germany, 39-46. http://dl.acm.
org/citation.cfm?id=2331067.2331074

Michael Hoffman, Paul Varcholik, and Joseph J. LaViola. 2010. Breaking the Status
Quo: Improving 3D Gesture Recognition with Spatially Convenient Input Devices.
In Proceedings of the 2010 IEEE Virtual Reality Conference (VR °10). IEEE Computer
Society, Washington, DC, USA, 59-66. https://doi.org/10.1109/VR.2010.5444813
Heloise Hse, Michael Shilman, and A. Richard Newton. 2004. Robust Sketched
Symbol Fragmentation Using Templates. In Proceedings of the 9th International
Conference on Intelligent User Interfaces (IUI '04). ACM, New York, NY, USA, 156-
160. https://doi.org/10.1145/964442.964472 Retrieved September 9, 2017 from
https://embedded.eecs.berkeley.edu/research/hhreco/.

M. Murray J. Gilbert. 1991. Clifford algebras and Dirac operators in harmonic
analysis. Cambridge University Press.

Kenichi Kanatani. 2015. Understanding Geometric Algebra: Hamilton, Grassmann,
and Clifford for Computer Vision and Graphics. A. K. Peters, Ltd., Natick, MA,
USA.

Levent Burak Kara and Thomas F. Stahovich. 2004. Hierarchical Parsing and
Recognition of Hand-sketched Diagrams. In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology (UIST '04). ACM, New York,
NY, USA, 13-22. https://doi.org/10.1145/1029632.1029636

Kisang Kim and Hyung-Il Choi. 2016. Online Hand Gesture Recognition Using
Enhanced $N Recogniser Based on a Depth Camera. Int. . Comput. Vision
Robot. 6,3 (Jan. 2016), 214-222. https://doi.org/10.1504/]JCVR.2016.077352
Sven Kratz and Michael Rohs. 2010. A $3 Gesture Recognizer: Simple Gesture
Recognition for Devices Equipped with 3D Acceleration Sensors. In Proceedings
of the 15th International Conference on Intelligent User Interfaces (IUI ’10). ACM,
New York, NY, USA, 341-344. https://doi.org/10.1145/1719970.1720026

Sven Kratz and Michael Rohs. 2011. Protractor3D: A Closed-form Solution to
Rotation-invariant 3D Gestures. In Proceedings of the 16th International Conference
on Intelligent User Interfaces (IUI '11). ACM, New York, NY, USA, 371-374. https:
//doi.org/10.1145/1943403.1943468

Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary
Shorthand Writing System for Pen-based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology (UIST "04).
ACM, New York, NY, USA, 43-52. https://doi.org/10.1145/1029632.1029640
Luis A. Leiva, Daniel Martin-Albo, and Réjean Plamondon. 2015. Gestures A
Go Go: Authoring Synthetic Human-Like Stroke Gestures Using the Kinematic
Theory of Rapid Movements. ACM Trans. Intell. Syst. Technol. 7, 2, Article 15
(Nov. 2015), 29 pages. https://doi.org/10.1145/2799648

J. A. Lester. 1996. Triangles I: Shapes. aequationes mathematicae 52, 1 (01 Feb
1996), 30-54. https://doi.org/10.1007/BF01818325

Yang Li. 2010. Protractor: A Fast and Accurate Gesture Recognizer. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10). ACM,
New York, NY, USA, 2169-2172. https://doi.org/10.1145/1753326.1753654

Allan Christian Long, Jr., James A. Landay, and Lawrence A. Rowe. 1999. Impli-
cations for a Gesture Design Tool. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM, New York, NY, USA, 40-47.
https://doi.org/10.1145/302979.302985

Hao L, James A. Fogarty, and Yang Li. 2014. Gesture Script: Recognizing Gestures
and Their Structure Using Rendering Scripts and Interactively Trained Parts. In
Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 1685-1694. https://doi.org/10.1145/
2556288.2557263

