Perceived Usability, Desirability, and Workload of
Mid-Air Gesture Control for Smart TVs

Irina Popovici
MintViz Lab | MANSID Research Center
University Stefan cel Mare of Suceava
i.popovici.irina@gmail.com

ABSTRACT

We explore in this work users’ perceived workload, desirabil-
ity, and usability of selecting mid-air targets representing TV
menu options anchored to physical loci in 3-D space. Toward
this end, we introduce a gesture-based selection technique
and a spatial user interface for Smart TVs that consists of
shortcuts to TV channels located in mid-air in front of the
user’s body. Target selection is implemented with pointing
and hand gestures recognized with the Myo armband. Ten
participants evaluated our prototype and were elicited for
feedback. We report empirical results about perceived us-
ability (average SUS = 77.8), desirability (high frequency of
positive connotation words), and workload (NASA TLX =
43.9) of our gesture-based selection technique and spatial
user interface and discuss future work directions.
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INTRODUCTION

Interactive television and Smart TVs have witnessed remark-
able progress facilitated by advances and developments in
display technology [28, 29, 44], smart devices and implemen-
tation of second-screen TV watching scenarios [13, 15, 36],
connecting the TV to the Internet and to Internet-of-Things
(IoT) devices and smart spaces [27, 32, 41, 53], new user in-
terface designs for television powered by Augmented Reality
(AR) technology [19, 20, 49], and new human sensing tech-
niques [8, 50, 51] that enabled rich interactive experiences
for users. Controlling the TV set has benefited from all these
developments. Prior work has demonstrated diverse input
modalities for viewers to operate their TV sets with smart
mobile devices, such as tablets and smartphones [5, 6, 23, 25],
using voice input [39, 40], free hand movements and whole-
body gestures [12, 47, 52], or by operating augmented TV
remote controls [1, 46]. Some of these innovative input de-
vices and techniques have already found their way from
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Figure 1: Snapshot of our spatial user interface and proto-
type for Smart TVs. In this picture, the user changes the cur-
rent channel by pointing to an active locus in mid-air. Point-
ing and hand gestures are detected by a Myo device worn on
the dominant hand.

research laboratories and scientific publications to the indus-
try, being considered by Smart TV manufacturers for their
top products [26, 34, 42].

However, current input techniques for operating the TV
set have their shortcomings. For example, voice input may be
affected by miss-recognition [18]; gesture input may require
a training period for users to learn to execute commands
correctly and accurately, and the gesture set design must take
into account many usability criteria, such as gestures that
are ergonomically easy to perform and that bear an intuitive
mapping to the TV functions they execute [47, 52]; physical
remote controls can get lost or need maintenance, such as the
need to periodically cleanse them or change their batteries.
Therefore, there still is room for exploring new input devices
and techniques to control the Smart TV effectively.

In this paper, we focus on mid-air gesture control for oper-
ating the TV set. Within this specific application context, we
collect users’ feedback to understand usability aspects about
target selection from invisible menus anchored in mid-air.
Specifically, we investigate users’ perceived usability, desir-
ability, and workload of our gesture-based user interface. Our
contributions are as follows:



(1) We introduce a gesture-based user interface for tele-
vision control operated by an invisible menu located
in mid-air in front of the user’s body. We present the
technical implementation of our prototype (Figure 1)
using the Myo armband [24].

(2) We present empirical results from a user study with
N=10 participants conducted to understand the per-
ceived usability, desirability, and workload of our mid-
air gesture user interface. Our findings reveal a good
level of perceived usability (SUS = 77.8), many positive
appreciations and feedback, such as a system that is
easy to use, friendly, and intuitive (reflected in the 84
words selected by our participants with the Microsoft
Desirability Toolkit), but also high physical demand
(NASA TLX = 64 on the 100 scale).

RELATED WORK

In this section, we present an overview of previous work on
mid-air user interfaces, including gesture-based input, and
discuss interactive prototypes that used the Myo armband,
while focusing on applications for Smart TVs.

Gesture Input with the Myo Armband

The Myo armband is a wearable gesture input device that
reports the electrical activity of forearm muscles and hand
orientation and acceleration. With the embedded 9-axis IMU,
Myo can be used to recognize 3-D gestures in mid-air, while
the electromyography measurements (EMG) at forearm level
are used to detect hand poses and gestures. The default setup
of Myo can recognize five gesture types: double tap, fingers
spread, wave right, wave left, and fist; see Thalmic Labs [24].

