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Abstract 
Euclidean distance is traditionally used to compare a 
gesture candidate against gesture templates in two-
dimensional gesture recognizers. This paper compares 
two distances borrowed from other domains of computer 
science used in template-based two-dimensional gesture 
recognizers: the Mahalanobis distance, typically used in 
computer vision and statistics, and the Jaro-Winckler 
distance, typically used in information retrieval and pat-
tern recognition. Although the geometric interpretation 
of these distances is less straightforward for designers, 
there is a significant impact of the Mahalanobis distance 
on recognition rate, but not for the Jaro-Winkler one. 
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Introduction 
Two-dimensional template-based gesture recognizers, also 
called stroke recognizers, compare a gesture candidate 
against gesture templates collected in a gesture set in 
terms of classes of samples. For each class, say a triangle, 
a letter, or a symbol, several samples are captured and 
stored for pattern matching. After (pre-) processing, ges-
ture recognizers compute a measure between the candi-
date and the samples to determine whether they are 
(dis)similar enough to deduce a gesture matching. The 
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members of the $-family 2D gesture recognizers [14] 
compute the Euclidean distance between the candidate 
gesture and the sample gestures. Most of them end up 
with computing such a measure, sometimes referred to as 
a distance by language abuse. For instance, edit distances 
are not mathematical distances since they do not satisfy 
the triangle inequality. Although no systematic study ex-
ists today that benchmarks these measures, there is some 
interest to investigate whether other distances from other 
domains of computer science may be used favorably inde-
pendently of these algorithms. This paper investigates two 
such measures that have never been considered before for 
2D gesture recognition. 

Related Work 
The Euclidean distance computes the similarity between 
two gestures as a sum of Euclidean distances between 
pairs of corresponding points. Since this distance offers a 
straightforward geometric interpretation, it received a lot 
of attention [17] and has been extensively used in many 
recognizers, such as Rubine [15], $1 [18], $N [1], $P 
[17], and several extensions, such as Penny Pincher 
[16], 1¢ [7], SHARK2 [10]. The Euclidean distance can 
be used in both 2D and 3D [17]. A point qi belonging to 
a candidate gesture is considered close to a sample one 
pi in $P [17] as soon as it belongs to a bowl of center pi 

and radius ε (Fig. 1a). Two unitary vectors from pi and qi 
are considered close to each other by PennyPincher [16] 
(Fig. 1b) when their Euclidean distance is below a certain 
threshold. Other measures have been investigated in the 
past. 

The Angular Cosine computes the similarity between two 
gestures by calculating the angle between the n-
dimensional vectors represented by their points [7]. 

Dynamic Time Warping (DTW) generalizes point-to-point 
computation of the Euclidean distance while minimizing 
cost alignment between two gestures [14].  

Edit distances compute the similarity between two ges-
tures represented as strings of characters. Each character 
typically represents one of the four cardinal directions 
(i.e., (L=left,R=right, U=up, D=down) or one of the eight 
compass directions (i.e., 0=South, 1=South-East, 2=East, 
3=North-East, 4=North, 5=North-West, 6=West, 
7=South-West: Fig. 2). 

The Levenshtein distance expresses the similarity between 
two strings by computing how many character insertions, 
deletions, and substitutions are required to transform the 
candidate string into the sample string. Coyette et al. [4] 
compute the Levenshtein distance between two strings 
representing the candidate gesture and the sample ges-
tures. As such, it is a particular edit distance and does not 
benefit from any geometrical interpretation. To recognize 
the same gesture in any direction, the gesture string 
should be transformed for all configurations or tested in a 
more generic way (e.g., a vertical symmetry replaces 4= 
North by 0=South, 3= North-East by 1=South-East).  

The Stochastic Levenshtein distance extends the previ-
ous one by considering a probabilistic model of the modi-
fications. Only a marginal win was observed in some 
specific cases for UsiGesture [3]. 

The Hausdorff distance computes the similarity between 
two gestures by calculating the maximum of all the min-
imum Euclidean distances between each point of the 
candidate set to all points in the reference set. Some 
derivatives of this distance have been also explored, 
such as the Modified Haussdorff distance [6]. 