Kent Lyons, Helene Brashear, Tracy Westeyn, Jung Soo Kim, and Thad Starner.
2007. GART: The Gesture and Activity Recognition Toolkit. In Proceedings of
the 12th International Conference on Human-computer Interaction: Intelligent Mul-
timodal Interaction Environments (HCI'07). Springer-Verlag, Berlin, Heidelberg,
718-727. http://dl.acm.org/citation.cfm?id=1769590.1769671

http://dl.acm.org/citation.cfm?id=1839214.1839258
http://dl.acm.org/citation.cfm?id=2305276.2305296
https://doi.org/10.1145/1753326.1753456
https://doi.org/10.1145/1753326.1753456
https://doi.org/10.1145/1518701.1519052
https://doi.org/10.1145/1753326.1753653
https://doi.org/10.1145/1753326.1753653
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/2379057.2379116
https://doi.org/10.1109/RCIS.2012.6240449
https://doi.org/10.1145/2399016.2399040
https://doi.org/10.1145/1518701.1519050
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/3229095
https://doi.org/10.1017/S0890060412000194
https://doi.org/10.1017/S0890060412000194
https://doi.org/10.1145/2669485.2669509
http://dl.acm.org/citation.cfm?id=1620270.1620354
http://dl.acm.org/citation.cfm?id=1620270.1620354
https://doi.org/10.1007/978-3-540-74796-3_14
https://doi.org/10.1007/978-3-540-74796-3_14
http://ieeexplore.ieee.org/document/576361/
http://ieeexplore.ieee.org/document/576361/
https://doi.org/10.1016/S0167-8655(01)00076-9
https://doi.org/10.4108/ct.2.3.e3
http://dl.acm.org/citation.cfm?id=2627435.2697076
http://dl.acm.org/citation.cfm?id=2627435.2697076
http://dl.acm.org/citation.cfm?id=2331067.2331074
http://dl.acm.org/citation.cfm?id=2331067.2331074
https://doi.org/10.1109/VR.2010.5444813
https://doi.org/10.1145/964442.964472
https://embedded.eecs.berkeley.edu/research/hhreco/
https://doi.org/10.1145/1029632.1029636
https://doi.org/10.1504/IJCVR.2016.077352
https://doi.org/10.1145/1719970.1720026
https://doi.org/10.1145/1943403.1943468
https://doi.org/10.1145/1943403.1943468
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/2799648
https://doi.org/10.1007/BF01818325
https://doi.org/10.1145/1753326.1753654
https://doi.org/10.1145/302979.302985
https://doi.org/10.1145/2556288.2557263
https://doi.org/10.1145/2556288.2557263
http://dl.acm.org/citation.cfm?id=1769590.1769671

