
!FTL, an Articulation-Invariant Stroke Gesture Recognizer with
Controllable Position, Scale, and Rotation Invariances
Jean Vanderdonckt

Université catholique de Louvain

Louvain Research Institute in

Management and Organizations

Louvain-la-Neuve, Belgium

jean.vanderdonckt@uclouvain.be

Paolo Roselli

Università degli Studi di Roma

Matematica Dipartimento

Roma, Italy

Université catholique de Louvain

Institut de recherche en

mathématique et physique

Louvain-la-Neuve, Belgium

roselli@mat.uniroma2.it

paolo.roselli@uclouvain.be

Jorge Luis Pérez Medina

Universidad de las Américas

Intelligent & Interactive Systems Lab

Quito, Ecuador

Université catholique de Louvain

Louvain Research Institute in

Management and Organizations

Louvain-la-Neuve, Belgium

jorge.perez.medina@udla.edu.ec

jorge.perezmedina@uclouvain.be

Figure 1: !FTL geometric interpretation: training and candidature gestures are sampled with their points, between-points vec-

tors initiate basic triangles, Local Shape Distance (LSD) computes their respective similarity.

ABSTRACT

Nearest neighbor classifiers recognize stroke gestures by comput-

ing a (dis)similarity between a candidate gesture and a training set

based on points, which may require normalization, resampling, and

rotation to a reference before processing. To eliminate this expen-

sive preprocessing, this paper introduces a vector-between-vectors

recognition where a gesture is defined by a vector based on geomet-

ric algebra and performs recognition by computing a novel Local

Shape Distance (LSD) between vectors. We mathematically prove

the LSD position, scale, and rotation invariance, thus eliminating

the preprocessing. To demonstrate the viability of this approach,

we instantiate LSD for n=2 to compare !FTL, a 2D stroke-gesture

recognizer with respect to $1 and $P, two state-of-the-art gesture

recognizers, on a gesture set typically used for benchmarking. !FTL

benefits from a recognition rate similar to $P, but a significant

smaller execution time and a lower algorithmic complexity.

KEYWORDS

Stroke gesture recognition; Articulation invariance; Isometricity;

Isochronicity; Isoparameterization; Local Shape Distance.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICMI ’18, October 16–20, 2018, Boulder, CO, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5692-3/18/10. . . $15.00

https://doi.org/10.1145/3242969.3243032

ACM Reference Format:

Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez Medina. 2018. !FTL,

an Articulation-Invariant Stroke Gesture Recognizer with Controllable Po-

sition, Scale, and Rotation Invariances. In ICMI ’18: 2018 Int’l Conference on
Multimodal Interaction, Oct. 16–20, 2018, Boulder, CO, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3242969.3243032

1 INTRODUCTION

Gesture-based user interfaces [10, 14, 53], which are largely sup-

ported by operating systems, have become widely used in many

domains of interactivity, such as hand recognition [27, 34], diagram

sketching [16, 31], user interface prototyping [17], on-line food

order [8], handwriting [26], and mobile commands [43]. Operating

systems usually support a closed vocabulary of standard gestures,

thus raising the need to integrate new, potentially user-defined,

gestures to form an expandable vocabulary. Gesture recognizers

rely on several techniques, such as machine learning [14], data

mining [13, 25], template-based matching [56], and pattern recog-

nition [20, 28]. Many recognizers, but not all, adhere to the Nearest

Neighbor Classification (NNC) [20], which recognizes a candidate
gesture issued by a user among a finite set of reference gestures, re-
ferred to as the training set, by computing a distance between them.

The k-Nearest Neighbors algorithm (k-NN) is a non-parametric

method used for classifying an object with respect to a class of

objects among its k nearest neighbors [25]. In 1-NN, its simplified

version with k=1, the candidate object is simply assigned to the

class of that single nearest neighbor. Probably the most prolific

NNC manifestation for stroke recognition is the $-family of recog-

nizers [1, 32, 33, 44, 51, 57, 57, 63] thanks to a series of significant

advantages demonstrated.

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

125

https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/3242969.3243032

Efficient implementation. NNC algorithms imply only basic

mathematical operations and functions, as opposed to complex tri-

gonometric functions, feature extraction [45], filtering techniques,

machine learning with training and calibration [14]. These algo-

rithms lead to an affordable implementation in nearly all program-

ming languages, benefit from a small amount of lines of code and a

reasonable order of computational complexity.

Low execution time. The average time required to recognize a

candidate gesture from a training set is very low, with no observed

negative effect on lagging [9], such as for low-end devices.

High recognition rate. The estimated percentage of gestures

that are correctly recognized by a gesture recognizer on a training

set is high, typically ranging from 90%up to 99% for some datasets

in some particular contexts of use [2, 56, 63].

Low memory consumption. The amount of RAM used for

recognizing gestures is very limited. NNC processes a simple data

structure based on an efficient implementation, thus consuming a

limited amount of resources [58, 63].

Possible geometric interpretation.A candidate gesture is rec-

ognized as soon as it is near (or close) to a reference gesture in terms

of points captured for both gestures. Since no particular machine

learning or modeling technique is used, the algorithm is subject to

a straightforward geometric interpretation that is manageable and

understandable by human being while being easily processable by

machine algorithms, although they need less points than human to

recognize a gesture [56].

Independence of the algorithm with respect to the train-

ing set.When the training set is edited, such as for adding a new

gesture, for removing an existing one, or for modifying one, the

algorithm remains untouched contrarily to other techniques which

need to be trained again on the resulting set, restructured on the

underlying model, or updated on an expanded search graph [57].

Gesture adaptation.Agesture-based user interface is adaptable
by the end user for editing the training set (e.g., when a system-

provided gesture is replaced by a user-defined gesture to remember

it better) and/or adaptive by the system when gesture-based com-

mands could be redefined (e.g., a new function is offered through a

new gesture, existing gestures are re-purposed, synthetic gestures

[36] enrich the training set, the system suggests a new, sufficiently

distinguishable from others, gesture that the end user may accept,

reject, or modify) [48].

These requirements are particularly suitable for devices suffering

from low computational power, such as ring devices, game con-

trollers, wrist watches, body-mounted devices, and finger, hand,

wrist, arm-based wearable devices. For all these advantages, the

$-family of gesture recognizers [44] has been proved successful

in the community to assist practitioners (e.g., designers, develop-

ers, usability engineers, human factors experts) in incorporating

gesture-based user interfaces in today’s interactive applications.

A gesture is captured by an input device as raw data defined as

G = {pi=(xi ,yi , zi , ti)}, i ∈ n={1, ...,n} where xi ,yi , zi are the 3D
Cartesian coordinates of each gesture point, ti is the time stamp.

When a gesture is captured on an interactive surface, like in pen-

based computing [35], zi is not captured. Sometimes ti is also op-

tional when the gesture shape matters more than its motion or ti
is fed with a continuous identifier IDi . When a gesture is captured

by an input device with more parameters, like 6DOF for optical 3D

trackers, pressure, velocity, acceleration, etc., G is then character-

ized by an-D vector:G = {pi=(xi ,yi , zi ,pi1,pi2, ...,pi j , ...,pim , ti)}
where pi j denotes the j

th
variable of the ith point. The variables

could be either captured (e.g., 3D coordinates and time stamp) or

calculated (e.g., the velocity is the first derivative of position with

respect to time, the acceleration is the second derivative, and the

rate of change of acceleration, also known as jerk, is the third

derivative). Gestures can be represented as sets of points or fea-

tures [16, 27, 45] with comparable recognition rates [63]. NNC may

require a combination of the following pre-recognition steps:

• Normalization: all points need to fit in the D=[0..1]2 ⊂ R2
unit square to be properly compared. This normalization is

sometimes mandatory [57].

• Resampling: all points of any candidate gesture need to be

resampled into a set of equally-distanced points according

to the reference gesture in the training set. Resampling in

the arc length domain is preferred to resampling in time in

order to make recognizers invariant to articulation speed

[56], but should be captured with the same sampling rate.