 

 

 
Figure 1: (a) Euclidean 
distance between points 
in $P [16], (b) between 
vectors in Penny Pincher 
[15], and (c) Mahalanobis 
distance between points. 
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Two Distances for 2D Gesture Recognition 
The general research question to be investigated is 
whether a gesture recognizer would be impacted by only 
replacing its initial distance by another measure.  

The Mahalanobis distance, or generalized squared inter-
point distance for its squared value, is defined as a dis-
similarity measure between two random vectors Ԧܺ	and ሬܻԦ 
of the same distribution with the covariance matrix Σ 
(Fig. 3). If the covariance matrix equals I, the identity 
matrix, the Mahalanobis distance is reduced to the Eu-
clidean distance. If the covariance matrix is diagonal, 
then it is reduced to a normalized Euclidean distance. 
Hence, this distance is considered more general and ex-
pressive than the traditional Euclidean distance [13]. If 
we compute the Euclidean distance in Fig. 1c, q3 would 
belong to the class determined by the p3 bowl since it is 
closest to the center of this distribution. Instead, accord-
ing to the Mahalanobis distance, q3 belongs to the class 
pi since it takes the sample distribution into account. For 
all these reasons, the Mahalanobis distance is widely 
used in cluster analysis and classification techniques, 
especially in object and scene recognition for computer 
vision. In pattern recognition [13], it has been success-
fully used for accelerometer-based hand gesture recogni-
tion [12] and facial recognition [9]. 

The Jaro–Winkler distance is a string metric for measur-
ing the edit distance between two strings, which is the 
minimum number of single-character transpositions re-
quired to change one word into the other [8]. The Jaro–
Winkler distance uses a prefix scale p which gives more 
favorable ratings to strings that match from the begin-
ning for a set prefix length. The lower the Jaro–Winkler 
distance for two strings is, the closer the strings are. The 
score is normalized such that 0 indicates no similarity 
and 1 represents an exact match. The Winkler modifica-

tion to the Jaro distance [5] acts as a boost on the com-
pare score based on the comparison of the string prefix-
es. If the Jaro distance is above a given threshold, say 
0.7, the score is boosted accordingly with the number of 
matches between the string prefixes. The prefix size is 
another variable and is usually set at 4. The prefix match 
score is the number of exact matches in the prefix of the 
two strings. The Jaro–Winkler similarity is given by 
1−Jaro–Winkler distance in web semantic, information 
retrieval [5]. 

User study 
To determine the potential impact of these two measures 
on 2D gesture recognition, a user study is conducted 
comparing them with respect to a baseline: Jaro-Winkler 
with respect to the Levenshtein distance as computed by 
the LVS algorithm [4] (since both are edit distances) and 
Mahalanobis with respect to Euclidean distance as com-
puted by the $1 algorithm [18].  

Methodology 
To conduct the study, the UsiGesture environment [2,3] 
was used since it already incorporates the LVS and the 
$1 algorithm. Two new recognizers have been imple-
mented in this environment: the LVS algorithm using the 
Jaro-Winkler distance and the $1 algorithm using the 
Mahalanobis distance. UsiGesture has been trained be-
forehand to create a gesture set containing 2x26 classes 
corresponding to the letters of the Latin alphabet (lower-
case and uppercase), the 10 digits from 0 to 9 (Fig. 5), 
16 action commands representing 8 flicks and 8 marks 
(arrows), and 8 geometrical shapes (Fig. 6). The training 
gesture set therefore contains 86 classes of samples re-
peated by 30 participants each, thus giving 
86x30=2,580 samples. All details are accessible at 
https://sites.google.com/site/comparativeevaluation/dat
a-collection. For the purpose of the user study, all the 

