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Abstract

Euclidean distance is traditionally used to compare a
gesture candidate against gesture templates in two-
dimensional gesture recognizers. This paper compares
two distances borrowed from other domains of computer
science used in template-based two-dimensional gesture
recognizers: the Mahalanobis distance, typically used in
computer vision and statistics, and the Jaro-Winckler
distance, typically used in information retrieval and pat-
tern recognition. Although the geometric interpretation
of these distances is less straightforward for designers,
there is a significant impact of the Mahalanobis distance
on recognition rate, but not for the Jaro-Winkler one.

Author Keywords
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Introduction

Two-dimensional template-based gesture recognizers, also
called stroke recognizers, compare a gesture candidate
against gesture templates collected in a gesture set in
terms of classes of samples. For each class, say a triangle,
a letter, or a symbol, several samples are captured and
stored for pattern matching. After (pre-) processing, ges-
ture recognizers compute a measure between the candi-
date and the samples to determine whether they are
(dis)similar enough to deduce a gesture matching. The
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Figure 1: (a) Euclidean
distance between points
in $P [16], (b) between
vectors in Penny Pincher
[15], and (c) Mahalanobis
distance between points.

members of the $-family 2D gesture recognizers [14]
compute the Euclidean distance between the candidate
gesture and the sample gestures. Most of them end up
with computing such a measure, sometimes referred to as
a distance by language abuse. For instance, edit distances
are not mathematical distances since they do not satisfy
the triangle inequality. Although no systematic study ex-
ists today that benchmarks these measures, there is some
interest to investigate whether other distances from other
domains of computer science may be used favorably inde-
pendently of these algorithms. This paper investigates two
such measures that have never been considered before for
2D gesture recognition.

Related Work

The Euclidean distance computes the similarity between
two gestures as a sum of Euclidean distances between
pairs of corresponding points. Since this distance offers a
straightforward geometric interpretation, it received a lot
of attention [17] and has been extensively used in many
recognizers, such as Rubine [15], $1 [18], $N [1], $P
[17], and several extensions, such as Penny Pincher
[16], 1¢ [7], SHARK2 [10]. The Euclidean distance can
be used in both 2D and 3D [17]. A point g; belonging to
a candidate gesture is considered close to a sample one
piin $P [17] as soon as it belongs to a bowl of center p;
and radius € (Fig. 1a). Two unitary vectors from p; and g;
are considered close to each other by PennyPincher [16]
(Fig. 1b) when their Euclidean distance is below a certain
threshold. Other measures have been investigated in the
past.

The Angular Cosine computes the similarity between two
gestures by calculating the angle between the n-
dimensional vectors represented by their points [7].
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Dynamic Time Warping (DTW) generalizes point-to-point
computation of the Euclidean distance while minimizing
cost alignment between two gestures [14].

Edit distances compute the similarity between two ges-
tures represented as strings of characters. Each character
typically represents one of the four cardinal directions
(i.e., (L=left,R=right, U=up, D=down) or one of the eight
compass directions (i.e., 0=South, 1=South-East, 2=East,
3=North-East, 4=North, 5=North-West, 6=West,
7=South-West: Fig. 2).

The Levenshtein distance expresses the similarity between
two strings by computing how many character insertions,
deletions, and substitutions are required to transform the
candidate string into the sample string. Coyette et al. [4]
compute the Levenshtein distance between two strings
representing the candidate gesture and the sample ges-
tures. As such, it is a particular edit distance and does not
benefit from any geometrical interpretation. To recognize
the same gesture in any direction, the gesture string
should be transformed for all configurations or tested in a
more generic way (e.g., a vertical symmetry replaces 4=
North by 0=South, 3= North-East by 1=South-East).

The Stochastic Levenshtein distance extends the previ-
ous one by considering a probabilistic model of the modi-
fications. Only a marginal win was observed in some
specific cases for UsiGesture [3].

The Hausdorff distance computes the similarity between
two gestures by calculating the maximum of all the min-
imum Euclidean distances between each point of the
candidate set to all points in the reference set. Some
derivatives of this distance have been also explored,
such as the Modified Haussdorff distance [6].
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Figure 2: Compass directions
for a gesture.
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Figure 3: Mahalanobis distance
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Figure 4: Jaro-Winkler distance
between A and B.
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Figure 5: Classes of the ges-
ture set: letters and digits.

Two Distances for 2D Gesture Recognition
The general research question to be investigated is
whether a gesture recognizer would be impacted by only
replacing its initial distance by another measure.