• Rotation to a reference point: to be effectively compared, a

candidate gesture needs to be rotated to a reference point,

such as 0
◦
, with respect to the centroid, or to any reference

angle according to which the training set has been recorded.

These three pre-processing steps can ensure NNC position, scale,

and rotation invariance, but negatively affect its overall perfor-

mance and its complexity. In order to address these challenges, we

contribute NNC for stroke gesture recognition by fundamental and

practical contributions:

• Instead of a point-based gesture representation, any gesture

is defined by vectors expressed with respect to three proper-

ties: isochronicity, isometricity, and iso-parametrization.

• Instead of a point-to-point computation, a Local Shape Dis-

tance (LSD) distance measures the dissimilarity of two or

more gestures represented as n-D vectors.

• Instead of being position, scale, and rotation variant, the

LSD distance is mathematically proved as being position,

scale, and rotation invariant after applying respectively a

translation, a homogeneous dilatation, and a rotation for

any 2D, 3D, or nD gesture, thus eliminating the need for the

three pre-processing steps.

• !FTL, an algorithm for 2D stroke gesture recognition based

on an instantiation of the general LSD formula for n=2, with
its pseudo-code for implementation in any language (Fig. 1).

• A GeoGebra implementation of !FTL for illustrative and

pedagogical purposes that visually demonstrates position,

scale, and rotation invariance on 8 points.

• A JavaScript implementation of !FTL in an application soft-

ware for assisting practitioners when organizing gestures

into an appropriate gesture set. Both the GeoGebra and the

JavaScript implementations are publicly available.

• An experiment comparing !FTL with respect to $1 [63] and

$P [56], two state-of-the-art NNC recognizers of the $-family

on a benchmarking gesture set. This experiment is not aimed

at showing that !FTL is superior to $P or any other recognizer,

but that the requirements are similarly satisfied.

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

126

Figure 2: Vector-based representation: (a) a basic gesture, (b) the ordered couple of vectors for a basic gesture, (c) the corre-

sponding triangle, (d) the three points of a triangle, (e-j) the six possible corresponding basic gestures.

2 RELATEDWORK

To better characterize algorithm invariance, we define isometric-
ity as the property of a gesture set to hold a set of n-equally dis-

tanced points: ∀i ∈ n−1,d(pi ,pi+1) = constant e.g., ∥pi+1 − pi ∥ =
1

n−1
∑n
i=1 ∥pi+1 − pi∥. We define isochronicity as the property of a

gesture set to hold a set of n equally-timestamped points, i.e., ∀i ∈
n−1, ∥ti−ti+1∥ = constant , e.g., ∥ti+1−ti ∥ = 1

n−1
∑n
i=1 ∥(ti+1−ti)∥.

We also define isopara-metrization as the property of two or more

gestures/sets to contain the same amount of points, i.e. ∀G =
{pi }i=1, ...n , H={qj }j=1, ...,m :m=n. Two gesture sets can be isopa-

rameterized whether they are isometric or not, isochronic or not.

Several distances have been investigated to compute the similar-

ity between the candidate gesture and a reference one. We hereby

summarize them with respect to the distance used.

The Euclidean distance computes the similarity between two

gestures as a sum of Euclidean distances between pairs of corre-

sponding points. Since this distance offers a straightforward geo-

metric interpretation, it received a lot of attention and has been

extensively researched and demonstrated in many recognizers: Ru-

bine [45], $1 [63], $3 [33], $N [1], Enhanced $N [32], $P [57], $P+

[55], $V [65], Penny Pincher [51], 1F [57], 1 [26], SHARK2
[35],

Rubine 2D and 3D combined in iGesture [47]. Most of them belong

to the $-family of recognizers
1
. No assumption is made with respect

to the nature of points, which may represent position or something

else, provided that isometricity is preserved. The Euclidean distance

can be used in both 2D [1, 2, 11, 35, 63] and 3D [33] setups. For

example, Flower Menus [6] investigated NNC for a gesture-based

command selection to reveal a recognition rate of 99% for the first

24 commands (i.e. straight and bent gestures), 96.5% for the first

40 commands (cusped gestures added), and of 93% for all the com-

mands. Since all gestures were differentiated by the direction and

shape, only position invariance was desired. A gesture shortcut

could be attached to a menu item instead of a keyboard shortcut

in order to increase its remembrance [4]. Since each gesture was

attached to a pull-down menu of a desktop application, thus re-

maining located at the same place with the same orientation, only

scale invariance was a barrier to recognition. Yamaji [65] intro-

duced scale variance: a small right arrow will be recognized for

movie forward and a large right arrow for fast forward. $P [57] was

augmented into $V [65], a scale dependent recognizer, by adding

calculation considering classes of scales for the same gesture, thus

requiring more classifiers.

1
See http://depts.washington.edu/madlab/proj/dollar/impact.html

The Angular Cosine computes the similarity between two ges-

tures by calculating the angle between the n-dimensional vectors

represented by the points in the gesture. The distance has been

shown to work well for both 2D and 3D gestures respectively in

ProTractor [38], $N-ProTractor [2], and ProTractor3D [34].

Dynamic Time Warping (DTW) generalizes point-to-point

computation of the Euclidean distance while minimizing cost align-

ment between two gestures [5, 51, 60, 63]. JackKnife [52] has been

proved useful for multimodal recognition with a low sampling.

A String distance: computes the similarity between two ges-

tures represented as strings of characters. The Simple Gesture Rec-

ognizer (SIGeR) [50] classified pen-based gestures on a MS Tablet

PC by comparing a direction-based representation of a gesture can-

didate made up of four directions (L=left,R=right, U=up, D=down)

to a regular expression such as (NE|E|SE) + (NW|N|NE) + (SW|W|

NW) + (SE|S|SW), where letters indicate the four compass direc-

tions (i.e., E=East, W=West, N=North, and S=South). This classifier

is therefore very sensitive to position, scale, and rotation. G-Gene

[12] also relies on a directional representation of gesture to perform

partial uni-stroke recognition at run-time.

The Levenshtein distance: computes the similarity between

two strings representing a gesture based on directions by comput-

ing how many character insertions, deletions, and substitutions

are required to transform the candidate gesture into the reference

gesture. As such, it is a particular string distance. Coyette et al.
[17] computed the Levenshtein distance (a distance measuring the

character permutations and changes between two strings) between

the two strings representing the candidate gesture and reference

gestures. Each stroke is then used in CALI [21], a gesture recognizer

based on primitives between shapes (e.g., a triangle included in a

rectangle). This recognizer is position invariant, but is scale and

rotation dependent. To recognize the same gesture in any direction,

the gesture string should be transformed (e.g., a vertical symmetry

replaces 1=North by 5=South, 2 = North-East by 4=South-East) for

all configurations required. UsiGesture [7] relies on the Stochas-

tic Levenshtein distance [8], which extends the previous one by

considering a probabilistic model of the modifications, with only a

marginal win observed in some specific cases.

The Hausdorff distance computes the similarity between two

gestures by calculating the maximum of all the minimum Euclidean

distances between each point of the candidate set to all points in

the reference set [46]. Some derivatives of this distance have been

also explored, such as the Modified Haussdorff and the Haussdorf-

Besicovitch, a measure of the local size of a set of numbers [19, 31].

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

127

http://depts.washington.edu/madlab/proj/dollar/impact.html

Other distances [42] have been investigated with less systematic

approach and success, such as the Mahalanobis distance (a measure

used in computer vision), the Jaro-Winkler distance (a measure used

in semantic web) [54]. But different drawbacks, such as sensitivity

to outliers, variance to position, scale or rotation, divergence in

extreme cases, lack of convergence in simplistic cases, unsatisfying

performance have been observed. Already investigated distances

and unexplored ones add more to the complexity and the confusion

in choosing the right distance. In conclusion, NNC exhibits a high

recognition rate with different geometric distances: Euclidean dis-

tance [57], Levenshtein distance [8, 17], angular cosine [48], DTW

[16, 51], minimum-cost point cloud alignments [60]. Experiments

have been conducted for 2D [56] and 3D [59, 64].

