SAPIENS: Towards Software Architecture to Support
Peripheral Interaction in Smart Environments

OVIDIU-ANDREI SCHIPOR, MintViz Lab, MANSID, University Stefan cel Mare of Suceava, Romania
RADU-DANIEL VATAV U, MintViz Lab, MANSID, University Stefan cel Mare of Suceava, Romania
WENJUN WU, State Key Lab of Software Development Environment, Beihang University, China

We present SAPIENS, a software architecture designed to support engineering of interactive systems featuring
peripheral interaction in the context of smart environments. SAPIENS introduces dedicated components for user
and device tracking, attention detection, priority management for devices, tasks, and notifications, context-
awareness inference, user interruptibility prediction, and device interchangeability that can be instantiated at
will according to the needs of the application. To implement these components effectively, SAPIENS employs
event-based processing by reusing the core engine of a recently introduced software architecture, EUPHORIA
(Schipor et al, 2019), that was specifically designed for engineering interactions in smart environments with
heterogeneous I/O devices, and relies entirely on web standards, protocols, and open data-interchange formats,
such as JavaScript, WebSockets, HTTP, and JSON. This inheritance makes SAPIENS flexible and adaptable to
support implementation of diverse application scenarios for peripheral interaction and for a wide variety of
smart environments, devices, platforms, data formats, and contexts of use. We present our design criteria for
SAPIENS regarding (1) event handling techniques, (2) quality, (3) contextual, and (4) attention-related properties,
and describe its components and dataflows that make SAPIENS a specialized software architecture for peripheral
interaction scenarios. We also demonstrate SAPIENS with a practical application, inspired and adapted from
Bakker’s (2013) classical example for peripheral interaction, for which we provide an online simulation tool
that researchers and practitioners can readily use to consult actual JavaScript code implementing the inner
logic of selected components of our architecture as well as to observe live JSON messages exchanged by the
various components of SAPIENS.

CCS Concepts: « Human-centered computing — Human computer interaction (HCI); Interactive
systems and tools; « Software and its engineering;

Additional Key Words and Phrases: Peripheral interaction; Smart environments; Attention; Simulation.

ACM Reference Format:

Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu. 2019. SAPIENS: Towards Software Architecture
to Support Peripheral Interaction in Smart Environments. Proc. ACM Hum.-Comput. Interact. 3, EICS, Article 11
(June 2019), 24 pages. https://doi.org/10.1145/3331153

1 INTRODUCTION

The vision of smart environments is making inhabitants’ lives comfortable by means of smart
assisting technology driven by the interoperation of multiple devices that share data and informa-
tion and collaborate to deliver a pleasant interactive experience to users [17]. To this end, smart

Authors’ addresses: Ovidiu-Andrei Schipor, MintViz Lab, MANSID, University Stefan cel Mare of Suceava, 13 Universitatii,
Suceava, 720229, Romania, schipor@eed.usv.ro; Radu-Daniel Vatavu, MintViz Lab, MANSID, University Stefan cel Mare
of Suceava, 13 Universitatii, Suceava, 720229, Romania, radu.vatavu@usm.ro; Wenjun Wu, State Key Lab of Software
Development Environment, Beihang University, 37 Xueyuan Road, Beijing, 100191, China, wwj@nlsde.buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2573-0142/2019/6-ART11 $15.00

https://doi.org/10.1145/3331153

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://doi.org/10.1145/3331153
https://doi.org/10.1145/3331153

11:2 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

environments feature remote control of home appliances, predictive and decision-making capabili-
ties, and facilitate communication and interoperation of smart devices through dedicated software
architecture and middleware. At the core of such functionalities lies the ultimate goal of delivering
users with the information they need, when they need it, and that is presented in the most suitable
form that ambient media can take for effective consumption [51], mediated by interactions that feel
natural and intuitive [68]. Regarding the latter, interactions based on voice and gesture input have
received considerable attention in the Human-Computer Interaction community [30,48,67,68], as
these modalities integrate naturally with user behavior and, when properly designed and reflective
of actual user preferences [23,45,65,69,77], are performed with little cognitive effort by end-users
and, potentially, using little attentional resources. From this perspective, interactions that can be
performed at the “periphery of attention” [7-9] are especially relevant for smart environments.

Peripheral interaction can be defined as the totality of perceptions and actions that take place
at the periphery of user attention, constituting a fluent part of everyday life routines; see Bakker
et al. [9] for in-depth discussion. Although these interactions occasionally shift to the center
of attention, they quickly revert to their main, original state, which is running silently in the
background without requiring conscious cognitive concentration [10]. In fact, one key aspect of
peripheral interaction is represented by the tight relationship with personal routines and familiar
contexts [7], which make people little aware of the actions occurring at the periphery of their
attention, as those actions are driven by unconscious cognitive processes. In this context, perceptions
and actions that are performed at the periphery of attention become shortcuts or means rather
than conscious goals [7] and, since routines are considered “the very glue of everyday life” [62],
any attempt to support effective implementation of such routines and action plans through smart
technology contributes towards realizing the vision of smart environments [17].

To illustrate the opportunities offered by peripheral input for smart environments, we present the
example of Sandra, adopted and adapted from Bakker’s [7] introduction of peripheral interaction
(see Figure 1 for a visual illustration):

“It is Friday evening. Sandra arrives at home and wishes to relax after a hard day at work.
She puts her smartphone on the coffee table, sits on the couch, and instructs the smart
environment to play her favorite music by using a voice command: “Ambient, play music.”
The notes of her preferred composer fill the room. After a few minutes, Sandra resumes
reading the e-book on her tablet. While she becomes intrigued by the action from the
book, she feels that the ambient music is distracting and decides to pause it, “Ambient,
stop music,” while continuing to read. During this time, various notifications arrive on
her smartphone, but because the environment “knows” that Sandra is involved in another
activity and that those messages are low priority, they are subtly transferred to a nearby
display situated at the periphery of Sandra’s attention, instead of the smartphone loudly
interrupting her reading. However, when a text message from Sandra’s daughter arrives, it
is immediately delivered by the surround sound system, while also displayed as a pop-up
notification on the tablet, where Sandra is reading her book. Sandra leaves the house to
pick up her daughter who has finished her violin lessons a bit earlier today.”