The Mahalanobis distance, or generalized squared inter-
point distance for its squared value, is defined as a dis-
similarity measure between two random vectors X and ¥
of the same distribution with the covariance matrix
(Fig. 3). If the covariance matrix equals I, the identity
matrix, the Mahalanobis distance is reduced to the Eu-
clidean distance. If the covariance matrix is diagonal,
then it is reduced to a normalized Euclidean distance.
Hence, this distance is considered more general and ex-
pressive than the traditional Euclidean distance [13]. If
we compute the Euclidean distance in Fig. 1c, gs would
belong to the class determined by the p; bowl since it is
closest to the center of this distribution. Instead, accord-
ing to the Mahalanobis distance, g; belongs to the class
pi since it takes the sample distribution into account. For
all these reasons, the Mahalanobis distance is widely
used in cluster analysis and classification techniques,
especially in object and scene recognition for computer
vision. In pattern recognition [13], it has been success-
fully used for accelerometer-based hand gesture recogni-
tion [12] and facial recognition [9].

The Jaro-Winkler distance is a string metric for measur-
ing the edit distance between two strings, which is the
minimum number of single-character transpositions re-
quired to change one word into the other [8]. The Jaro—-
Winkler distance uses a prefix scale p which gives more
favorable ratings to strings that match from the begin-
ning for a set prefix length. The lower the Jaro-Winkler
distance for two strings is, the closer the strings are. The
score is normalized such that 0 indicates no similarity
and 1 represents an exact match. The Winkler modifica-
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tion to the Jaro distance [5] acts as a boost on the com-
pare score based on the comparison of the string prefix-
es. If the Jaro distance is above a given threshold, say
0.7, the score is boosted accordingly with the number of
matches between the string prefixes. The prefix size is
another variable and is usually set at 4. The prefix match
score is the number of exact matches in the prefix of the
two strings. The Jaro-Winkler similarity is given by
1-Jaro-Winkler distance in web semantic, information
retrieval [5].

User study

To determine the potential impact of these two measures
on 2D gesture recognition, a user study is conducted
comparing them with respect to a baseline: Jaro-Winkler
with respect to the Levenshtein distance as computed by
the LVS algorithm [4] (since both are edit distances) and
Mahalanobis with respect to Euclidean distance as com-
puted by the $1 algorithm [18].

Methodology

To conduct the study, the UsiGesture environment [2,3]
was used since it already incorporates the LVS and the
$1 algorithm. Two new recognizers have been imple-
mented in this environment: the LVS algorithm using the
Jaro-Winkler distance and the $1 algorithm using the
Mahalanobis distance. UsiGesture has been trained be-
forehand to create a gesture set containing 2x26 classes
corresponding to the letters of the Latin alphabet (lower-
case and uppercase), the 10 digits from 0 to 9 (Fig. 5),
16 action commands representing 8 flicks and 8 marks
(arrows), and 8 geometrical shapes (Fig. 6). The training
gesture set therefore contains 86 classes of samples re-
peated by 30 participants each, thus giving
86x30=2,580 samples. All details are accessible at
https://sites.google.com/site/comparativeevaluation/dat
a-collection. For the purpose of the user study, all the
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Figure 6: Classes of the
gesture set: action com-
mands and shapes.

letters were kept for the candidate set along with a se-
lection of 5 actions and 5 shapes (checked in Fig. 6),
thus giving a set of 26+26+5+5= 62 gestures to pro-
duce. Since only unistroke recognizers were tested, mul-
ti-stroke symbols, like the double circle or square, were
left out. The rectangle was considered close to the
square. The original $1 recognizer does not recognize
directional arrows [11], so different directions were se-
lected in Fig. 6

Hypotheses

The specific research question that this study aims to
explore is: is Jaro-Winkler better than Levenshtein, is
Mahalanobis better than Euclidean and is there any sig-
nificant difference between? In order to answer this re-
search question, we present the following hypotheses:

Hi=Jaro-Winkler produces a better recognition rate than
Levenshtein for a same gesture set.

H>=Mahalanobis produces a better recognition rate than
Euclidean for a same gesture set.

Task

Participants were instructed to perform a sequence of 62
randomly-selected gestures (Figs. 5, 6) with one sample
per gesture and to avoid making corrections. If neces-
sary, they were asked to erase the complete gesture and
to start again. The position and scale of the gestures on
the screen were free. Participants were told to act natu-
rally without any time or goal constraint.