 
Figure 2: Compass directions 
for a gesture.  ݀ሺݔԦ, Ԧሻݕ ൌ ඥሺݔԦ െ ԦݔଵሺିߑԦሻ்ݕ െ ߑ Ԧሻݕ ൌ ൬ ሺܺሻݎܽݒ ,ሺܺݒ݋ܿ ܻሻܿݒ݋ሺܻ, ܺሻ ሺܻሻݎܽݒ ൰ 
Figure 3: Mahalanobis distance 
between ሬܺሬԦ	and ሬܻԦ. ݆݁ܿ݊ܽݐݏ݅ܦሺܣ, ሻܤ ൌ 1 െ ,ܣሺ݁ݎܽ݌݉݋ܥ݆ ,ܣሺ݁ݎܽ݌݉݋ܥ݆ ሻܤ ሻൌܤ ,ܣሺ݄ܿݐ13݉ܽ ሻܣሺ݄ݐሻ݈݁݊݃ܤ ൅ ,ܣሺ݄ܿݐ13݉ܽ ሻ൅ܤሺ݄ݐሻ݈݁݊݃ܤ ,ܣሺ݄ܿݐ13݉ܽ ሻܤ െ ,ܣሺ݁ݏ݋݌ݏ݊ܽݎݐ ,ܣሺ݄ܿݐሻ݉ܽܤ ሻܤ
Figure 4: Jaro-Winkler distance 
between A and B. 

 

 

 
Figure 5: Classes of the ges-
ture set: letters and digits. 
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letters were kept for the candidate set along with a se-
lection of 5 actions and 5 shapes (checked in Fig. 6), 
thus giving a set of 26+26+5+5= 62 gestures to pro-
duce. Since only unistroke recognizers were tested, mul-
ti-stroke symbols, like the double circle or square, were 
left out. The rectangle was considered close to the 
square. The original $1 recognizer does not recognize 
directional arrows [11], so different directions were se-
lected in Fig. 6 

Hypotheses 
The specific research question that this study aims to 
explore is: is Jaro-Winkler better than Levenshtein, is 
Mahalanobis better than Euclidean and is there any sig-
nificant difference between? In order to answer this re-
search question, we present the following hypotheses: 

H1=Jaro-Winkler produces a better recognition rate than 
Levenshtein for a same gesture set. 
H2=Mahalanobis produces a better recognition rate than 
Euclidean for a same gesture set. 

Task 
Participants were instructed to perform a sequence of 62 
randomly-selected gestures (Figs. 5, 6) with one sample 
per gesture and to avoid making corrections. If neces-
sary, they were asked to erase the complete gesture and 
to start again. The position and scale of the gestures on 
the screen were free. Participants were told to act natu-
rally without any time or goal constraint. 

Apparatus 
The physical setup was similar for all participants: a Dell 
Inspiron computer built with an Intel 1.6GHz CPU, 2Gb 
DDR of RAM and a 15 inches LCD screen with a resolu-
tion of 1400x1050 and equipped with a A4Wacom In-
tuos3 Pen tablet (9x12 inches) with a precision of 200 
lines per millimeter. 

Participants 
Sixteen subjects (male and female) participated, aged 
between 23 and 55, with different backgrounds and sys-
tem experiences. The scenario was a user-independent: 
the system has been trained by other subjects than 
those involved in the experiment. All participants were 
regular computer users and they were recruited in other 
departments of our organization through a mailing list of 
volunteers. The design setup was therefore as follows: 
16 participants x 62 gestures = 992 samples, compared 
to the training gesture set. Each gesture was then sub-
mitted to the 4 recognizers, thus producing 4 conditions: 
Direction with Levenshtein (original LVS algorithm with 
Levenshtein distance), Direction with Jaro-Winkler dis-
tance, $1 with original Euclidean distance, and $1 modi-
fied with Mahalanobis distance.  

Results and Discussion 
Fig. 7 graphically depicts the results for the four catego-
ries of symbols for the four conditions with a confidence 
interval of α=0.05. Left part of Fig. 7 concerns the 26 
lowercase letters: each bar represents the average 
recognition rate with a confidence interval of α=0.05 
obtained for all the 26 letters x 16 participants = 416 
samples. Student’s t-Test (Paired Two Sample for 
Means) was systematically computed for comparing two 
conditions at a time. Jaro-Winkler produced a significant-
ly worse recognition than Levenshtein (t(31)=2.73, 
p**≤0.01), Mahalanobis performed significantly better 
than Euclidean, but not so strongly (t(31)=1.90, 
p*≤0.05). A large effect size was observed based on 
Cohen’s d=1.78 and Gates’s Δ=4. Euclidean (t(31)= 
6.37, p***≤0.001 and t(31)=8.69, p***≤0.001) and 
Mahalanobis produced a significantly better recognition 
rate than both Levenshtein and Jaro-Winkler (not repre-
sented to keep the figure legible): edit distances do not 