In this example, the environment is aware of Sandra’s location, actions, devices, and focus of
attention. The surround sound system resides outside Sandra’s attentional field at the beginning
of the story, but enters the focus of attention when Sandra wishes to relax to her favorite music,
fades again at the periphery of attention, and shifts back into focus when Sandra feels distracted
by the music and when the important text message from Sandra’s daughter is delivered. The tablet
also shifts from idle mode to peripheral interaction when Sandra stops the music, and to focused
interaction when Sandra reads her e-book or when the important notification is displayed. The

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:3

a2
N

Motion tracking system

0]

Motion tracking system

o= "
iy foud

/If;w
= Surround sound

Tablet \
Smartphone °
/

O) Py “ ()

Wall Er
display 3 2 j

\ Surround sound

Fig. 1. A visual illustration of a smart environment with multiple input and output devices exem-
plifying an use case for peripheral interaction adapted from Bakker [7] that we use in this work to
introduce, discuss, and demonstrate our SAPIENS software architecture. In this figure, Sandra reads
an e-book on her tablet, while the smart environment, powered by SAPIENS, determines the appro-
priate output devices to deliver notifications to Sandra based on their priority; see a full description
of the scenario in the text and our online simulator from the SAPIENS web page.

wall display addresses the periphery of Sandra’s attention by showing messages of low priority,
made available to Sandra in a way that is not interruptive of her current activity. Note how various
devices transition from one state to another depending on (i) Sandra’s explicit commands, (ii) events
received from third party services, and (iii) decisions taken by the smart environment regarding
what content to display and where. Handling these interactions involving heterogeneous devices
needs software architecture specifically designed to operate effectively under such conditions. In
this work, we address this aspect by proposing SAPIENS, a multi-layered, event-based, asynchronous
processing Software Architecture for Peripheral Interaction in Smart ENvironments. Our practical
contributions are as follows:

(1) We introduce SAPIENS, a specialized software architecture to support engineering of peripheral
interactions in the context of smart environments. SAPIENS integrates recent trends in software
architecture design for smart environments, as it builds on core components of EUPHORIA [58],
a software architecture for designing interactions across heterogeneous devices. We present
the design requirements of SAPIENS, its advancement over EUPHORIA represented by its
super-specialization and focus on peripheral interaction, and discuss the operation logic of
its layers, components, and dataflows.

(2) We illustrate the SAPIENS software architecture with a practical scenario adapted from
Bakker’s [7] classical example of peripheral interaction. We provide an online simulated
environment for this scenario that enables practitioners to consult actual JavaScript code
and visualize live JSON messages exchanged by the components of the SAPIENS architecture.

We introduce SAPIENS to foster further research and development in the community of Engi-
neering Interactive Computing Systems towards applications and systems featuring peripheral
interaction in smart environments. We hope that SAPIENS will generate constructive and fruitful
discussion in the interested community, advancing our scientific and practical knowledge in this
direction. To this end, we also deliver a companion web page for SAPIENS available at the web
address http://www.eed.usv.ro/mintviz/resources/SAPIENS.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

http://www.eed.usv.ro/mintviz/resources/SAPIENS

11:4 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

2 RELATED WORK

We discuss in this section prior work on peripheral interaction and we connect to the wide
literature on designing and engineering interactions for smart environments, while pointing to
various previous software architectures to highlight the specific contributions of SAPIENS.

2.1 Peripheral Interaction

Weiser [75] envisioned the future of information as ubiquitous computing, where all interactions
are mediated by devices that fade into the background and become part of the routines of everyday
life. On this ground, calm technology [76] was introduced to denote interactive systems capable
to address not only the center, but also the periphery of users’ attention, while remaining unre-
markable [62]. Although very similar to the concept of calm technology, peripheral interaction
emphasizes a bidirectional flow of information, from the environment to the user by means of
perceptions, and vice versa by means of actions; see Bakker et al. [9]. Moreover, the transition
between the focus and the periphery of attention can follow different patterns, which in turn have
distinct impacts on the attentional flow [70].

Several interactive systems were implemented and evaluated in the scientific literature to examine
the opportunities of peripheral interaction [2,3,11,12,67] by introducing prototypes, devices, and
applications to deliver users with information at the periphery of their attentional field. For example,
the “CowClock” [12] and “FireFlies” [11] interactive devices and use case scenarios were specifically
designed to address preschool children. In the CowClock study, children were asked to perform a
time-limited task, while the remaining time was marked on a clock using colors and soundscapes
providing thus time awareness at the periphery of attention. In the FireFlies study, children had
lighting devices shaped as fireflies on their desks to indicate the permission to discuss, give turns,
and make compliments. The devices were operated remotely by the teacher to manage the flow of the
discussion with children. Both the CowClock and FireFlies studies were conducted during several
weeks so that children could become accustomed with those devices. Moreover, the experimental
designs relied on informal evaluation methods, such as observations and interviews with children
and teachers. These aspects highlight the challenges of evaluating interactive systems designed
for the periphery of attention. Another example of peripheral interaction is “Lantern” [2], an
interactive lamp designed to mirror the work status of students members of the same team. Several
characteristics of light, such as color, intensity, and a blinking effect were used in the lamp design
to inform team members about their tasks, elapsed time, and help status from the teacher. The
results of the study indicated a positive effect of the lamp devices on students’ productivity and
communication inside the team. Ambient displays and ambient media [50,51] were also used to
deliver information at the periphery of users’ attention [3,64,67]. For example, the “Lernanto”
system [3] displayed information about the students of a classroom in the form of partially colored
octagons; the “Presence Bubbles” visualizations [64] were introduced to display posts from public
social networking sites on ambient surfaces at the periphery of attention to enhance human-human
communication via ambient media; while the “Audience Silhouettes” [67] represent visual depictions
of remote TV viewers’ body movements displayed on top of the TV transmission to enhance social
television watching by exploiting body kinesics addressing the periphery of attention.

Context modeling represents a key part of peripheral interaction because it offers the concep-
tual support needed to understand users’ activities and focus of attention. Implementation of
context-awareness ranges from rules [24,63] to vocabularies [15], and to the design of responsive
environments [4]. For example, the “Context Modeling Toolkit” [63] represents a rule-based context
processing engine that addresses end-users, expert users, and programmers, while also enabling
seamless transition between these user categories; and Chuang et al. [15] introduced a vocabulary

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:5

composed of 38 items and 12 categories to create language structures with the purpose to mediate
communication between users and Internet-of-Things systems.