Apparatus

The physical setup was similar for all participants: a Dell
Inspiron computer built with an Intel 1.6GHz CPU, 2Gb
DDR of RAM and a 15 inches LCD screen with a resolu-
tion of 1400x1050 and equipped with a A4Wacom In-
tuos3 Pen tablet (9x12 inches) with a precision of 200
lines per millimeter.
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Participants

Sixteen subjects (male and female) participated, aged
between 23 and 55, with different backgrounds and sys-
tem experiences. The scenario was a user-independent:
the system has been trained by other subjects than
those involved in the experiment. All participants were
regular computer users and they were recruited in other
departments of our organization through a mailing list of
volunteers. The design setup was therefore as follows:
16 participants x 62 gestures = 992 samples, compared
to the training gesture set. Each gesture was then sub-
mitted to the 4 recognizers, thus producing 4 conditions:
Direction with Levenshtein (original LVS algorithm with
Levenshtein distance), Direction with Jaro-Winkler dis-
tance, $1 with original Euclidean distance, and $1 modi-
fied with Mahalanobis distance.

Results and Discussion

Fig. 7 graphically depicts the results for the four catego-
ries of symbols for the four conditions with a confidence
interval of a=0.05. Left part of Fig. 7 concerns the 26
lowercase letters: each bar represents the average
recognition rate with a confidence interval of a=0.05
obtained for all the 26 letters x 16 participants = 416
samples. Student’s t-Test (Paired Two Sample for
Means) was systematically computed for comparing two
conditions at a time. Jaro-Winkler produced a significant-
ly worse recognition than Levenshtein (£(31)=2.73,
p**<0.01), Mahalanobis performed significantly better
than Euclidean, but not so strongly (£(31)=1.90,
p*=<0.05). A large effect size was observed based on
Cohen’s d=1.78 and Gates’s A=4. Euclidean (t(31)=
6.37, p***<0.001 and t(31)=8.69, p***<0.001) and
Mahalanobis produced a significantly better recognition
rate than both Levenshtein and Jaro-Winkler (not repre-
sented to keep the figure legible): edit distances do not
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Figure 7: Recognition rate for the user study (*: p<0.05, **: p<0.01, ***:

p=<0.001).
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easily distinguish fine-
grained changes of direc-
tion as encountered in
lowercase letters, which
are probably the most
complex symbols to re-
produce in this controlled
experiment. This may
explain why their reco-
gnition rates are low
comparatively to $1 in
both versions. The re-
sults for the uppercase
letters are quite similar:
$1+M was found slightly
better than $1+E, which
in turn was proved significantly better than Levenshtein,
itself better than Jaro-Winkler. Only a small effect size
was indicated by Cohen’s d=0.07 and Gates’s A=1. The
$1 algorithm has been tested with similar letters in the
literature: its average recognition rate is comparable to
the one obtained in user-independent scenarios reported
insofar [1].

W Dir+L ®EDir+JwW S1+E $1+M

0,90 I 0,95
0,79

0,714 I 0,70

0,550,53

Shapes Arrows

Regarding the shapes, Jaro-Winkler was not found per-
forming better than Levenshtein: £(31)=0.80, p>0.05.
$1+M did not perform better than $1+E neither (£(31)=
0.49, p>0.05), but remains still superior to Levenshtein
(t(31)=5.58, p***<0.001). The five tested shapes were
relatively standard and easy shapes for which there was
probably no need to have an extended version of the
Euclidean distance, which was already proved sufficient
for these kinds of symbols.

The conclusion regarding the arrows is similar and even
stronger: the symbols are so straightforward to recog-
nize that relying on a more sophisticated distance is not
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appropriate. The Levenshtein was already enough with
respect to Jaro-Winkler (£(31)= 1.96, p*<0.05) and was
not proved significantly inferior to $1+E (£(31)= 1.64,
p>0.05), which is itself not significantly worse than
$1+M (t(31)=1.29, p>0.05).

$1+M benefits from a slightly higher average recognition
rate than $1+E for all four categories (e.g., y=0.73 and
0=0.03 with respect to u=0.72 and 6=0.08 for lower-
case letters - p=0.95 and 0=0.01 with respect to uy=0.90
and 0=0.02 for arrows). Both versions of $1, i.e. the
original $1+E and the modified $1+M, were discovered
significantly better than Levenshtein for all categories,
which is itself better than Jaro-Winkler. So, in conclusion,
H; is not supported at all while H; is partially supported.

The average recognition rate for all participants involved
in this user study was u=0.63 with a standard deviation
of 0=0.07 for a median M=0.62. Overall, participants
ended up with a very similar range of recognized ges-
tures, even if the distribution of recognized gestures is
varying from one recognizer to another. Only two partic-
ipants produced a recognition performance that was
higher than others: P16 with an exceptional rate of 0.86
and P2 with a rate of 0.72. Conversely, the P5 partici-
pant suffered from a low recognition rate of 0.50.