Myo has found applications in a variety of domains, rang-
ing from healthcare [22, 33, 43] to virtual and augmented
reality [33, 45] and gesture user interfaces [11, 21]. In health-
care, for instance, one immediate use of Myo is to collect
patient data. In this direction, Koskimiki et al. [22] devel-
oped “MyoGym,” an application for monitoring user activity
during training. MyoGym was validated with a controlled
user study that evaluated 10 participants performing 30 gym
exercises. Another use for Myo in healthcare has been to
record and report electromyography readings as an alterna-
tive to expensive clinical equipment. The system developed
by Tabor et al. [43] implemented EMG recording and analysis
to help patients train their muscles to accommodate easier
to prosthetics. Training was achieved with a survival style
game, “The Falling of Momo,” where the user had to navigate
a monkey on moving platforms and avoid dangers along
the way. To make the monkey advance, muscle activation
was required, sensed through Myo’s array of electrodes. The
assistive system developed by Munroe et al. [33] for children
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with cerebral palsy also employed a computer game: chil-
dren performed squeeze gestures on objects displayed on AR
glasses. Other applications of Myo include virtual reality or
enhancing human performance. For example, Tsai et al. [45]
preferred the Myo armband for their virtual reality system
over other gesture input devices, such as Leap Motion [17],
as Myo proved more flexible in terms of the input space in
which users performed gestures. Dalmazzo et al. [11] used
Myo to record the electrical activity exerted by the left hand
of a user playing the violin. Based on data from Myo, ma-
chine learning models were implemented to help users learn
and perfect their violin playing skills.

Kerber et al. [21] conducted an experiment to evaluate the
recognition accuracy of the five default gestures provided by
Myo’s software development kit, which was reported at 68%.
The authors proposed an improved recognition algorithm
and extended the original set to a total of 40 gestures, for
which they reported a recognition accuracy rate of 95% [21].

Gesture User Interfaces for Smart TVs

Gesture-based user interfaces for controlling the TV set pro-
posed in prior work addressed a wide range of TV functions
to control, from standard tasks, such as changing channels
and adjusting the audio volume [47, 52] to operating complex
functions specific to multi-screen television systems [46, 49].

Bailly et al. [1] observed that users perform yaw and pitch
movements naturally when operating the TV remote control
and re-purposed such movements into actual commands
with their “gesture-aware” remote control. Other studies
also focused on enhancing or even replacing the standard
TV remote. Devices such as the Wii Nintendo remote [46,
47, 49], the Microsoft Kinect sensor [47, 50], or the Leap
Motion controller [51] have been examined to design new,
augmented TV remotes that can sense users’ actions, gesture
commands included. For example, the “RemoteTouch” system
of Choi et al. [9] employed a touchpad; Vatavu [48, 49] used
the Wii remote control; and the studies of Zaiti et al. [52,
54] reported users’ preferences for mid-air hand gestures
performed with the Leap Motion controller.

New user interfaces and input devices have been proposed
for multi-screen television [48, 49]. For example, the Nin-
tendo Wii controller was re-purposed for detecting pointing
movements and recognizing motion gestures to enable users
to control multiple TV screens [49]. Plaumann et al. [38]
examined mid-air interactions for multiple users to control
the TV at once. Results showed that gestures performed by
multiple users may cause system contradictions that, when
handled improperly, lead to suboptimal user experience.

A MID-AIR GESTURE USER INTERFACE FOR TV

We designed and implemented a gesture-based user interface
for controlling a Smart TV using the Myo armband [24].
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Apparatus and Development Tools

The user interface was implemented using HTML 5, CSS 3,
and JavaScript 1.7, and was tested under Google Chrome
(v66.0.3359.139) on a laptop PC connected to a large, 55-inch
Smart TV (Samsung UE55D). The communication between
the user interface running in the web browser and the Myo
armband was implemented with Myo’s JavaScript SDK avail-
able to developers from the Myo web page [24]. For the
purposes of our evaluation to collect user feedback for our
gesture-based user interface, we simulated television con-
trol by playing video content streamed from YouTube using
HTML 5 controls and JavaScript APL

User Interface Design and Implementation

Our interface enables control of TV channels by detecting
pointing and hand gestures. Pointing is performed to phys-
ical loci in mid-air that constitute an invisible menu of TV
channels located in front of the user’s body. For our study,
we designed the spatial menu with nine options or shortcuts
to TV channels, which we positioned in space following a
3x3 matrix-like arrangement. The number of channels was
informed by the upper limit of Miller’s “magical” number
7 + 2 that reflects “the span of absolute judgment and the span
of immediate memory [that] impose severe limitations on the
amount of information that we are able to receive, process, and
remember”; see Miller [31]. The matrix arrangement was
chosen to mimic the placement of numerical keys on famil-
iar devices, such as TV remote controls or the T9 keyboard.
Channel locations were registered before the experiment.
The user interface shown on the TV screen displays the
current channel in the top left corner. To implement selection
of a new channel, we required two interactive gestures, for
which we chose Myo’s double tap and fist due to their ease
of execution; see Figure 2 for visual illustrations of these
gestures. When the user performs the double-tap gesture,
the “search for channels” mode becomes active. In search
mode, the orientation of the hand in front of the body is used
to locate channels mapped to physical loci in space. The
closest channel in 3-D is identified and relevant information
is displayed at the bottom part of the TV screen: the channel’s
number, name, and a short description of its contents; see
Figure 1. Performing the fist gesture confirms the selection.