3 VECTOR-BASED GESTURE RECOGNITION

3.1 Why Vectors?

A gesture is by definition expressing a motion between an initial

point and a final point with several characteristics such as position,

scale, direction, curvature, pressure in case of a pressure-sensitive

device, tangential acceleration, all of them can be subject to feature

extraction and classification [13, 53]. A point-based representation

of a gesture has the advantage of significantly simplifying a ges-

ture to a series of points, thus reducing the gesture recognition to

a comparison of two series of points. This approach works well

particularly for static characters, like symbols, letters, simple com-

mands, where the gesture shape is more important than the gesture

motion. A point-based representation looses a lot of information

which can be exploited or not depending on constraints imposed on

the recognition, such as for position, scale, and rotation variations.

For instance, a human signature is known to be easily recognized

by a human forger imitating the gesture shape, but would be hardly

recognized when motion is considered. A vector is a geometric

object that intrinsically holds some motion expression such as a

direction and a magnitude [31]. Vectors adequately represent the

following quantities and properties that are particularly suitable

[18, 29–31]:

• Position in space: position vectors define the positions of

points by their displacement from any origin O .
• Direction in space: vectors indicate orientation of lines (such

as strokes) and surfaces normals to planes. Only direction is

important, magnitude is ignored.

• Displacement, velocity, and force: vectors specify in which

direction, over what distance, and at what velocity a gesture

can be issued or what force is acting on it. Those vectors are

not concerned with the starting point of the position, and

are called free vectors.

3.2 Basic Definitions

The continuous trace of two consecutive non-trivial translations

of a point will be called basic gesture (Fig. 2a). A basic gesture in a

finite dimensional affine space can then be formalized by a ordered

couple (®u, ®v) of two non-zero free vectors ®u and ®v ∈ Rn (Fig. 2b).

A basic gesture (®u, ®v) generates a well precise (eventually triv-

ial) oriented triangle, whose third oriented side is the free vector

−(®u + ®v) (Fig. 2c). However, a well precise (possibly non trivial)

triangle, having points A, B and C as distinct vertices (Fig. 2d) can

be generated by six possibly different basic gestures. If we denote

®a=C−B, ®b=A−C , ®c=B−A, then we have six basic gestures (Fig. 2e-j):

(®c, ®a), (®a, ®b), (®b, ®c), (−®a,−®c), (−®c,−®b), and (−®b,−®a), respectively. In
particular, basic gestures in an affine plane correspond to ordered

couples (®u, ®v) of two non-zero free vectors ®u=(u1,u2) ∈ R2 and

®v=(v1,v2) ∈ R2. There is a one-to-one correspondence between
vectors in R2 and complex numbers in C; more precisely, to each

free vector ®x = (x1,x2) ∈ R2 corresponds the complex number

x = x1+ix2 ∈ C, and vice versa (i is the imaginary unit such that

i2 = −1). The shape of an ordered triangle, traced by a basic gesture

(®u, ®v), can be encoded by the complex number [37] obtained as the

quotient
u
v ∈ C of the complex numbers u, v ∈ C corresponding to

vectors ®u, ®v ∈ R of the basic gesture (®u, ®v). Every oriented triangle

is characterized up to similarity by a single complex number, called

shape [37]. Analogously, we define the quotient u
v ∈ C as the sim-

ilarity ratio of the basic gesture (®u, ®v). Let us recall the properties
and correspondences between the metrics in R2 and C: the norm of

a free vector ®x ∈ R2 and the modulus of its corresponding complex

number x ∈ C coincide:

| ®x | =
√
®x · ®x =

√
(x1)2 + (x2)2 =

√
x x∗ = |x|Cwhere

• ®x · ®y = (x1y1) + (x2y2) is the scalar product between ®x =
(x1,x2) ∈ R2 and ®y = (y1,y2) ∈ R2,
• x∗=x1 − ix2 ∈ C is the complex conjugate of x=x1 + ix2 ∈ C.

Thus, also the distance between two vectors ®x , ®y ∈ R2 and the

distance between the two corresponding complex numbers x, y ∈ C
coincide: | ®x − ®y | = |x − y |C, that is, R2 and C are isometric.

3.3 Local Shape Distance between Gestures

Inspired by the Global Shape Distance (GSD) [11, 53], the dissim-

ilarity (not the similarity!) between two basic gestures (®a, ®b) and
(®u, ®v), defined as the Local Shape Distance, denoted by the symbol

LSD
(
(®a, ®b), (®u, ®v)

)
, is defined as the Euclidean distance between the

similarity ratios of the basic gestures (®a, ®b) and (®u, ®v). Equations
and their demonstrations can be found in Appendix B.

3.4 Invariance of the Local Shape Distance

In order to demonstrate the invariance properties of LSD, let us use

function LSD to compare two basic gestures (®a, ®b) and (®u, ®v) laying
on a same affine plane. LSD is said to be articulation-invariant

because it satisfies the following properties [28].

Point-number and stroke-number invariance. LSD is com-

puted on a set of vectors that are either continuous (a basic gesture)

or a series of continuous ones (a series of basic gestures). If no stroke

exists between the ending point of a gesture stroke and the starting

point of the next stroke, no vector is created and the LSD remains

unaffected. Therefore, both single-stroke and multi-stroke gestures

are supported. Although the sampling limit can be pushed to 8

points [57], a 32 point-sampling represented a viable compromise

between recognition rate and execution time.

Stroke-order invariance. LSD is computed on vectors created

from one or many series of points, provided that isoparameteri-

zation is ensured. How the points are considered and thus how

vectors are defined for computing the LSD does not affect LSD.

Thus, stroke-order invariance is supported. For instance, the house

in Fig. 5 is sketched as a multi-stroke gesture with different orders

of strokes: the house parts could be drawn in any order.

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

128

Figure 3: GeoGebra implementation: scale invariance.

Stroke-direction invariance. LSD is not symmetric: it can hap-

pen that LSD(®a, ®b, ®c, ®d) , LSD(®b, ®a, ®d, ®c). An oriented gesture can

be transformed into its unoriented version and redirected into a ref-

erence vector in one direction. Instead, a simpler and more efficient

approach is preferred: since only the denominator differs for both

LSD(®a, ®b, ®c, ®b) and LSD(®b, ®a, ®d, ®c), we compute the symmetrized ver-

sion which is independent of the local direction (See Equation (2)

in appendix B). One can also observe that both LSD and LSDsym

depends on the lengths of vectors ®a, ®b, ®c , and ®d . Such sensitivity to

the length of each basic gesture is valuable when the points of the

corresponding ordered triangle faithfully represents the isochrone

sampling of a real gesture. The sampling offered by a real-world de-

vice is rarely isochrone. Equally spaced successive sampled points,

i.e. isometric points, do not correspond to equally time-spaced

points of the gesture, i.e. to isochrone points. In order to reduce this

potential bias, we define a LSD independent on the lengths of the

vectors in the basic gestures: ∀(®a, ®b), (®c, ®d), the Normalized Local

Shape Distance (NLSD) is defined by the Equation (3) in Appendix

B. NLSD is symmetric: NLSD
(
(®a, ®b), (®c, ®d)

)
= NLSD

(
(®b, ®a), (®d, ®c)

)
.

Position Invariance. This is ensured by proving that a trans-

lation preserves LSD. The translation performed by a free vector

®t of a basic gesture (®a, ®b) (corresponding to a oriented triangle of

verticesA, B andC) produces a basic gesture (®a′, ®b ′) (corresponding
to a oriented triangle of vertices A′=A + ®t , B′=B + ®t and C ′=C + ®t).
Any translation ®t does not affect the basic gesture, as we have that
®a′=®a and

®b ′=®b .
Scale Invariance. This is ensured by proving that a homoge-

neous dilation preserves LSD (See Equation (4) in Appendix A.2).

Rotation Invariance. This is ensured by proving that a rotation

preserves LSD. One can note that:

• Every counter-clockwise rotation Rα in the Euclidean plane

R2 of a radian angle α∈R corresponds to a counter-clockwise
rotation Rα in the isometric complex plane C of equal angle.