Session 4: Touch and Gesture

[42] Elena Deza Michel Marie Deza. 2016. Encyclopedia of Distances (4 ed.). Springer-
Verlag, Berlin.
[43] Tao Niand Patrick Baudisch. 2009. Disappearing Mobile Devices. In Proceedings of
the 22Nd Annual ACM Symposium on User Interface Software and Technology (UIST
’09). ACM, New York, NY, USA, 101-110. https://doi.org/10.1145/1622176.1622197
[44] Corey Pittman, Eugene M. Taranta II, and Joseph J. LaViola, Jr. 2016. A $-Family
Friendly Approach to Prototype Selection. In Proceedings of the 21st International
Conference on Intelligent User Interfaces (IUI '16). ACM, New York, NY, USA,
370-374. https://doi.org/10.1145/2856767.2856808
[45] Dean Rubine. 1991. Specifying Gestures by Example. In Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques (SSGGRAPH
’91). ACM, New York, NY, USA, 329-337. https://doi.org/10.1145/122718.122753
[46] W.]J. Rucklidge. 1995. Locating Objects Using the Hausdorff Distance. In Pro-
ceedings of the Fifth International Conference on Computer Vision (ICCV ’95). IEEE
Computer Society, Washington, DC, USA, 457-. http://dl.acm.org/citation.cfm?
1d=839277.840123
[47] B.Signer, U. Kurmann, and M. Norrie. 2007. iGesture: A General Gesture Recogni-
tion Framework. In Proceedings of the Ninth International Conference on Document
Analysis and Recognition - Volume 02 (ICDAR ’07). IEEE Computer Society, Wash-
ington, DC, USA, 954-958. http://dl.acm.org/citation.cfm?id=1304596.1304930
[48] David Bingham Skalak. 1997. Prototype Selection for Composite Nearest Neighbor
Classifiers. Ph.D. Dissertation. Amherst, MA, USA. UMI Order No. GAX97-37585.
Charles A. Sutton and Andrew McCallum. 2012. An Introduction to Conditional
Random Fields. Foundations and Trends in Machine Learning 4, 4 (2012), 267-373.
https://doi.org/10.1561/2200000013
[50] Scott Swigart. 2005. Easily Write Custom Gesture Recognizers for Your Tablet PC
Applications. Retrieved September 9, 2017 from https://msdn.microsoft.com/
en-us/library/aa480673.aspx.
Eugene M. Taranta, II and Joseph J. LaViola, Jr. 2015. Penny Pincher: A
Blazing Fast, Highly Accurate $-family Recognizer. In Proceedings of the 41st
Graphics Interface Conference (GI ’15). Canadian Information Processing Soci-
ety, Toronto, Ont., Canada, Canada, 195-202. http://dl.acm.org/citation.cfm?id=
2788890.2788925
Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo,
Corey R. Pittman, and Joseph J. LaViola Jr. 2017. Jackknife: A Reliable Rec-
ognizer with Few Samples and Many Modalities. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York,
NY, USA, 5850-5861. https://doi.org/10.1145/3025453.3026002
[53] Huawei Tu, Xiangshi Ren, and Shumin Zhai. 2015. Differences and Similarities
Between Finger and Pen Stroke Gestures on Stationary and Mobile Devices.
ACM Trans. Comput.-Hum. Interact. 22, 5, Article 22 (Aug. 2015), 39 pages. https:
//doi.org/10.1145/2797138
Jean Vanderdonckt, Bruno Dumas, and Mauro Cherubini. 2018. Comparing Some
Distances in Template-based 2D Gesture Recognition. In Extended Abstracts of
the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA ’18).
ACM, New York, NY, USA, Article LBW121, 6 pages. https://doi.org/10.1145/
3170427.3188452
Radu-Daniel Vatavu. 2017. Improving Gesture Recognition Accuracy on Touch
Screens for Users with Low Vision. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, Denver, CO, USA, May 06-11, 2017.,

[49

[51

[52

[54

[55

134

[56

[57

[59

[60

(61

[62

(63

(64

(65

[66

]

]

]

]

]

ICMI’18, October 16-20, 2018, Boulder, CO, USA

Gloria Mark, Susan R. Fussell, Cliff Lampe, m. c. schraefel, Juan Pablo Hourcade,
Caroline Appert, and Daniel Wigdor (Eds.). ACM, 4667-4679. https://doi.org/10.
1145/3025453.3025941

Radu-Daniel Vatavu. 2011. The Effect of Sampling Rate on the Performance
of Template-based Gesture Recognizers. In Proceedings of the 13th International
Conference on Multimodal Interfaces (ICMI °11). ACM, New York, NY, USA, 271-
278. https://doi.org/10.1145/2070481.2070531

Radu-Daniel Vatavu. 2012. 1F: One Accessory Feature Design for Gesture
Recognizers. In Proceedings of the 2012 ACM International Conference on In-
telligent User Interfaces (IUI '12). ACM, New York, NY, USA, 297-300. https:
//doi.org/10.1145/2166966.2167022

Radu-Daniel Vatavu, Lisa Anthony, and Jacob Wobbrock. 2018. $Q: A Super-
Quick, Articulation-Invariant Stroke-Gesture Recognizer for Low-Resource De-
vices. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI "18). ACM, New York, NY,
USA, 623-635. https://doi.org/10.1145/3229434.3229465

Radu-Daniel Vatavu, Géry Casiez, and Laurent Grisoni. 2013. Small, Medium, or
Large?: Estimating the User-perceived Scale of Stroke Gestures. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 277-280. https://doi.org/10.1145/2470654.2470692
Radu-Daniel Vatavu, Laurent Grisoni, and Stefan-Gheorghe Pentiuc. 2009.
Gesture-Based Human-Computer Interaction and Simulation. Springer-Verlag,
Berlin, Heidelberg, Chapter Gesture Recognition Based on Elastic Deformation
Energies, 1-12. https://doi.org/10.1007/978-3-540-92865-2_1

Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing
the bridge over Norman’s gulf of execution: revealing feedforward’s true identity.
In 2013 ACM SIGCHI Conference on Human Factors in Computing Systems, CHI

’13, Paris, France, April 27 - May 2, 2013, Wendy E. Mackay, Stephen A. Brewster,
and Susanne Bodker (Eds.). ACM, 1931-1940. https://doi.org/10.1145/2470654.