Pointing with the Myo Armband

Myo reports its orientation in the form of a unit quater-
nion q; = (ws, x4, Yz, 2:) € [0,1]% To use Myo in pointing
mode, quaternions need to be corrected by applying an off-
set with respect to a known, fixed location in space. The
offset goffset = (Woffset, Xoffsets Yoffset Zoffset) i user-dependent
and we determined it during a short calibration phase by
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Figure 2: The two Myo gestures [24] used in our prototype:
double-tap (left) and the fist gesture (right).

asking each user to point their arm towards the TV. To ap-
ply the offset, the quaternion gq; reported by Myo at time ¢
is multiplied with gofset, Which corresponds to the rotation
gr = (W, Xy, Yy, z,) between q; and Goffset, as follows:!

Wy = Woffset * Wt — Xoffset * Xt — Yoffset * Yt — Zoffset * 2t

Xr = Woffset * Xt T Xoffset * Wt T Yoffset * Z¢ — Zoffset * Yt (1)

Yr = Woffset * Yt — Xoffset * 2t T Yoffset * Wr t Zoffset * Xt
Zr = Woffset * 2t + Xoffset * Yt — Yoffset * Xt + Zoffset * Wt

While in search mode, the orientation of the hand is used
to identify the most likely channel in 3-D to which the user
is pointing. To this end, we compute a measure of distance
between the orientation of the hand (gpang) and the quater-
nion corresponding to a given channel location/orientation
in space (qch) using the following formula [16]:

d(qhanda th) =1-< Ghand> gch >2 (2)
where < ghand, gch > denotes the inner product:

< Ghand> 9ch >= Whand * Wch t Xhand * Xch T Yhand * Ych T Zhand " Zch

The result is converted to an angle measurement:

g(qhanda qch) = acos (1 -2 (1_ < @hand> qch >Z)) (3)

The following pseudocode describes the Nearest-Neighbor
classification algorithm that we use to identify the TV chan-
nel pointed by the user in search mode. The pseudocode
assumes that gchannels[. . ] represents an array of quater-
nions corresponding to the orientations of the TV channels
in the vertical plane in front of the user’s body, while q de-
scribes the orientation of the hand at time .

function findChannelPointedByHand(Quaternion q):
minimum = maxfloat
selectedChannel = na
for i, channels, i += 1:
d = quaternionDistance(q, qchannels[i])
if d < minimum:
minimum = d
selectedChannel = qchannels[i]
endif
endfor
return (selectedChannel)

ISee https://developer.thalmic.com/docs/api_reference/platform/classmyo_
1_1_quaternion.html for details.
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USER STUDY

We conducted a controlled experiment to understand the
perceived usability, desirability, and workload of our mid-air
gesture-based user interface for Smart TVs.

Participants

Ten (10) participants (5 male, 5 female) volunteered for the
experiment, ages between 22 and 28 years old (M = 24.6, SD =
2.3 years). Nine participants were right handed. Participants
reported spending on average 2.4 hours on a daily basis (SD
= 0.95 hours) watching TV or streaming online videos.

Task

The experiment started with an accommodation phase, dur-
ing which participants followed a tutorial on how to use
Myo and practiced the double tap and fist gestures. The next
step consisted in trying out our prototype, accommodating
to the user interface and the matrix-like arrangement of TV
channels in mid-air. Once participants were confident about
their performance, they were asked to change channels by
following the instructions of the experimenter, e.g., “Please
change the TV channel to channel #7.” The order of channels
was randomized across participants. At the end of the ex-
periment, participants were asked to fill in a questionnaire
with demographic information, take a NASA TLX test [35]
using an on-line version,? fill in the SUS questionnaire [7],
and select as many words as they wished from a Microsoft
Desirability Toolkit sheet [4] to describe their experience
with our gesture-based spatial user interface for Smart TVs.

RESULTS

In this section, we report our participants’ subjective percep-
tions regarding usability, desirability, and workload.