• Recalling the Euler’s formulas eiα = cosα+i sinα , ei(α+β) =
eiα ei β , the complex number Rα (x) can be obtained through-

out the complex multiplication Rα (x) = eiα x.
• The ratio of two complex numbers, both rotated by a same

angle, is equal to their original ratio (See the Equations (5)

and (6) in Appendix B).

One can verify that the general LSD defined in (1) has the same

invariance properties in any finite dimensional non-degenerate

quadratic space.

Figure 4: GeoGebra implementation: rotation invariance.

4 ALGORITHMS AND IMPLEMENTATIONS

To demonstrate the applicability of (N)LSD for gesture recognition,

equation (1) was instantiated to n=2 and implemented into !FTL, a

2D gesture recognizer based on (N)LSD.

GeoGebra Implementation. GeoGebra is a Dynamic Mathe-

matics Software (DMS) for teaching and learning mathematics by

bridging some gaps between geometry, algebra and calculus. LSD,

NLSD and !FTL were implemented in a GeoGebra geometry appli-

cation
2
to visually demonstrate the position, scale, and rotation

invariance. Fig. 3 reproduces a screen shot where a first gesture is

recorded as a reference gesture and a second gesture is acquired as

a candidate gesture. The LSD is automatically computed between

these two basic gestures: when any edge of the candidate gesture

is moved, the corresponding point location is updated as well as its

corresponding vectors, and so does the distance value. When the

candidature gesture is translated, dilated (Fig. 3) or rotated (Fig. 4)

by direct manipulation, the distance remains unaltered. The rota-

tion could be animated step by step, by a scale at any desired angle.

The sampling is fixed to 8 points, as recommended in [56].

JavaScript Implementation. The appropriate management of

gestures into one or several training sets that can be effectively used

later on in corresponding interactive systems is a process that is

assisted by a dedicated software developed for helping practitioners

in their responsibility to produce the entire material required for

a gesture-based user interface, such as a gesture library [22]. This

follows the tradition of computer-aided design tools for gesture

recognition initiated and continued by representative examples

such asдdt [39], GART [41], Magic [5], GestureBar [10], UsiGesture

[8], GDATK [59], GestureSplit [40], Gesture Recognition Toolkit

[23], RATA.gesture [13], Gestimator [66] and most recently by

JackKnife [52]. The system has been developed as a cross-device

responsive application which can be accessed from any device.

Fig. 5 reproduces a screen shot of the on-line environment for

managing gesture samples and gesture sets with four recognizers:

!FTL with LSD, FTL with NLSD, $1 [1] and $P [56]. Any gesture

set can be created, edited, deleted, and loaded for testing. In this

example, a house captured as a multi-stroke gesture is recognized

with a full success (total dissimilarity: LSD=0 and NLSD extremely

low) both with an execution time t<1 msec. Note that $1 and $P

recognize the same gesture with a distance d=0.99, respectively
d=1, and an execution time of t=0.89 msec, resp. t=3.73 msec.

2
www.geogebra.org/geometry

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

129

www.geogebra.org/geometry

Function LOC

LSD calculation 12

NLSD calculation 12

Interpolation 14

Scalar product 1

Gesture recognition 93

Total with all functions without comments 132

Table 1: Lines of code for !FTL.

Appendix A provides the !FTL pseudo-code used for implement-

ing the JavaScript and the GeoGebra versions. Table 1 shows how

the JavaScript implementation is distributed in terms of lines of

code (LOC): 132 LOC basically implements !FTL in a grand total of

219 LOC for the whole recognizer including comments and blank

lines. This is comparable with $1, $N and $P which respectively

require 100 LOC, 200 LOC, and 70 LOC [57]. Regarding the order

of the computational complexity, the simplified form of $P needs

O(n2.5) time to recognize a gesture where n is the number of sam-

pled points, thus representing a polynomial complexity. In regard,

!FTL only needsO(n) since it computes LSD by summing up consec-

utive basic gestures, where each basic gesture involves three points.

!FTL is linear with respect to both the amount of basic gestures and

the amount of points, the same complexity as for $1.

5 EXPERIMENT

By following the methodology from the literature [1, 2, 57, 62, 63],

we conducted an experiment to show that !FTL performance is

aligned with $1 [1] and $P [57] for multi-stroke, two state-of-the-

art recognizers belonging to the $-family. At the submission time

of this paper, $P was the last member of this family and the most

flexible and efficient. $Q [58], an optimized version of $P for low-

end devices, appeared in September 2018 and was therefore not

included in the comparison. PennyPincher [51] was not included

for two reasons: ”Penny Pincher is scale invariant, though unlike

other recognizers it is not rotation invariant” ([51], p. 201, c1); due

to the normalization of vectors to 1, two "L"-shaped vectors, one

with a short arm and one with a long arm, cannot be distinguished.

5.1 Apparatus

We employed NicIcon [62], a publicly-available large gesture set

consisting of 14,005 uni- and multi-stroke gestures produced by

35 participants for 14 symbol types: accident, bomb, car, casualty,

electricity, fire, fire brigade, flood, gas, injury, paramedics, person,

police, and roadblock. This gesture set was considered more chal-

lenging than other sets because of its variety and complexity and

because it contains dynamic gestures, not just static shapes like in

HHReco [28] (e.g., arch, hexagon, heart, moon, pentagon, ellipse,

square). We employed an Apple MacBook 13” running a Intel Core

i5 2.9 GHz processor and running the macOS Sierra V10.12.6 oper-

ating system. The RAM was 8 Go DDR3 memory with 1867 MHz.

Google Chrome V60.0.3112.101 was used in its 64 bits version.

Figure 5: !FTL JavaScript in its environment.

5.2 Design and Measures

When downloading NicIcon, we noticed that participants #26 and

#32 were absent from the announced 35 participants and that some-

times up to 51 gestures were available for a single symbol, although

an average of 30 was published. Thus, to preserve fairness, we

counted on the 33 participants with complete, aligned data. Beyond

these variations in number of samples per class, for instance up to

51 samples for a single class, we decided to keep all gestures on a

sampling of 32 points [57]. Our user-dependent scenario was there-

fore with a design setup as follows: 33 participants × 14 symbols ×
30 gesture samples per class (minimum) × 4 recognizers (!FTL+LSD,
!FTL+NLSD, $1, and $P) = 55,440 samples. The total sampling is

certainly above since some symbols were recorded with [30, ..., 51]
samples, which were all considered. For each gesture class, one

sample was randomly selected for testing while keeping the 29

other samples for training. This process was repeated for all sam-

ples within each class, execution times and recognition rates were

computed individually for each participant. Results were averaged

into an execution time and a recognition rate per participant, thus

resulting into at least 55,440 samples × 30 permutations = 1,663,200

elementary tests. The hypotheses formulated for this experiment

were the following:

H11=LSD and NLSD will be faster than $1 and $P for NicIcon. Their

execution times, measured in msec., will be smaller than their coun-

terparts for $1 and $P.

H21=LSD and NLSD will be more accurate than $1 and $P for NicI-

con. Their recognition rates, measured in percentage, will be higher

than their counterparts for $1 and $P.

H31=NLSD will be faster than LSD for NicIcon.

H41=NLSD will be more accurate than LSD for NicIcon.

The JS implementation was used on the above platform to run the

testing, accepting the NicIcon XML files and producing CSV log

files structured as follows and imported into MS Excel:

Date: accident_4/09/2017 @ 10:45:47 - ALL
Records: 33 (NicIcon)
File name: accident.xml, -, -, -
Iteration: undefined Gesture evaluated=accident
Number of Points:32, Threshold: Infinity, -
Recognizers: LSD, NLSD, $1, $P
Amount of Samples: 30, 30, 30, 30, -, -, -
Distance: 75.89, 7.05, 0, 0.09, -, -, -
Execution time: 1, 0.25, 0, 5, -, -, -
Recognition rate: 10, 26.66, 0, 3.33, -, -, -

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

130

Figure 6: Box and Whisker plot, average execution times by gesture by recognizer (confidence interval with α = 0.05).