2.2 Designing Interactions in Smart Environments

The concept of a “smart environment” took shape progressively in the measure that ubiquitous [75],
mobile [21], and wearable computing [39] developed as distinct concepts and fields of study. Smart
environments consist of sensors, displays, and interactive devices that share the same physical space
and collaborate towards achieving the same goal “to make inhabitants’ lives more comfortable”,
see Cook and Das [16] for in-depth discussion. Therefore, several features are expected to be
implemented in a smart environment: users express intentions via modalities that are intuitive,
natural, and flexible; new devices can be added without cumbersome configuration; and devices
share relevant data and information [17]. A similar vision is depicted by the community of Ambient
Intelligence (Aml) that is interested in environments “that pro-actively, but sensibly, support people
in their daily lives”; see Augusto [5]. A subtle, yet important semantic distinction between smart
environments and Aml consists in the emphasis that is put on the physical infrastructure in the
former case, whereas Aml focuses on implementing the algorithmic behavior and intelligence of
the environment [6]. In this work, we use the term “smart environment” to refer to an ecology of
interconnected smart devices that impacts users’ perception of, attention to, and interpretation of
the information, content, and feedback delivered by the smart environment.

Interactions in smart environments can be explicit, when users voluntarily initiate communication
with the ambient system, or implicit, when the environment observes users’ activities from which
it infers their needs and intents [6,64,66,71]. The ability of a smart environment to detect users and
respond appropriately to their actions is provided by the mechanism of context-awareness [13,18],
where context refers to “any information that can be used to characterize the situation of an entity”;
see Abowd et al. [1]. This ability can be further decomposed into several components, such as
proximity-awareness encompassing physical parameters [19,33,41,61] or event-awareness when
referring to various events occurring within the environment [19,26,42]. Proximity-awareness
is particularly relevant to SAPIENS because the relative position of users with respect to given
objects has often been associated with attention to those objects [28,41,61]. Several measures
can be employed to operationalize the concept of proximity, such as the distance between users
and objects [28,61], orientation measurements [28,74], or movement, such as pointing to objects
from the environment [52,57,68]. These examples show that there is a need for a specific attention-
awareness component as part of the context-awareness capability of a smart environment to manage
inferences about users’ focus and periphery of attention. With such a component, a dedicated
software architecture could deal effectively with application scenarios involving peripheral attention
and interaction. Moreover, as the data collected by the environment refers to diverse aspects, such as
proximity, health, user behavior, or emotional and cognitive states [44,55], the smart environment
needs to run complex algorithms to infer the needs and intentions of its inhabitants [35]. For instance,
emotion recognition may require multimodal analysis, fusion, and classification [20,54,56].

Besides proxemic measurements, other techniques have been proposed to detect users’ focus
of attention. For example, systems based on eye tracking can detect visual attention due to the
relationship between eye gaze and the entities within the environment [40,72,73]. “WISEglass” is a
platform that relies on smartglasses to understand context from a user-centered perspective [73].
The analysis of contextual elements, such as position, speed, and saliency of objects within the user’s
visual field, is used to estimate the focus of attention [37]. The WISEglass approach was evaluated
for activity recognition and screen-use detection with accuracies of 77% and 80%, respectively. The
“SwitchBack” [40] technique uses the front-facing camera of a mobile device to track the user’s

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:6 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

eye gaze on the screen. When the user looks away from the device and then back, SwitchBack
highlights the most recently read body of text so that attention can be easily restored.

2.3 Software Architecture Design and Engineering for Smart Environments

We continue with a discussion of previous software architectures and systems implementing
interactions in smart environments. The most relevant prior work is EuPHORI1A [58], a scalable, event-
driven software architecture designed to handle interactions with heterogeneous devices in smart
environments. EUPHORIA has five layers: Producers, Emitters, Engine, Receivers, and Consumers.
Producers and Consumers represent all the devices that operate in the smart environment. Emitters
and Receivers are software interfaces between EuPHORIA’s Engine and devices implementing
Producers and Consumers. The Engine processes and dispatches messages shared by the previous
components. We discuss EUPHORIA in detail in the next section, where we present our design
criteria for the SAPIENS software architecture and show how SAPIENS advances over EUPHORIA
with specialized components for peripheral interaction, while building on EupHORIA’s efficient
engine for producing, exchanging, and consuming messages.

The “Proximity Toolkit” [28,41] is a proxemic-aware tool that operationalized the concept of
proxemic interaction using specific measures of location, orientation, distance, motion, and identity
of users and devices from a smart environment. The authors resorted to several application scenarios
to illustrate the functionality and flexibility of the Proximity Toolkit. For example, the content
displayed on the TV can automatically change size and position on the screen in response to changes
in users’ location and orientation in front of the TV screen; also, a system implementing proxemic
interaction could detect whenever users are engaged in a conversation and use this information to
pause media. In these scenarios, the authors implicitly assume a relationship between proxemic
measures and the users’ focus of attention, which is a reasonable assumption, also adopted in
our implementation of the Sandra use case scenario for SAPIENS; see Section 4. The Proximity
Toolkit comes with an API (Application Programming Interface) to enable rapid prototyping of
new proxemic-aware interactive systems. Its architecture is built around a server that fuses and
processes proximity measurements, while the generic data model is decoupled from the hardware
implementation so that the toolkit can be easily adapted to work with diverse sensing technology
for tracking users and objects in the smart environment. An earlier version of proxemic interaction
was proposed by Ténase et al. [61] for interactive surfaces. In their demonstrative application,
the content displayed by an interactive tabletop changes its orientation automatically to follow
users moving around the table. The “Proxemic Peddler” [74] is another example of a prototype that
monitors the passerby’s distance and orientation with respect to an ambient display. The system
infers the passerby’s attention based on their short-term interaction history with the display and
then uses this information to adjust the content in order to encourage further engagement with
the ambient display.

Other software architectures and systems were proposed to support interactions in smart envi-
ronments. “XDKinect” [48] and “Mobile@Old” [44] are two examples that use the Kinect sensor [43],
a device not supported any longer by Microsoft, but invaluable for rapid prototyping and evaluation
of whole-body gesture interaction. Both systems feature modular, decoupled, event-driven, and
smart space-oriented designs. “BodyCloud” [22] is a Software as a Service (SaaS) approach for
networks of body sensors. A BodyCloud application supports three types of clients: the Body (i.e.,
a component that collects data from wearable sensors), the Viewer (i.e., a module that implements
graphical output), and the Analyst (represented by components that support development of new
BodyCloud applications). The main advantages of the BodyCloud architecture are its scalability,
interoperability, and support for the development of new applications. The “SoD-Toolkit” [59]
implements complex spatial-awareness scenarios involving multiple sensors and multi-device

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:7

environments. The toolkit exposes a JavaScript API to implement communications with native
applications and 3-D localization. The “Gator Tech Smart House” was introduced by Helal et al. [31]
to extend the perspective on pervasive spaces towards including not only a runtime environment,
but a software library as well. According to this perspective, third-party applications could extend
and configure the original system by adding extra components and upgrading its software services.