 

 

 

  
Figure 6: Classes of the 
gesture set: action com-
mands and shapes. 
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Figure 7: Recognition rate for the user study (*: p≤0.05, **: p≤0.01, ***: 
p≤0.001). 

easily distinguish fine-
grained changes of direc-
tion as encountered in 
lowercase letters, which 
are probably the most 
complex symbols to re-
produce in this controlled 
experiment. This may 
explain why their reco-
gnition rates are low 
comparatively to $1 in 
both versions. The re-
sults for the uppercase 
letters are quite similar: 
$1+M was found slightly 
better than $1+E, which 

in turn was proved significantly better than Levenshtein, 
itself better than Jaro-Winkler. Only a small effect size 
was indicated by Cohen’s d=0.07 and Gates’s Δ=1. The 
$1 algorithm has been tested with similar letters in the 
literature: its average recognition rate is comparable to 
the one obtained in user-independent scenarios reported 
insofar [1]. 

Regarding the shapes, Jaro-Winkler was not found per-
forming better than Levenshtein: t(31)=0.80, p>0.05. 
$1+M did not perform better than $1+E neither (t(31)= 
0.49, p>0.05), but remains still superior to Levenshtein 
(t(31)=5.58, p***≤0.001). The five tested shapes were 
relatively standard and easy shapes for which there was 
probably no need to have an extended version of the 
Euclidean distance, which was already proved sufficient 
for these kinds of symbols. 

The conclusion regarding the arrows is similar and even 
stronger: the symbols are so straightforward to recog-
nize that relying on a more sophisticated distance is not 

appropriate. The Levenshtein was already enough with 
respect to Jaro-Winkler (t(31)= 1.96, p*≤0.05) and was 
not proved significantly inferior to $1+E (t(31)= 1.64, 
p>0.05), which is itself not significantly worse than 
$1+M (t(31)=1.29, p>0.05). 

$1+M benefits from a slightly higher average recognition 
rate than $1+E for all four categories (e.g., µ=0.73 and 
σ=0.03 with respect to µ=0.72 and σ=0.08 for lower-
case letters - µ=0.95 and σ=0.01 with respect to µ=0.90 
and σ=0.02 for arrows). Both versions of $1, i.e. the 
original $1+E and the modified $1+M, were discovered 
significantly better than Levenshtein for all categories, 
which is itself better than Jaro-Winkler. So, in conclusion, 
H1 is not supported at all while H2 is partially supported. 

The average recognition rate for all participants involved 
in this user study was µ=0.63 with a standard deviation 
of σ=0.07 for a median M=0.62. Overall, participants 
ended up with a very similar range of recognized ges-
tures, even if the distribution of recognized gestures is 
varying from one recognizer to another. Only two partic-
ipants produced a recognition performance that was 
higher than others: P16 with an exceptional rate of 0.86 
and P2 with a rate of 0.72. Conversely, the P5 partici-
pant suffered from a low recognition rate of 0.50. 

Conclusion and Future Work 
This paper compared two distances to investigate 
whether they could impact the recognition rate of some 
2D gesture recognizers. The Mahalanobis geometric dis-
tance was found performing better than the Euclidean 
distance for the same $1 algorithm, more significantly 
for lowercase and uppercase letters than for shapes and 
arrows with a different effect size. For simple gestures, 
the Mahalanobis distance was not found significantly 
superior to the Euclidean. For complex gestures that are 
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hard to reproduce by human being, the Mahalanobis dis-
tance offers a larger tolerance in its geometrical surface. 
The Jaro-Winkler edit distance was not found better than 
the Levenshtein distance for the same LVS algorithm 
based on gesture string representation [4]. The Ma-
halanobis distance was applied to the $1 algorithm [17] 
only, which is a single-stroke recognizer. This prelimi-
nary result should investigated with other recognizers 
such as $N [1] and $P [17], the most recent and signifi-
cant member of the $-family of recognizers. $P is a good 
candidate because it is a between-points multi-stroke 
recognizer. Any other 2D/3D recognizer may also benefit 
from this extension. 
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