5.3 Results and Discussion

5.3.1 Execution Time. Fig. 6 presents the Box and Whisker plot

and the average execution times delivered by the four recognizers

for all NicIcon gesture classes in decreasing order of the NLSD

execution time, which has the lowest curve, followed by LSD, $1, and

$P respectively. A Student’s t-Test (independent two-sample) was

computed between all six possible pairs of recognizers to compare

execution times for (N)LSD and $-conditions.

First of all, there was a very highly significant difference in the

execution times for !FTL(LSD) (M=.0556, SD=.0388, Median=.0406)

and !FTL(NLSD) (M=.0377, SD=.0421, Median=.0210) conditions;

df = 458, t= 9.09, p<.001∗∗∗, Pearson’s ρ=.45. These results sug-

gest that using NLSD instead of LSD does have a positive effect

on execution time, which supports H31. Next, there was a very

highly significant difference in the execution times for !FTL(LSD)

and $1 (M=.1017, SD=.0675, Median=.0873) conditions; d f =458,
t= − 15.56, p<.001∗∗∗, Pearson’s ρ=.39. There was also a signif-

icant difference in the execution times for $1 and $P (M=.1489,
SD=.0848, Median=.1147); d f =458, t= − 23.93, p < .001∗∗∗, Pear-
son’s ρ=0.26. These results suggest that LSD is faster than $1,

which is in turn faster than $P for this dataset. Then, starting

again from !FTL(NLSD), it is highly significantly faster than $P

(d f =458, t=−27.51, p < .001∗∗∗, Pearson’s ρ=0.20) and $1 (df =458,
t= − 21.93, p < .001∗∗∗, Pearson’s ρ=0.42). Apart from some cases

such as the ”Fire” and ”Police” classes, the main quartile of LSD is

never really overlapping with the NLSD one, and there is little or no

overlapping between the intervals of the (N)LSD family and those

of the $-family. (N)LSD is faster than $1 and $P, which supports

H11.

A one-way (single factor on recognizer) ANOVA also gave for

the execution time: p<0.05 with Scheffe = 0.1400 > Tukey’s HSD =

0.0105 > Fisher’s LSD = 0.0079. For the post-hoc tests, all cells had

significant mean differences, e.g. !FTL vs $P: 0.0933, $P vs $1: 0.0472.

To estimate the importance of the execution time, we also computed

Cohen’s d index [15], which defines the effect size as the extent to

which the phenomenon is found within the population or, in the

context of statistical significance testing, the degree to which the

null hypothesis is false. The following values have been obtained

for all pairs:d(LSD,NLSD)=.44,d(LSD, $1)=.84,d(LSD, $P) = 1.41,

d(NLSD, $1)=1.14, d(NLSD, $P)=1.66, and d($1, $P)=.62. Accord-
ing to the general guidelines for interpreting the effect size intro-

duced by Cohen himself, i.e. small (0.2), medium (0.5), and large

(0.8), the effect between LSD and NLSD has a small size, but all

other comparisons revealed a large size, apart between $1 and $P

which is medium. Let us compare the most efficient members of

their respective families, i.e. NLSD and $P. With a Cohen’s d of

1.66, 95% of the NLSD condition will be above the mean of the $P

condition (Cohen’s U3), 42% of the two groups will overlap, and

there is a 87% chance that a randomly selected NLSD participant

will have a higher score than a $P one (probability of superiority).

Cohen’s d assumes [15] that the two samplings share the same

equal size and similar variances. Variances are close but not similar.

Thus, we computed Glass’s ∆ index [24] suited for heteroscedas-

tic samplings (with unequal variances) to confirm the initial im-

pression: ∆(LSD,NLSD)=.46, ∆(LSD, $1) = 1.19, ∆(LSD, $P)=2.40,
∆(NLSD, $1)=1.52, ∆(NLSD, $P) = 2.64, and also ∆($1, $P) = .70.
These more strict values confirm the previously established Cohen’s

ones. Both H11 and H31 are supported.

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

131

Figure 7: Box and Whisker plot, average recognition rate by gesture by recognizer (confidence interval with α = 0.05).

5.3.2 Recognition rate. Fig. 7 presents the Box andWhisker plot

and the recognition rates delivered by the four recognizers for all

NicIcon gesture classes in decreasing order of the NLSD condition.

The !FTL(NLSD) recognizer delivered the best average recogni-

tion rate (95.1659%) for the user-dependent scenario followed by

!FTL(LSD) with 95.1346%. $P and $1 came next with 95.1637% and

93.1718%, respectively. A Student’s t-Test (independent two-sample)

was computed between all six possible pairs of recognizers to com-

pare recognition rates for (N)LSD and $-conditions.

There was no significant difference in the recognition rates

for !FTL(LSD) (M=95.1346%, SD=15.5366%, Median=100%) and $P

(M = 95.1637%, SD=15.5332%, Median=100%) conditions; t= −
1.4, p=0.08, Pearson’s ρ=0.99. These results suggest that using

LSD instead of $P does does not influence recognition rate. Simi-

larly, there was no significant difference in the recognition rates

for !FTL(NLSD) (M=95.1659%, SD=15.5338%, Median=100%) and

!FTL(LSD); t= − 1.53, p=0.06, Pearson’s ρ=0.97. !FTL(NLSD) is
neither more accurate than $P (t=1, p=0.15, Pearson’s ρ=0.99)
nor than $1 (M=93.1718%, SD=17.1065%, Median=100%); t=7.00,
p=0.08, Pearson’s ρ=0.93). Confidence intervals of 95% (α=.05) of
respective recognizers largely overlap on each other, but largely

with $1, but not totally.

Fig. 7 shows that the four recognizers share almost the same

values for the average recognition rate (of the order of 95% with a

similar standard deviation of 15%), apart from $1, which is slightly

inferior to the other with an average of the order of 93% and a

standard deviation of 17%. These results suggest that the global

behaviors of LSD, NLSD, and $P are surprisingly similar in terms

of recognition: not only they share the same average and standard

deviation, but also they see their maximum rate on the same classes

(e.g., from ”Fire” to ”Casualty”) and comparable variations on more

challenging classes (e.g., ”Accident” and ”Fire Brigade”). These last

gestures are more challenging because of their similarity, but also

because the dataset itself contains samples which are not very close

to the original gesture. So, when a gesture class contains samples

which do not reflect very well the original gestures, it is challenging

in the same way for all recognizers and they all behave the same

with respect to this complexity.

In conclusion, H21 and H41 are not supported: (N)LSD are not

more accurate than their $-family counterparts, but they are aligned

with their performance on the NicIcon dataset.

6 CONCLUSION

This paper presented a novel Local Shape Distance (LSD and NLSD)

that computes the dissimilarity between gestures represented as

n-dimensional vectors with several properties: point-number and

stroke-number invariance, stroke-order and stroke-direction invari-

ance, position, scale, and rotation invariance. An instantiation of

LSD (and NLSD) to n=2 gave rise to !FTL, a 2D vector-based gesture

recognizer with its pseudo-code and two implementations. This

work will benefit practitioners by providing a new gesture recog-

nizer satisfying the requirements in a comparable way (e.g., high

recognition rate, small execution time, low resource consumption,

and low algorithm complexity with geometric interpretation) while

preserving the invariance properties. If for any reason a gesture

should become for instance scale variant, the constraint can be

imposed on the vectors without any loss of generality and without

complexifying the recognizer with additional computations.

!FTL can be subject to several optimizations, such as those of $P

[56] and $Q [58]. A stopping criteria can be defined to recognize

a gesture as soon as a threshold of vectors are computed similar,

thus eliminating the need to consider all vectors. In this way, a

gesture can be recognized while being issued, even before it ends,

thus improving its execution time. This enables gesture feedforward
[61] (instead of immediate feedback after recognition, feedforward

provides guidance while the gesture is being issued) and gesture
mnemonics [3] where end users expect an immediate response time

(≃ 1sec) to avoid the lagging effect [9]. A second optimization

concerns the combination of LSD and !FTP with DTW [52], which

can be effectively and efficiently combined since DTWoptimizes the

point sampling before processing. This represents a very promising

area to investigate. Finally, we will consider Conditional Random

Fields (CRF) [49] for inverting the recognition process: as opposed to

NNC where a near neighbor should emerge from the classification

of objects, CRF proposes a discrete classifier that predicts the near

neighbor for a single sample without considering all samples.