An important aspect of software architectures for smart environments regards the type of content
and messages that can be exchanged between devices. For example, the same notification can be
delivered via different channels, e.g., visual, aural, haptic, and by different devices. To this end,
multimodal rendering techniques [53] could be used to infer dynamically the most suitable device,
modality, and format to present notifications to users. Then, it is the users’ responsibility to change
between devices and input modalities as they deem fit [14]. Ideally, the users of a smart environment
should perceive the environment as a single, holistic entity [14].

3 SAPIENS

We introduce in this section SAPIENS, our proposal for software architecture to support engineer-
ing of peripheral interactions [7,9] for application scenarios and use cases pertaining to smart
environments, such as the Sandra scenario discussed in Section 1. SAPIENS builds on top of the
processing engine of EUPHORIA [58], a generic, event-based software architecture for implementing
interactions across heterogeneous I/O devices. Due to this inheritance, we start this section by
overviewing the core aspects and functionality of EUPHORIA, and continue by enumerating and
discussing design principles and requirements that are specific to SAPIENS as well as new, key
software components and dataflows that make SAPIENS a super-specialized architecture with an
explicit focus on peripheral interaction.

3.1 Overview of the EuPHORIA software architecture

EuPHORIA [58] is a recently released software architecture design that leverages open technologies,
such as Internet protocols and standards, to enable easy prototyping, deployment, and performance
evaluation of user interactions across heterogeneous I/O devices in smart environments. Its design
relies on five layers, which include Producers, Emitters, Receivers, Consumers, and the Core Engine
that handles the exchange of messages. Producers and Consumers represent the totality of I/O
devices that operate in the smart environmente.g., the smartphone, tablet, microphone, wall display,
motion tracker, and surround sound system from the Sandra example, while Emitters and Receivers
are software modules that interface EupHORIA’s Engine, Producers, and Consumers, enabling these
components to operate and cooperate effectively. The Engine is implemented by a Node. js server!
that processes and dispatches JSON-encoded messages between various entities that either create
and transmit messages or are subscribed to specific events. EuPHORIA implements the following ten
design criteria (see Schipor et al. [58] for details), which we briefly summarize below to highlight
their relevance to peripheral interaction by relating to our Sandra’s example from Section 1:

(1) Two handling techniques (referred to as H; and H,) implement the processing flow of

events in the EUPHORIA software architecture:

H;. Event-driven processing. Event processing is triggered by physical, hardware, or software
changes that occur in the smart environment, e.g., a swipe gesture performed by Sandra
on her tablet to advance to the next page of the e-book, or a text message received on
Sandra’s smartphone determine further actions from other components of the smart
environment that have previously subscribed to receive those events.

INode.js, https://nodejs.org/en/

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://nodejs.org/en/

11:8 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

H,. Asynchronicity. Events are processed in a way that is adapted to the unpredictable
time-response behavior of the entities from the smart environment that, most likely,
need to share data via Wi-Fi networks, which are affected by congestion and latency
issues [47]. Moreover, it is quite an engineering challenge to synchronize the clocks
of several devices [38], such as the smartphone, tablet, and the wall display from our
example, that may run different operating systems and embed electronic components
that synchronize using different clock circuits. Taking actions based on events that are
received and processed asynchronously make applications little affected by differences
in time synchronization between devices.

(2) Four quality properties (Q; to Q4) control how the various components of the EupHORIA
architecture (i.e., Producers, Consumers, Emitters, Receivers, and the core Engine) relate to
each other, as follows:

Q1. Adaptability (or scalability). EUPHORIA can handle structural changes, such as the in-
clusion of new components that are added to the architecture (e.g., components that
implement operations on data streams or formats specific to the input devices considered
by a specific application) or removal of components that are no longer needed (e.g.,
components for retrieving data from input devices that become obsolete in time). This
property is useful for application scenarios involving peripheral interaction, where new
I/O devices are added and removed automatically to/from the processing dataflows, e.g.,
while Sandra moves from one room to another, the list of devices located in the vicinity
of Sandra that are available to deliver notifications at the periphery of Sandra’s attention
is constantly updated.

Q3. Modularity. The decoupling of EuUPHORIA prevents that changes occurring in one module
to propagate throughout the entire architecture. As we will show later in this section
with a practical JavaScript code example, the tablet device that Sandra employs to read
her e-book can be modeled and implemented effectively using Producer and Consumer
components from EurPHORIA and further changes to the tablet implementation will not
affect the processing dataflows from other parts of the architecture.

Qs. Flexibility. EUPHORIA can be used reliably, with minimum software changes, in scenarios
that exceed the original specifications. For example, the developers of Sandra’s smart
home environment may wish to provide a new functionality, e.g., adding a pair of
smartglasses to the scenario to augment the original functionality of the wall display. In
that case, the new smartglasses object can be readily implemented as a new Consumer
using the formalism of EuPHORIA’s components, while the wall display object rests
unchanged in the list of active devices from Sandra’s physical environment.

Qq. Interoperability. EUPHORIA can readily exchange data with external systems when inte-
grated in larger software architectures. The ecology of devices from Sandra’s scenario
includes a tablet, a smartphone, a wall display, a surround sound system, a microphone,
and a motion tracker. While some of these devices collect input from the physical envi-
ronment, e.g., the microphone and the motion tracker, other devices need to connect to
external, third-party services to receive data and notifications, such as Sandra’s smart-
phone. Using EUPHORIA, the source of an event is not important as long as events are
being encoded and transmitted according to a formalism that specifies correctly the
content of the message and its origin. For example, a voice command issued by Sandra is
picked up by the microphone from the physical environment, but processed using an
online speech-to-text service before being delivered to the Engine.

(3) Four contextual properties (C; to Cy):

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:9

Cy. Web-based standards and protocols. EUPHORIA employs common Internet standards and
protocols for data transmission, such as JSON and WebSockets. This is an important
aspect to facilitate easy accommodation of different devices, e.g., smartphone and wall dis-
play, that, despite many differences, implement the same set of Internet-based standards
and protocols for sharing data.