2466255

Don Willems, Ralph Niels, Marcel van Gerven, and Louis Vuurpijl. 2009. Iconic
and Multi-stroke Gesture Recognition. Pattern Recogn. 42, 12 (Dec. 2009), 3303~
3312. https://doi.org/10.1016/j.patcog.2009.01.030

Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures Without
Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology (UIST °07). ACM, New York, NY, USA, 159-168. https://doi.org/10.
1145/1294211.1294238

Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shijian Li. 2009. Gesture
Recognition with a 3-D Accelerometer. In Proceedings of the 6th International
Conference on Ubiquitous Intelligence and Computing (UIC *09). Springer-Verlag,
Berlin, Heidelberg, 25-38. https://doi.org/10.1007/978-3-642-02830-4_4

Daiki Yamaji. 2016. A Fast and Lightweight Unistroke Recognizer for Large User-
defined vocabulary (in Japanese). Ph.D. Dissertation. University of Tsukuba,
Ibaraki, Japan. Retrieved September 2, 2017 from http://www.iplab.cs.tsukuba.ac.
jp/master-e/.

Yina Ye and Petteri Nurmi. 2015. Gestimator: Shape and Stroke Similarity Based
Gesture Recognition. In Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction (ICMI ’15). ACM, New York, NY, USA, 219-226. https:
//doi.org/10.1145/2818346.2820734

https://doi.org/10.1145/1622176.1622197
https://doi.org/10.1145/2856767.2856808
https://doi.org/10.1145/122718.122753
http://dl.acm.org/citation.cfm?id=839277.840123
http://dl.acm.org/citation.cfm?id=839277.840123
http://dl.acm.org/citation.cfm?id=1304596.1304930
https://doi.org/10.1561/2200000013
https://msdn.microsoft.com/en-us/library/aa480673.aspx
https://msdn.microsoft.com/en-us/library/aa480673.aspx
http://dl.acm.org/citation.cfm?id=2788890.2788925
http://dl.acm.org/citation.cfm?id=2788890.2788925
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/2797138
https://doi.org/10.1145/2797138
https://doi.org/10.1145/3170427.3188452
https://doi.org/10.1145/3170427.3188452
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/2070481.2070531
https://doi.org/10.1145/2166966.2167022
https://doi.org/10.1145/2166966.2167022
https://doi.org/10.1145/3229434.3229465
https://doi.org/10.1145/2470654.2470692
https://doi.org/10.1007/978-3-540-92865-2_1
https://doi.org/10.1145/2470654.2466255
https://doi.org/10.1145/2470654.2466255
https://doi.org/10.1016/j.patcog.2009.01.030
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1007/978-3-642-02830-4_4
http://www.iplab.cs.tsukuba.ac.jp/master-e/
http://www.iplab.cs.tsukuba.ac.jp/master-e/
https://doi.org/10.1145/2818346.2820734
https://doi.org/10.1145/2818346.2820734

	Abstract
	1 Introduction
	2 Related Work
	3 Vector-based Gesture Recognition
	3.1 Why Vectors?
	3.2 Basic Definitions
	3.3 Local Shape Distance between Gestures
	3.4 Invariance of the Local Shape Distance

	4 algorithms And Implementations
	5 Experiment
	5.1 Apparatus
	5.2 Design and Measures
	5.3 Results and Discussion

	6 Conclusion
	Acknowledgments
	References
	A Appendix: Pseudocode
	B Appendix: Equations
	B.1 Local Shape Distance between Gestures
	B.2 Invariance Properties of the Local Shape Distance