ACKNOWLEDGMENTS

The two first authors would like to thank Laetitia Vanderdonckt

and Maria Roselli for becoming friends and initiating the meeting

of their fathers, which gave rise to this fortuitous collaboration. The

authors would also like to warmly thank the anonymous referees

for their valuable comments and helpful suggestions.

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

132

REFERENCES

[1] Lisa Anthony and Jacob O. Wobbrock. 2010. A Lightweight Multistroke Recog-

nizer for User Interface Prototypes. In Proceedings of Graphics Interface 2010 (GI
’10). Canadian Information Processing Society, Toronto, Ont., Canada, Canada,

245–252. http://dl.acm.org/citation.cfm?id=1839214.1839258

[2] Lisa Anthony and Jacob O. Wobbrock. 2012. $N-protractor: A Fast and Accurate

Multistroke Recognizer. In Proceedings of Graphics Interface 2012 (GI ’12). Cana-
dian Information Processing Society, Toronto, Ont., Canada, Canada, 117–120.

http://dl.acm.org/citation.cfm?id=2305276.2305296

[3] Caroline Appert and Olivier Bau. 2010. Scale Detection for a Priori Ges-

ture Recognition. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’10). ACM, New York, NY, USA, 879–882. https:

//doi.org/10.1145/1753326.1753456

[4] Caroline Appert and Shumin Zhai. 2009. Using Strokes As Command Shortcuts:

Cognitive Benefits and Toolkit Support. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA,

2289–2298. https://doi.org/10.1145/1518701.1519052

[5] Daniel Ashbrook and Thad Starner. 2010. MAGIC: A Motion Gesture Design

Tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA, 2159–2168. https://doi.org/10.1145/

1753326.1753653

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2008. Flower Menus: A New

Type of Marking Menu with Large Menu Breadth, Within Groups and Efficient

Expert ModeMemorization. In Proceedings of theWorking Conference on Advanced
Visual Interfaces (AVI ’08). ACM, New York, NY, USA, 15–22. https://doi.org/10.

1145/1385569.1385575

[7] François Beuvens and Jean Vanderdonckt. 2012. Designing Graphical User Inter-

faces Integrating Gestures. In Proceedings of the 30th ACM International Conference
on Design of Communication (SIGDOC ’12). ACM, New York, NY, USA, 313–322.

https://doi.org/10.1145/2379057.2379116

[8] François Beuvens and Jean Vanderdonckt. 2012. UsiGesture: An environment

for integrating pen-based interaction in user interface development. In Sixth
International Conference on Research Challenges in Information Science, RCIS 2012,
Valencia, Spain, May 16-18 2012, Colette Rolland, Jaelson Castro, and Oscar Pastor

(Eds.). IEEE, 1–12. https://doi.org/10.1109/RCIS.2012.6240449

[9] Ugo Braga Sangiorgi, Vivian Genaro Motti, François Beuvens, and Jean Van-

derdonckt. 2012. Assessing Lag Perception in Electronic Sketching. In Pro-
ceedings of the 7th Nordic Conference on Human-Computer Interaction: Mak-
ing Sense Through Design (NordiCHI ’12). ACM, New York, NY, USA, 153–161.

https://doi.org/10.1145/2399016.2399040

[10] Andrew Bragdon, Robert Zeleznik, Brian Williamson, Timothy Miller, and

Joseph J. LaViola, Jr. 2009. GestureBar: Improving the Approachability of

Gesture-based Interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 2269–2278.

https://doi.org/10.1145/1518701.1519050

[11] Xiang Cao and Shumin Zhai. 2007. Modeling Human Performance of Pen Stroke

Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07). ACM, New York, NY, USA, 1495–1504. https://doi.org/10.1145/

1240624.1240850

[12] Alessandro Carcangiu and Lucio Davide Spano. 2018. G-Gene: A Gene Alignment

Method for Online Partial Stroke Gestures Recognition. Proc. ACM Hum.-Comput.
Interact. 2, EICS, Article 13 (June 2018), 17 pages. https://doi.org/10.1145/3229095

[13] Samuel hsiao-heng Chang, Rachel Blagojevic, and Beryl Plimmer. 2012.

Rata.Gesture: A Gesture Recognizer Developed Using Data Mining. Artif. In-
tell. Eng. Des. Anal. Manuf. 26, 3 (Aug. 2012), 351–366. https://doi.org/10.1017/
S0890060412000194

[14] Mauricio Cirelli and Ricardo Nakamura. 2014. A Survey on Multi-touch Gesture

Recognition and Multi-touch Frameworks. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces (ITS ’14). ACM, New

York, NY, USA, 35–44. https://doi.org/10.1145/2669485.2669509

[15] J. Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd Edition.
Lawrence Erlbaum, Hillsdale.

[16] Paul Corey and Tracy Hammond. 2008. GLADDER: Combining Gesture and

Geometric Sketch Recognition. In Proceedings of the 23rd National Conference
on Artificial Intelligence - Volume 3 (AAAI’08). AAAI Press, 1788–1789. http:

//dl.acm.org/citation.cfm?id=1620270.1620354

[17] Adrien Coyette, Sascha Schimke, Jean Vanderdonckt, and Claus Vielhauer.

2007. Trainable Sketch Recognizer for Graphical User Interface Design.
Springer Berlin Heidelberg, Berlin, Heidelberg, 124–135. https://doi.org/10.1007/

978-3-540-74796-3_14

[18] Leo Dorst, Daniel Fontijne, and Stephen Mann. 2007. Geometric Algebra for
Computer Science: An Object-Oriented Approach to Geometry (1st ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[19] M.-P. Dubuisson and A. Jain. 1994. A Modified Hausdorff distance for object

matching. In Proceedings of the 12th IAPR International Conference on Pattern
Recognition (IAPR ’94). IEEE Press, 566–568. http://ieeexplore.ieee.org/document/

576361/

[20] Richard O. Duda, Peter E. Hart, and David G. Stork. 2000. Pattern Classification.
Wiley & Sons, New York.

[21] Manuel J. Fonseca and Joaquim A. Jorge. 2001. Experimental evaluation of an

on-line scribble recognizer. Pattern Recognition Letters 22, 12 (2001), 1311–1319.
https://doi.org/10.1016/S0167-8655(01)00076-9

[22] Bruno Galveia, Tiago Cardoso, Vitor Santor, and Yves Rybarczyk. 2015. To-

wards the creation of a Gesture Library. EAI Endorsed Transactions on Creative
Technologies 15, 3 (6 2015). https://doi.org/10.4108/ct.2.3.e3

[23] Nicholas Gillian and Joseph A. Paradiso. 2014. The Gesture Recognition Toolkit.

J. Mach. Learn. Res. 15, 1 (Jan. 2014), 3483–3487. http://dl.acm.org/citation.cfm?

id=2627435.2697076

[24] G.V. Glass, B. McGaw, and M.L. Smith. 1981. Meta-Analysis in Social Research.
Sage, Beverly Hills.

[25] Trevor Hastie, Robert Tibshirani, and Jérome Friedman. 2009. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
Berlin.

[26] J. Herold and T. F. Stahovich. 2012. The 1&Cent; Recognizer: A Fast, Accurate, and

Easy-to-implement Handwritten Gesture Recognition Technique. In Proceedings
of the International Symposium on Sketch-Based Interfaces and Modeling (SBIM
’12). Eurographics Association, Goslar Germany, Germany, 39–46. http://dl.acm.

org/citation.cfm?id=2331067.2331074

[27] Michael Hoffman, Paul Varcholik, and Joseph J. LaViola. 2010. Breaking the Status

Quo: Improving 3D Gesture Recognition with Spatially Convenient Input Devices.