C;. Open-source technology. EUPHORIA commits to open technology to foster development
and innovations regarding user interactions in smart environments. This principle is
equally valid for SAPIENS, an architecture that we deliver to the community to foster
more research and development regarding peripheral interactions.

Cs. Smart spaces orientation. EUPHORIA can handle complex interactions between users,
devices, and physical objects in a smart environment, a property that we equally envisage
for the SAPIENS architecture.

C4. JavaScript-based. The default language employed by all the components of EUPHORIA is
JavaScript, although any other programming language that supports web technologies
can be equally employed. According to Stack Overflow’s Developer Survey Results from
2018 [60], JavaScript is the most commonly used programming language, both among
professional developers and all respondents, for the sixth year in a row. Therefore, we
align SAPIENS to this trend and growing popularity of JavaScript to foster access to,
adoption of, and reutilization of our architecture as much as possible.

3.2 From EUPHORIA to SAPIENS

As exemplified in the previous section, the design criteria and requirements of EUPHORIA are also
relevant when engineering systems to support peripheral interactions in smart environments, often
involving a diversity of I/O devices. This observation makes EUPHORIA our software architecture
of choice on which to build Sapiens. For example, data regarding the user’s focus of attention are
available each time when changes occur in the physical state of the user, as detectable by some
sensor, e.g., the user’s head or arms point to a specific region in space (detectable by a motion
tracking device, either worn or installed in the environment); eyes look away, drawn by some new
information (detectable by an eye tracker device); a swipe is articulated on the touchscreen of
the tablet device; or the auditory cortex of the brain becomes suddenly more active (revealed by
electroencephalography measurements delivered by a headset EEG device). To detect such events,
a diversity of sensors and input devices are needed, which differ in terms of platforms, protocols,
data formats, sampling frequency, software development kits and programming languages to access
data, and so on. Since EuPHORIA already facilitates easy integration of heterogeneous I/O devices,
building on top of such relevant previous work represents a solid foundation for our approach to
create new, specialized software architecture to support engineering of peripheral interaction in
smart environments.

Other features of EurPHORIA recommend it for our goals, as follows. For instance, the information
regarding the user’s focus of attention needs to be processed in an event-driven and asynchronous
manner: the event-driven approach (H;) enables real-time handling of events that occur in the
smart environment, while asynchronous processing (H;) is particularly adapted to unknown time
duration of those events. Moreover, a smart environment is usually fluid in terms of the entities
that produce and consume events and, consequently, users, devices, and physical objects should be
allowed to enter and leave the environment without going through manual registration processes.
Correspondingly, the attention-aware module needs to be scalable (Q,) to readily integrate new
input devices. This desideratum can be achieved by specifying a comprehensive set of standardized
software interfaces so that data delivered by new devices can be incorporated in the attention

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:10 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

inference process. Such interfaces play a key role in the modularization of the SapiENs architecture
(Q2) due to the decoupling of the corresponding software components. Just like EUPHOR1A, SAPIENS
should be flexible (Q3) to implement a variety of application scenarios that exploit users’ attentional
field, such as new applications or contexts of use beyond the original requirements. Also, it is
desirable for an attention sensing environment to interoperate (Q4) with other systems and, therefore,
to integrate more complex architectures. For that reason, web standards and protocols (C;), such
as the JSON format and the JavaScript language (C,), represent preferred choices for SAPIENS
as well. Moreover, relying on open standards and technologies (C;) can encourage researchers and
practitioners to use our work for development of applications that feature peripheral interaction.
Since the technical evaluation and discussion conducted by Schipor et al. [58] already showed that
EurHORIA had complied to the above criteria more than any other architecture or system from
the literature [22,27,28,41,44,48], we select EUPHORIA as our event-based software architecture of
choice for creating, encoding, and exchanging messages, on which to further build the specialized
software components of SAPIENS for engineering peripheral interactions.

Before moving further to the details of the SAPIENS architecture, we briefly illustrate with a
practical example how EUPHORIA can be used to implement a component that creates, transmits,
and consumes messages. Figure 2 illustrates a JavaScript implementation of the tablet device from
Sandra’s example. The Tablet is both a Producer and a Consumer: it produces touch input events,
letting other components of SAPIENS know when Sandra is using her tablet, and it consumes notifi-
cation messages that need to be displayed, such as the text message received from Sandra’s daughter.
The JavaScript code implements two EuphoriaConsumer and EuphoriaProducer objects that
handle the reception and transmission of messages via the dedicated onMessageRead(..) and
onMessageWrite(..) functions. The code displayed in Figure 2 is an excerpt from our simulator
web page and, therefore, generates touch points with random coordinates.

3.3 Design Principles for the SAPIENS software architecture

So far, we showed that borrowing design requirements, software components, and dataflows from
a prior architecture is beneficial for SAPIENS. In the following, we continue our discussion by
listing specific design criteria for SAPIENS, which enables us to sketch the blueprint of the layers,
components, and dataflows of the SAPIENS software architecture in the next subsection.

One central requirement of any interactive system implementing peripheral interaction is to
infer the user’s focus of attention. To this end, a smart environment needs to collect various data
from heterogeneous input devices, as exemplified before, process that data, make inferences, and
come up with an estimate, most likely expressed in a probabilistic form, regarding (1) the object
onto which the user is focusing their attention, (2) the corresponding sensory channels involved
during this process, and (3) the cognitive load that the user allocates to the object of attention.
Computation models of attention that can deliver satisfactory responses regarding the process
of attention are challenging to implement [25,32] and SAPIENS does not aim to solve such hard
problems from the literature. Instead, SAPIENS offers a general framework in which various possible
technical solutions can be integrated and evaluated in the context set out by a specific application
and/or context of use, such as the Sandra example discussed in Section 1. For example, when Sandra
is reading the e-book on her tablet, the system can infer from the tablet touchscreen as well as from
the relative orientation of Sandra and the tablet that the primary visual attention is devoted to the
e-book, to which Sandra allocates cognitive processing.