Usability

The SUS tool [7] consists of ten 5-point Likert scale questions,
for which the answers are aggregated into a score from 0 to
100, with 100 denoting a perfect usability result. The average
SUS score for our prototype was 77.8 (SE = 5.3).3 Based on
prior work that analyzed the distribution of SUS scores [2, 3],
our result is above average near the “good” threshold of 70
suggested by Bangor et al. [2] and it falls inside the “high
acceptability” range, according to the scale of Bangor et al. [3].
As participants experienced problems with their gestures not
always detected by Myo, we have reasons to believe that the
SUS score is likely to increase with more accurate gesture
recognition algorithms [21].

Zhttp://www.keithv.com/software/nasatlx/

3We report standard error values (SE) instead of the standard deviation of
the sample (SD) to show how far our sample mean, 77.8 in this case, is likely
to be from the population mean.
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Figure 3: Word cloud generated using the 84 words se-
lected by our participants with the Microsoft Desirability
Toolkit [4] to describe their experience with our prototype.
Note: world cloud generated with https://worditout.com.

Desirability

Our participants selected an average of 8.4 words (SE = 1.4)
from the Microsoft Desirability Toolkit sheets [4] to describe
their experience with our prototype. Figure 3 shows a word
cloud generated using all the 84 words selected by our partic-
ipants. We found that the words with the highest frequency
were positive, such as easy to use (frequency = 6, more than
half of the participants considered the user interface to be
easy to use), friendly ({=5), attractive (f=5), satisfying (f=4),
intuitive (f=4), creative (f=4), and innovative (f=4).

Perceived Workload

The NASA TLX test measures the subjective rating of per-
ceived workload on a scale from 1 (low perceived workload)
to 100 (high workload) along six dimensions: mental demand,
physical demand, temporal demand, performance, effort, and
frustration. Figure 4 shows the perceived workload, averaged
across all participants, for each dimension.

The mental demand scale reports on the amount of cog-
nitive effort required to use our prototype. Results showed
a mental demand of 42 (SE = 6.8), showing a medium level
of cognitive effort to locate and select TV channels in space.
This result is explained by the fact that channels were ar-
ranged in a matrix-like structure, easy to visualize and oper-
ate in space. Also, the experiment included an accommoda-
tion phase, during which participants practiced Myo gestures
and selected TV channels. We estimate the value of the men-
tal demand to decrease with further practice.

Physical demand measures the amount of physical effort
required to use our prototype, for which we found an aver-
age value of 64 (SE = 7.2). This high level of physical demand
is a direct effect of using the Myo armband in our prototype,
which required firm gestures to deliver accurate recognition
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Figure 4: Mean results for each dimension of the NASA TLX
test. Note: error bars show 95% Cls.

results from electromyography measurements. As reported
by Kerber et al. [21], the standard gesture recognition al-
gorithm delivered with the Myo’s software development
kit [24] has an accuracy rate of just 68%. Therefore, there
were times when our participants had to perform a gesture
repeatedly until it was detected. We believe that this aspect
affected the perceived level of physical demand. This result
was complemented by a frustration level of 29.5 (SE = 7.2)
and a perceived effort of 43.5 (SE = 4.3) — the effort scale indi-
cates how hard participants had to work on both mental and
physical levels to accomplish the tasks of the experiment.

The temporal demand dimension evaluates the pressure
that participants felt during the experiment. On average,
temporal demand was 41 (SE = 4.1). During the experiment,
participants were asked to change channels as fast as pos-
sible to stimulate performance. Thus, the NASA TLX test
reflected the pressure induced by the experimental setup,
which we expect to be much less during normal everyday
use. As participants had to perform firm gestures for proper
recognition, this led to the perception of high effort.

The performance scale measures how successful partic-
ipants thought they were with our prototype. Overall, our
participants scored an average of 34.5 (SE = 7.4) on this di-
mension. The reason for a low perceived performance may
be due to Myo not detecting hand gestures from time to time.

CONCLUSION AND FUTURE WORK

We presented empirical results on the perceived usability,
desirability, and workload of a gesture-based user interface
for Smart TVs consisting in pointing to active loci in mid-air.
The magnitude of the SUS usability measure and the high fre-
quency of positive words (the Microsoft Desirability Toolkit)
employed by participants to describe their experience with
our prototype showed good usability and high desirability,
despite medium to high workload indicated by the TLX test.

These results recommend future work directions. Firstly,
our sample of participants was too small to run statisti-
cal tests,* such as to understand the effect of gender or
spatial orientation skills on user performance. Secondly,
other gesture sensing devices might alleviate the problems
of Myo not detecting gestures effectively. Examples include
the Microsoft Kinect sensor [30, 47, 50], the Leap Motion
controller [17, 52, 54], or wearable devices, such as smart-
watches [10], smart rings [14], or networks or body sen-
sors [37]. Another direction of interesting work is under-
standing users’ preferences for customization of mid-air
menus for Smart TVs with both custom gestures and custom
channel locations in 3-D space.
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