Conclusion and Future Work

This paper compared two distances to investigate
whether they could impact the recognition rate of some
2D gesture recognizers. The Mahalanobis geometric dis-
tance was found performing better than the Euclidean
distance for the same $1 algorithm, more significantly
for lowercase and uppercase letters than for shapes and
arrows with a different effect size. For simple gestures,
the Mahalanobis distance was not found significantly
superior to the Euclidean. For complex gestures that are
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hard to reproduce by human being, the Mahalanobis dis-
tance offers a larger tolerance in its geometrical surface.
The Jaro-Winkler edit distance was not found better than
the Levenshtein distance for the same LVS algorithm
based on gesture string representation [4]. The Ma-
halanobis distance was applied to the $1 algorithm [17]
only, which is a single-stroke recognizer. This prelimi-
nary result should investigated with other recognizers
such as $N [1] and $P [17], the most recent and signifi-
cant member of the $-family of recognizers. $P is a good
candidate because it is a between-points multi-stroke
recognizer. Any other 2D/3D recognizer may also benefit
from this extension.

References

1. L. Anthony and J.0. Wobbrock. 2010. A Lightweight
Multistroke Recognizer for User Interface Prototypes.
In Proc. of GI ’10. Canada, 245-252.

2. F. Beuvens and J. Vanderdonckt. 2012a. Designing
Graphical User Interfaces Integrating Gestures. In
Proc. of SIGDOC "12. ACM, NY, USA, 313-322.

3. F. Beuvens and J. Vanderdonckt. 2012b. UsiGesture:
An environment for integrating pen-based interac-
tion in user interface development. In Proc. of RCIS’
12. IEEE Press, 1-12.

4. A. Coyette, S. Schimke, J. Vanderdonckt, and Cl.
Vielhauer. 2007. Trainable Sketch Recognizer for
Graphical User Interface Design. In Proc. of IFIP In-
teract’2007. Springer, Berlin, 124-135.

5. E. Deza, M.-M. Deza. 2016. Encyclopedia of Distanc-
es, 4 ed., Springer, Berlin.

6. M.-P. Dubuisson and A. Jain. 1994. A Modified
Hausdorff distance for object matching. In Proc. of
IAPR '94. IEEE Press, 566-568.

7. 1. Herold and T. F. Stahovich. 2012. The 1¢ Recog-
nizer: A Fast, Accurate, and Easy-to-implement
Handwritten Gesture Recognition Technique. In Proc.
of SBIM’ 12. Eurographics, Germany, 39-46.

10.

11.

12.

13.

14.

15.

16.

17.

18.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

M.A. Jaro. 1995. Probabilistic linkage of large public
health data file. Stat. in Med. 14, 5-7, 491-498.

S. Kapoor, S. Khanna, and R. Bhatia. 2010. Facial
gesture recognition using Correlation and Mahalano-
bis Distance. Int. J. of Computer Science and Infor-
mation Security 7, 2, 267-272.

P.-O. Kristensson and S. Zhai. 2004. SHARK2: A
Large Vocabulary Short hand Writing System for
Pen-based Computers. In Proc. of UIST ‘04, 43-52.
L.A. Leiva, V. Alabau, V. Romero, A.H. Toselli, and E.
Vidal. 2015. Context-Aware Gestures for Mixed-
Initiative Text Editing Uls. Interacting with Comput-
ers 27, 6, 1 November 2015, 675-696.

T. Marasovi¢ and V. Papi¢. 2012. Accelerometer
based gesture recognition system using distance
metric learning for nearest neighbour classification.
In Proc. of IEEE MLSP '12. 1EEE Press.

G. MclLachlan. 2004. Discriminant Analysis and Sta-
tistical Pattern Recognition. John Wiley & Sons.

C. Pittman, E.M. Taranta II, and J.J. LaViola, Jr.
2016. A $-Family Friendly Approach to Prototype Se-
lection. In Proc. of IUI’ 16. ACM, USA, 370-374.

D. Rubine. 1991. Specifying Gestures by Example.
In Proc. of SIGGRAPH’1991. ACM, NY, 329-337.
E.M. Taranta, II and J.J. LaViola, Jr. 2015. Penny
Pincher: A Blazing Fast, Highly Accurate $-family
Recognizer. In Proc. of GI ‘15, 195-202.

R.-D. Vatavu, L. Anthony, and J.0. Wobbrock. 2012.
Gestures as Point Clouds: A $P Recognizer for User
Interface Prototypes. In Proc. of ICMI’ 12.

J.0. Wobbrock, A.D. Wilson, and Y. Li. 2007. Ges-
tures without Libraries, Toolkits or Training: A $1
Recognizer for User Interface Prototypes. In Proc. of
UIST’ 07. ACM, New York, NY, USA, 159-168.

LBW121, Page 6