In Proceedings of the 2010 IEEE Virtual Reality Conference (VR ’10). IEEE Computer

Society, Washington, DC, USA, 59–66. https://doi.org/10.1109/VR.2010.5444813

[28] Heloise Hse, Michael Shilman, and A. Richard Newton. 2004. Robust Sketched

Symbol Fragmentation Using Templates. In Proceedings of the 9th International
Conference on Intelligent User Interfaces (IUI ’04). ACM, New York, NY, USA, 156–

160. https://doi.org/10.1145/964442.964472 Retrieved September 9, 2017 from

https://embedded.eecs.berkeley.edu/research/hhreco/.

[29] M. Murray J. Gilbert. 1991. Clifford algebras and Dirac operators in harmonic
analysis. Cambridge University Press.

[30] Kenichi Kanatani. 2015. Understanding Geometric Algebra: Hamilton, Grassmann,
and Clifford for Computer Vision and Graphics. A. K. Peters, Ltd., Natick, MA,

USA.

[31] Levent Burak Kara and Thomas F. Stahovich. 2004. Hierarchical Parsing and

Recognition of Hand-sketched Diagrams. In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology (UIST ’04). ACM, New York,

NY, USA, 13–22. https://doi.org/10.1145/1029632.1029636

[32] Kisang Kim and Hyung-Il Choi. 2016. Online Hand Gesture Recognition Using

Enhanced $N Recogniser Based on a Depth Camera. Int. J. Comput. Vision
Robot. 6, 3 (Jan. 2016), 214–222. https://doi.org/10.1504/IJCVR.2016.077352

[33] Sven Kratz and Michael Rohs. 2010. A $3 Gesture Recognizer: Simple Gesture

Recognition for Devices Equipped with 3D Acceleration Sensors. In Proceedings
of the 15th International Conference on Intelligent User Interfaces (IUI ’10). ACM,

New York, NY, USA, 341–344. https://doi.org/10.1145/1719970.1720026

[34] Sven Kratz and Michael Rohs. 2011. Protractor3D: A Closed-form Solution to

Rotation-invariant 3D Gestures. In Proceedings of the 16th International Conference
on Intelligent User Interfaces (IUI ’11). ACM, New York, NY, USA, 371–374. https:

//doi.org/10.1145/1943403.1943468

[35] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary

Shorthand Writing System for Pen-based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology (UIST ’04).
ACM, New York, NY, USA, 43–52. https://doi.org/10.1145/1029632.1029640

[36] Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. 2015. Gestures À

Go Go: Authoring Synthetic Human-Like Stroke Gestures Using the Kinematic

Theory of Rapid Movements. ACM Trans. Intell. Syst. Technol. 7, 2, Article 15
(Nov. 2015), 29 pages. https://doi.org/10.1145/2799648

[37] J. A. Lester. 1996. Triangles I: Shapes. aequationes mathematicae 52, 1 (01 Feb
1996), 30–54. https://doi.org/10.1007/BF01818325

[38] Yang Li. 2010. Protractor: A Fast and Accurate Gesture Recognizer. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10). ACM,

New York, NY, USA, 2169–2172. https://doi.org/10.1145/1753326.1753654

[39] Allan Christian Long, Jr., James A. Landay, and Lawrence A. Rowe. 1999. Impli-

cations for a Gesture Design Tool. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM, New York, NY, USA, 40–47.

https://doi.org/10.1145/302979.302985

[40] Hao Lü, James A. Fogarty, and Yang Li. 2014. Gesture Script: Recognizing Gestures

and Their Structure Using Rendering Scripts and Interactively Trained Parts. In

Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, NY, USA, 1685–1694. https://doi.org/10.1145/

2556288.2557263

[41] Kent Lyons, Helene Brashear, Tracy Westeyn, Jung Soo Kim, and Thad Starner.

2007. GART: The Gesture and Activity Recognition Toolkit. In Proceedings of
the 12th International Conference on Human-computer Interaction: Intelligent Mul-
timodal Interaction Environments (HCI’07). Springer-Verlag, Berlin, Heidelberg,
718–727. http://dl.acm.org/citation.cfm?id=1769590.1769671

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

133

http://dl.acm.org/citation.cfm?id=1839214.1839258
http://dl.acm.org/citation.cfm?id=2305276.2305296
https://doi.org/10.1145/1753326.1753456
https://doi.org/10.1145/1753326.1753456
https://doi.org/10.1145/1518701.1519052
https://doi.org/10.1145/1753326.1753653
https://doi.org/10.1145/1753326.1753653
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/1385569.1385575
https://doi.org/10.1145/2379057.2379116
https://doi.org/10.1109/RCIS.2012.6240449
https://doi.org/10.1145/2399016.2399040
https://doi.org/10.1145/1518701.1519050
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/3229095
https://doi.org/10.1017/S0890060412000194
https://doi.org/10.1017/S0890060412000194
https://doi.org/10.1145/2669485.2669509
http://dl.acm.org/citation.cfm?id=1620270.1620354
http://dl.acm.org/citation.cfm?id=1620270.1620354
https://doi.org/10.1007/978-3-540-74796-3_14
https://doi.org/10.1007/978-3-540-74796-3_14
http://ieeexplore.ieee.org/document/576361/
http://ieeexplore.ieee.org/document/576361/
https://doi.org/10.1016/S0167-8655(01)00076-9
https://doi.org/10.4108/ct.2.3.e3
http://dl.acm.org/citation.cfm?id=2627435.2697076
http://dl.acm.org/citation.cfm?id=2627435.2697076
http://dl.acm.org/citation.cfm?id=2331067.2331074
http://dl.acm.org/citation.cfm?id=2331067.2331074
https://doi.org/10.1109/VR.2010.5444813
https://doi.org/10.1145/964442.964472
https://embedded.eecs.berkeley.edu/research/hhreco/
https://doi.org/10.1145/1029632.1029636
https://doi.org/10.1504/IJCVR.2016.077352
https://doi.org/10.1145/1719970.1720026
https://doi.org/10.1145/1943403.1943468
https://doi.org/10.1145/1943403.1943468
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/2799648
https://doi.org/10.1007/BF01818325
https://doi.org/10.1145/1753326.1753654
https://doi.org/10.1145/302979.302985
https://doi.org/10.1145/2556288.2557263
https://doi.org/10.1145/2556288.2557263
http://dl.acm.org/citation.cfm?id=1769590.1769671

[42] Elena Deza Michel Marie Deza. 2016. Encyclopedia of Distances (4 ed.). Springer-
Verlag, Berlin.

[43] Tao Ni and Patrick Baudisch. 2009. DisappearingMobile Devices. In Proceedings of
the 22Nd Annual ACM Symposium on User Interface Software and Technology (UIST
’09). ACM, New York, NY, USA, 101–110. https://doi.org/10.1145/1622176.1622197

[44] Corey Pittman, Eugene M. Taranta II, and Joseph J. LaViola, Jr. 2016. A $-Family

Friendly Approach to Prototype Selection. In Proceedings of the 21st International
Conference on Intelligent User Interfaces (IUI ’16). ACM, New York, NY, USA,

370–374. https://doi.org/10.1145/2856767.2856808

[45] Dean Rubine. 1991. Specifying Gestures by Example. In Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’91). ACM, New York, NY, USA, 329–337. https://doi.org/10.1145/122718.122753

[46] W. J. Rucklidge. 1995. Locating Objects Using the Hausdorff Distance. In Pro-
ceedings of the Fifth International Conference on Computer Vision (ICCV ’95). IEEE
Computer Society, Washington, DC, USA, 457–. http://dl.acm.org/citation.cfm?

id=839277.840123

[47] B. Signer, U. Kurmann, and M. Norrie. 2007. iGesture: A General Gesture Recogni-

tion Framework. In Proceedings of the Ninth International Conference on Document
Analysis and Recognition - Volume 02 (ICDAR ’07). IEEE Computer Society, Wash-

ington, DC, USA, 954–958. http://dl.acm.org/citation.cfm?id=1304596.1304930

[48] David Bingham Skalak. 1997. Prototype Selection for Composite Nearest Neighbor
Classifiers. Ph.D. Dissertation. Amherst, MA, USA. UMI Order No. GAX97-37585.