Besides the handling techniques (H;, Hy), quality (Q; to Q4) and contextual properties (C; to C4)
borrowed from EuPHORIA, we propose the following four attention-related properties (A; to
A,) for the SapiENS architecture that are specific to peripheral interaction and not implemented by
default under EUPHORIA:

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:11

class Tablet {

1

2 // creates a Tablet device acting both as Producer and Consumer of messages
3 constructor (outputURL, inputURL, deviceName, deviceIP, events) {

4 this.consumer = new EuphoriaConsumer (

5 outputURL, events, this.onMessageRead.bind(this)

6 s

7 this.producer = new EuphoriaProducer (

8 inputURL, "PersonalTouchscreen", deviceName, deviceIP, this.onMessageWrite
9 s

10 this.message = this.producer.message;

11 this.onMessageWrite = this.onMessageWrite.bind(this);

12 3

13

14 // Called when sending a new message

15 // For simulation purposes, we generate touch points with random coordinates
16 onMessageWrite() {

17 this.message.header.eventName = "onTouchDown";

18 this.message.body.location = {3};

19 this.message.body.location.x = getRndInteger (0, 480);

20 this.message.body.location.y = getRndInteger (0, 640);

21 }

22

23 // Called when subscribed events are available

24 onMessageRead (message) {

25 if (message.header.eventName === "onNotification")

26 this.showNotification(

27 message.body.modality, message.body.content, message.body.priority
28 s

29 3

30

31 showNotification(modality, content, priority) {

32 // application specific implementation, not shown here

33 3

34

35 start() { this.producer.start(); }

36 stop() { this.producer.stop(); }

37 pause() { this.producer.pause(); }

38 resume () { this.producer.resume(); }

39 %

Fig. 2. Code snippet (JavaScript) implementing a tablet device in SAPIENS using the Producer and
Consumer components of EUPHORIA. With SAPIENS, we add on the building blocks of EuPHORIA
to create super-specialized software components to support engineering of peripheral interaction;
Section 4 resumes the illustration of code snippets to demonstrate an implementation of the San-
dra’s use case scenario using SAPIENS. Note: touch events are simulated at random locations on the
touchscreen; see the online simulator for this code.

A;. Multimodal orientation. Processing of events and decision making in SAPIENs should reflect
the multimodal nature of human attention and, consequently, offer an appropriate conceptual
framework for peripheral interaction to address not just one sense, but multiple senses at once
towards a rich user experience. For example, when an important, high-priority notification
arrives on Sandra’s smartphone, that message will be delivered using visual and aural feedback
via the smartphone, surround sound system, and the tablet on which Sandra is reading her
e-book. Other, low-priority notifications are delivered in ways that do not interrupt Sandra’s
current reading, such as a gentle rendering of the notifications on the wall display accessible
to Sandra’s periphery of attention.

A,. Priority inference represents the ability of SAPIENS to distinguish various demands for the
user’s attention coming from various devices and prioritize what information to deliver users.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:12 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

For example, low-priority notifications should not disturb Sandra’s reading, while important
messages must address Sandra’s focus of attention using devices that already capture her
attention or are in the immediate vicinity of Sandra’s attentional field, such as the tablet and
the surround sound system in our example.

As. Probabilistic response. Human attention can be distributed across several tasks, each having a
specific cognitive load. For example, when Sandra is reading on the tablet and listening to the
music delivered via the surround sound system, her attention is obviously distributed. How-
ever, it is reasonable to assume that the reading activity demands more cognitive resources
and, therefore, is the primary task that captures Sandra’s focus of attention. Therefore, a
probabilistic characterization of the attentional process is recommendable, for which we can
propose a simple mathematical formalism. Let P(d;) denote the probability that device d; from
the environment has captured Sandra’s focus of attention under the constraint of normalized
probabilities, 3. P(d;) = 1. If a touch event comes from the tablet, then P(tablet) increases,
as the environment gets confidence that Sandra is operating the tablet. If a voice command to
turn music on is issued by Sandra, then P(surround-sound-system) increases on the premises
that Sandra will pay attention to the music that is about to play. The specific handling of such
probabilities depends on the actual devices, types of sensors and data that can be collected
to make inferences regarding the user’s attention and, ultimately, the requirements of the
application. Later in the article, we show how these probabilities can be reasonably estimated
for the Sandra’s example by starting from a default value, which increases each time the
system builds up confidence regarding the device likely to capture Sandra’s focus of attention;
see Figure 7 for a JavaScript implementation of this technique. The probabilistic response
design is a new, specialized component, not available in EuPHORIA, which was not meant to
rank devices based on probabilistic formalisms.

Ay. Proactivity underlines the capacity of SAPIENS to infer not just the user’s focus of attention,
but also to predict changes. This design requirement is important for an application to know
when to switch between the main and secondary tasks. Our suggestion to implement this
requirement is through the formalism of “hazard functions,” which describe the probability
of an event, in our case Sandra’s attention to the tablet device, to terminate in the immediate
future. We inspire from Hawkins et al’s [29] empirical observations regarding a hazard
function for modeling looks at television, which peaks at about 1-1.5 seconds and then
decreases towards a very low asymptote after about 15 seconds; e.g., looks at a device, such as
the TV, that has attracted user’s visual attention, tend to gain inertia in the form of likelihood to
continue as time elapses. Put formally, the proactivity requirement is implemented by a hazard
function A(t) : (0, 0) — R™ that integrates to unity, fooo A(t) = 1. While the implementation is
specific to the device and the application, Section 4 demonstrates a technique using a hazard
function decreasing in geometric progression; see Figure 7.

3.4 Description of the SAPIENS Architecture

Figure 3 presents a visual illustration of the layers and components of the SAPIENS software
architecture, together with specific instances of I/O devices representative of the Producers and
Consumers of a smart environment implementing peripheral interaction. The figure also shows the
role played by EurHORIA’s Engine, which is employed by SAPIENS to exchange messages effectively
between its various components. SAPIENS consists of the following components:

(1) DEvVICES represent specific instances of input and output devices, which are referred to as
Producers and Consumers in the original EUPHORIA architecture [58], a terminology that
we borrow and employ for SAPIENS as well. Input devices capture relevant data from the

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:13

The Beat
Sony 3D
Samsung 8K 1000 X
Home X Ultra Ring Samsung Samsung
UES55D Wall HoloLens . audio Myo X X
i Cinema haptics ZERO Gear Fit 2 Galaxy A3
OUTPUT Display GA headpho
DEVICES ’ nes

PERSONAL MID-AIR
AUDIO HAPTICS

DISPLAY . GLASSES
v
‘ SYSTEM .