[49] Charles A. Sutton and Andrew McCallum. 2012. An Introduction to Conditional

Random Fields. Foundations and Trends in Machine Learning 4, 4 (2012), 267–373.

https://doi.org/10.1561/2200000013

[50] Scott Swigart. 2005. Easily Write Custom Gesture Recognizers for Your Tablet PC
Applications. Retrieved September 9, 2017 from https://msdn.microsoft.com/

en-us/library/aa480673.aspx.

[51] Eugene M. Taranta, II and Joseph J. LaViola, Jr. 2015. Penny Pincher: A

Blazing Fast, Highly Accurate $-family Recognizer. In Proceedings of the 41st
Graphics Interface Conference (GI ’15). Canadian Information Processing Soci-

ety, Toronto, Ont., Canada, Canada, 195–202. http://dl.acm.org/citation.cfm?id=

2788890.2788925

[52] Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo,

Corey R. Pittman, and Joseph J. LaViola Jr. 2017. Jackknife: A Reliable Rec-

ognizer with Few Samples and Many Modalities. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York,

NY, USA, 5850–5861. https://doi.org/10.1145/3025453.3026002

[53] Huawei Tu, Xiangshi Ren, and Shumin Zhai. 2015. Differences and Similarities

Between Finger and Pen Stroke Gestures on Stationary and Mobile Devices.

ACM Trans. Comput.-Hum. Interact. 22, 5, Article 22 (Aug. 2015), 39 pages. https:
//doi.org/10.1145/2797138

[54] Jean Vanderdonckt, Bruno Dumas, and Mauro Cherubini. 2018. Comparing Some

Distances in Template-based 2D Gesture Recognition. In Extended Abstracts of
the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA ’18).
ACM, New York, NY, USA, Article LBW121, 6 pages. https://doi.org/10.1145/

3170427.3188452

[55] Radu-Daniel Vatavu. 2017. Improving Gesture Recognition Accuracy on Touch

Screens for Users with Low Vision. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, Denver, CO, USA, May 06-11, 2017.,

Gloria Mark, Susan R. Fussell, Cliff Lampe, m. c. schraefel, Juan Pablo Hourcade,

Caroline Appert, and Daniel Wigdor (Eds.). ACM, 4667–4679. https://doi.org/10.

1145/3025453.3025941

[56] Radu-Daniel Vatavu. 2011. The Effect of Sampling Rate on the Performance

of Template-based Gesture Recognizers. In Proceedings of the 13th International
Conference on Multimodal Interfaces (ICMI ’11). ACM, New York, NY, USA, 271–

278. https://doi.org/10.1145/2070481.2070531

[57] Radu-Daniel Vatavu. 2012. 1F: One Accessory Feature Design for Gesture

Recognizers. In Proceedings of the 2012 ACM International Conference on In-
telligent User Interfaces (IUI ’12). ACM, New York, NY, USA, 297–300. https:

//doi.org/10.1145/2166966.2167022

[58] Radu-Daniel Vatavu, Lisa Anthony, and Jacob Wobbrock. 2018. $Q: A Super-

Quick, Articulation-Invariant Stroke-Gesture Recognizer for Low-Resource De-

vices. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI ’18). ACM, New York, NY,

USA, 623–635. https://doi.org/10.1145/3229434.3229465

[59] Radu-Daniel Vatavu, Géry Casiez, and Laurent Grisoni. 2013. Small, Medium, or

Large?: Estimating the User-perceived Scale of Stroke Gestures. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM,

New York, NY, USA, 277–280. https://doi.org/10.1145/2470654.2470692

[60] Radu-Daniel Vatavu, Laurent Grisoni, and Stefan-Gheorghe Pentiuc. 2009.

Gesture-Based Human-Computer Interaction and Simulation. Springer-Verlag,

Berlin, Heidelberg, Chapter Gesture Recognition Based on Elastic Deformation

Energies, 1–12. https://doi.org/10.1007/978-3-540-92865-2_1

[61] Jo Vermeulen, Kris Luyten, Elise van denHoven, and Karin Coninx. 2013. Crossing

the bridge over Norman’s gulf of execution: revealing feedforward’s true identity.

In 2013 ACM SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, Paris, France, April 27 - May 2, 2013, Wendy E. Mackay, Stephen A. Brewster,

and Susanne Bødker (Eds.). ACM, 1931–1940. https://doi.org/10.1145/2470654.

2466255

[62] Don Willems, Ralph Niels, Marcel van Gerven, and Louis Vuurpijl. 2009. Iconic

and Multi-stroke Gesture Recognition. Pattern Recogn. 42, 12 (Dec. 2009), 3303–
3312. https://doi.org/10.1016/j.patcog.2009.01.030

[63] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures Without

Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. In

Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology (UIST ’07). ACM, New York, NY, USA, 159–168. https://doi.org/10.

1145/1294211.1294238

[64] Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shijian Li. 2009. Gesture

Recognition with a 3-D Accelerometer. In Proceedings of the 6th International
Conference on Ubiquitous Intelligence and Computing (UIC ’09). Springer-Verlag,
Berlin, Heidelberg, 25–38. https://doi.org/10.1007/978-3-642-02830-4_4

[65] Daiki Yamaji. 2016. A Fast and Lightweight Unistroke Recognizer for Large User-
defined vocabulary (in Japanese). Ph.D. Dissertation. University of Tsukuba,

Ibaraki, Japan. Retrieved September 2, 2017 from http://www.iplab.cs.tsukuba.ac.

jp/master-e/.

[66] Yina Ye and Petteri Nurmi. 2015. Gestimator: Shape and Stroke Similarity Based

Gesture Recognition. In Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction (ICMI ’15). ACM, New York, NY, USA, 219–226. https:

//doi.org/10.1145/2818346.2820734

Session 4: Touch and Gesture ICMI’18, October 16-20, 2018, Boulder, CO, USA

134

https://doi.org/10.1145/1622176.1622197
https://doi.org/10.1145/2856767.2856808
https://doi.org/10.1145/122718.122753
http://dl.acm.org/citation.cfm?id=839277.840123
http://dl.acm.org/citation.cfm?id=839277.840123
http://dl.acm.org/citation.cfm?id=1304596.1304930
https://doi.org/10.1561/2200000013
https://msdn.microsoft.com/en-us/library/aa480673.aspx
https://msdn.microsoft.com/en-us/library/aa480673.aspx
http://dl.acm.org/citation.cfm?id=2788890.2788925
http://dl.acm.org/citation.cfm?id=2788890.2788925
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/2797138
https://doi.org/10.1145/2797138
https://doi.org/10.1145/3170427.3188452
https://doi.org/10.1145/3170427.3188452
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/2070481.2070531
https://doi.org/10.1145/2166966.2167022
https://doi.org/10.1145/2166966.2167022
https://doi.org/10.1145/3229434.3229465
https://doi.org/10.1145/2470654.2470692
https://doi.org/10.1007/978-3-540-92865-2_1
https://doi.org/10.1145/2470654.2466255
https://doi.org/10.1145/2470654.2466255
https://doi.org/10.1016/j.patcog.2009.01.030
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1007/978-3-642-02830-4_4
http://www.iplab.cs.tsukuba.ac.jp/master-e/
http://www.iplab.cs.tsukuba.ac.jp/master-e/
https://doi.org/10.1145/2818346.2820734
https://doi.org/10.1145/2818346.2820734

	Abstract
	1 Introduction
	2 Related Work
	3 Vector-based Gesture Recognition
	3.1 Why Vectors?
	3.2 Basic Definitions
	3.3 Local Shape Distance between Gestures
	3.4 Invariance of the Local Shape Distance

	4 algorithms And Implementations
	5 Experiment
	5.1 Apparatus
	5.2 Design and Measures
	5.3 Results and Discussion

	6 Conclusion
	Acknowledgments
	References
	A Appendix: Pseudocode
	B Appendix: Equations
	B.1 Local Shape Distance between Gestures
	B.2 Invariance Properties of the Local Shape Distance