SMARTPHONE

HIGH-LEVEL
(CONSUMERS

PERSONAL

DEVICE
INTERCHANGEABILITY

GENERIC SOFTWARE ADAPTERS

RECEIVER
INTERRUPTIBILITY @ conTEXT

ENGINE PREDICTION B AwWARENESS
MCROEE MODULE

EUPHORIA

EMITTER

TERCHANGEABILITY

AMBIENT

WEARABLE
MiC

PERSONAL
TOUCH
SCREEN

WEARABLE
MOTION
SENSOR

WEARABLE
EYE
TRACKER

MOTION
TRACKER

AMBIENT |WEARABLE
GESTURE | GESTURE
SENSOR SENSOR

EYE
TRACKER

AMBIENT
MICROPH
ONE

EEG
HEADSET

TOUCH

HIGH-LEVEL
PRODUCERS
DISPLAY
INPUT
DEVICES
BEY® | & o Pupil EMOTIV

VICON Myo Platform Galaxy A3 Kinect Kinect RingZERO myGaze Headset EPOCH

tabletop

Fig. 3. Visual illustration of the SAPIENSs multi-layer software architecture.

smart environment and expose events, while output devices present users with feedback,
based on the content of the messages delivered with the events. For instance, the Sony
3D Home Cinema and the Beat 1000 audio headphones are two examples of output devices
that can deliver aural feedback when Sandra’s listens to her favorite music or when an
important, high-priority notification needs to be delivered; see the description of our example
scenario from Section 1. Vicon and myGaze are examples of Producers because they collect
measurements and transmit data regarding the users of the smart environment: Vicon [34]
detects the location, motion, and orientation of any entity (e.g., Sandra, her smartphone and
tablet, etc.) by monitoring infrared markers attached to those entities, and myGaze [46] is
a personal device that performs binocular gaze tracking reporting information regarding
the visual focus of attention. Other devices act as both Producers and Consumers or target

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:14 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

multiple sensory modalities at once. For example, the Samsung Galaxy A3 smartphone detects
touch input and shares it to other components of SAPIENS via messages and events and
delivers visual, aural, and haptic feedback in response to messages corresponding to events
to which the tablet device has previously subscribed. Likewise, smart armbands and smart
rings act as both input and output devices by collecting arm motion and gestures and by
providing vibrotactile feedback.

(2) HigH-LEVEL DEVICES group similar devices together to enable implementation of generic
data formats and a common business logic. They are especially important for attaining the
modularity and flexibility desiderata for SAPIENS (quality properties Q, and Qs), because
they maintain the software architecture free from frequent changes. The goal is to reduce, as
much as possible, the practitioner’s workload to add a new device and, once part of a HigH-
LevEL DEVICE group, the implementation of a new device can readily inherit the existing
functionality of a HIGH-LEVEL DEVICE component. In this context, using a new smartphone
should imply nothing more than the creation of a JSON file to describe the availability of its
embedded sensors (e.g., accelerometer, GPS, microphone) and the type of feedback that can be
delivered using that smartphone (e.g., visual, aural, vibrotactile). Because some devices feature
both input and output capabilities, they can be part of multiple HiGH-LEVEL CONSUMER and
HiGH-LEVEL PRODUCER groups. The Samsung Galaxy A3 device, for instance, belongs at the
same time to both the Smartphone and Personal Touchscreen groups. This is also true for the
Myo armband [49] (with corresponding groups Wearable Motion Sensor and Smart Armband
due to its motion and gesture sensing features, but also its form factor designed to be worn
on the user’s forearm) and for the Ring ZERO device [36] (i.e., the Wearable Gesture Sensor
and Smart Ring groups).

(3) DEvICE CATEGORIES connect HIGH-LEVEL DEVICEs with specific consumer category states,
which can be either personal or ambient, and modalities (visual, aural, haptic, and mixed);
see Figure 3. Consumers are linked to modalities, while Producers to human actions, e.g.,
motion, gestures, voice, EEG, etc. We also introduce the mixed category to address devices
that target multiple sensory channels, e.g., smartphones can deliver messages using visual,
aural, and vibrotactile stimuli. However, not all the categories resulting from the intersection
of consumer and modality types actually contain devices, such as the case of ambient and
EEG, for which no devices currently exist, to the best of our knowledge. Please note that
the categories presented in Figure 3 are not exhaustive and new device categories could be
further added to the architecture.

(4) The GENERIC-SOFTWARE-ADAPTERS module keeps SAPIENS decoupled so that changes in one
component do not propagate throughout the entire architecture. The role of the adapters
is to assure the interoperability with other systems (quality property Q). Moreover, they
enable generic implementation of the attention-related software components, such as the
ATTENTION-DETECTION and the PRIORITY-MANAGEMENT modules. Generic adapters also
convert different data formats to JSON, which is the native representation for messages that
are created, transmitted, and processed by EuPHORIA and, implicitly, by SAPIENS.

(5) EuPHORIA represents the core of the SAPIENS software architecture and is used by SAPIENS to
deliver events and messages effectively to the various subscribing components. The Engine
receives events from Producers (input devices), dispatches them to the attention-related
modules, and forwards the results to Consumers (output devices). EUPHORIA revolves around
efficient production, transmission, detection, and consumption of device- and environment-
specific events, which are features that make it the foundation on which SAPI1ENS is imple-
mented. Schipor et al. [58] presented experimental results regarding the request-response

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:15

time performance of the EUPHORIA architecture under various conditions of message size,
environment complexity, and device capabilities.

(6) The ATTENTION-DETECTION-MODULE represents the component that estimates the user’s
focus of attention in the smart environment. This component receives events from input
devices and infers an association between the user’s focus of attention and a specific device.
In our example, this module can infer the primary task by analyzing messages from the Vicon
motion tracking system to match Sandra’s head orientation with the location and orientation
of the tablet and gain confidence in the inference that the tablet is the focus of attention.

(7) The PRIORITY-MANAGEMENT-MODULE receives messages from the ATTENTION-DETECTION-
Mobutk via the Engine and implements the business logic of the application running in the
smart environment. The priority of a device is dependent on the specific scenario and the
content to be delivered to the user. Resuming our example, consider two devices, the tablet
and the wall display competing for Sandra’s visual attention. The PRIORITY-MANAGEMENT-
Mobutk is the only component responsible for establishing priorities based on the content
displayed on each device. For example, the wall display may have a lower priority than the
tablet, as a default setting. However, if an important message needs to be delivered, e.g., the
text message from Sandra’s daughter, the PRIORITY-MANAGEMENT-MODULE may use both
devices to attract Sandra’s attention.

(8) The INTERRUPTIBILITY-PREDICTION-MODULE handles all the external events that compete
for the user’s attention. It interrogates the PRIORITY-MANAGEMENT-MODULE, via the Eu-
PHORIA Engine, to receive information about the user’s focus of attention and the priority
of each device. This module establishes the suitable device(s) and modality (or modalities)
for notifying the user effectively. In the case of a new text message, the INTERRUPTIBILITY-
PREDICTION-MODULE determines what device has the user’s primary attention, and decides
whether the event needs to be delivered on that device by comparing the relative priorities
of the current task (i.e., Sandra reading on the tablet) and the new task (a text message from
Sandra’s daughter). Since the text message is more important, according to the default setting,
the INTERRUPTIBILITY-PREDICTION-MODULE creates a new event and message that will travel
through the architecture to the tablet device.

(9) The CONTEXT-AWARENESS-MODULE collects contextual information from the environment,
such as the location and orientation of entities, which it shares with the INTERRUPTIBILITY-
PREDICTION-MODULE via the Engine. This way, it is possible to deliver an important message
not only through the device that has already captured Sandra’s attention, but also using other
Consumers that are conveniently located and oriented in the vicinity of Sandra. This module
communicates with the ATTENTION-DETECTION-MODULE via the engine.

(10) DEVICE-INTERCHANGEABILITY addresses multiple modalities and devices through which a
message can be delivered to users. This component is closely related to the INTERRUPTIBILITY-
PREDICTION-MODULE as it allows the adaptation of each message to each device and to the
user. In our example, the same notification can be delivered to Sandra via the tablet, but also
by reading and delivering it via the surround sound system.

4 RESUMING THE SANDRA EXAMPLE: AN ONLINE SIMULATOR FOR SAPIENS

We resume in the following our example from Section 1 regarding Sandra’s interactions with the
smart environment. Figure 4 illustrates a block diagram with selected components from SAPIENS
that are needed for this scenario: input devices (acting as Producers), output devices (acting as
Consumers), and the ATTENTION-DETECTION, PRIORITY-MANAGEMENT, CONTEXT-AWARENESS, and
INTERRUPTIBILITY-PREDICTION modules that exchange messages via the EuPHORIA Engine. Our

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:16 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

goal in this section is to demonstrate how the various components of the SAPIENS architecture can
be instantiated for the implementation of the Sandra scenario. To this end, we introduce our online
simulation application for this scenario written entirely in HTMLS5, JavaScript, and the three. js
library,” which enables practitioners to have access to actual running code and to observe live JSON
messages that are exchanged by the various components of SAPIENS; see Figure 6 for a screenshot
of the simulator.

PRODUCERS CONSUMERS

2N ST
MOTION LARGE
TRACKER DISPLAY
ATTENTION PRIORITY
- DETECTION MANAGEMENT Samsung 8K
VICON MODULE MODULE UES55D Wall
Display
— ./
e SN
PERSONAL MOBILE
TOUCH SCREEN L, DEVICES
Samsung — Samsung
Galaxy A3 — EUPHORIA ENGINE Galaxy A3
Samsung Samsung
Galaxy Tab 4 Galaxy Tab 4
— __/
—— " somo)
MICROPHONE SOUND
SURROUND
CONTEXT INTERRUPTIBILITY
. - AWARENESS PREDICTION Sony 3D
I._ogltech MODULE MODULE Home Cinema
Microphone 5.1
— ___ /

Fig. 4. Devices, components, and dataflows from SaPIENS selected to implement the Sandra sce-
nario; see the full description of this scenario in Section 1.

4.1 Devices, Producers, and Consumers

The Sandra scenario introduces several I/O devices: the motion tracking system, smartphone,
tablet, wall display, environmental microphone, and surround sound system. In our simulator, we
implemented each of these devices as Producers, Consumers, or both, depending on their assigned
functionality. For example, the Vicon motion tracker is implemented as a Producer, while the
Tablet acts both as a Producer that signals touch input events to the other components of the
architecture and as a Consumer when it displays the important text message notification received
by the Smartphone. Figure 2 shows an implementation of the Tablet object in our simulator.
For simulation purposes, touch events are randomly generated on the tablet screen at a specified
time interval, but the communication with the Engine is not affected by the fact that data are
simulated. The other devices are implemented in a similar manner: Vicon, Smartphone,Microphone,

2Three.js is a lightweight, cross-browser JavaScript library for displaying animated 3-D computer graphics in a web
browser using the default WebGL renderer; see https://threejs.org and https://github.com/mrdoob/three.js.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://threejs.org
https://github.com/mrdoob/three.js

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:17

T {

2 "header": {

3 "deviceName": "Vicon",

4 "highLevelDevice": "MotionTracker",

5 "deviceIP": "192.168.0.7",

6 "eventName": "onMotionTrackingData",

7 "timestamp": 1555916839619

8 3,

9 "body": {

10 "entities": [

1 {

12 "name": "Sandra",

13 "location": {"x": 915, "y": 2707, "z": 1470},

14 "orientation": {"yaw": 0.437, "pitch": -0.538, "roll": -0.600}
15 3,

16 {

17 "name": "WallDisplay",

18 "location": {"x": 618, "y": 1696, "z": 1247},

19 "orientation": {"yaw": -0.767, "pitch": -0.254, "roll": -0.412}
20 3,

21 {

22 "name": "Smartphone",

23 "location": {"x": 219, "y": 459, "z": 962},

24 "orientation": {"yaw": ©.660, "pitch": ©.336, "roll": ©.229}
25 }

26]

27 3

28 %}

Fig. 5. Example of (an excerpt of) a JSON message produced by the Vicon object. In this example,
simulated tracking data (location and orientation) are shown for three entities from the smart
environment: Sandra, WallDisplay, and Smartphone.

WallDisplay, and SurroundSound represent JavaScript classes and instantiated objects in our
online application. Figure 4 lists names of actual devices that can be used to implement the
functionality of our simulated objects, e.g., the “Sony 3D Home Cinema 5.1” for the SurroundSound
system or the “Samsung Galaxy AR3” for the Smartphone. Figure 5 illustrates an example of a
JSON message produced by the Vicon object that respects the format imposed by the EUPHORIA
architecture and inherited by SAPIENS, i.e., a header with identification data regarding the device
and the event and a body with the actual data; see Schipor et al. [58] for more details and examples
and our online simulator for the complete set of JSON messages for the Sandra use case scenario.

4.2 Dataflows

The four specialized components of SAPIENS (ATTENTION-DETECTION, PRIORITY-MANAGEMENT,
CONTEXT-AWARENESS, and INTERRUPTIBILITY-PREDICTION) receive messages from the Engine
according to the events they have previously subscribed to and produce messages in return; see
the dataflows illustrated in Figure 4. Two devices act as Producers (Vicon and Microphone) and
deliver messages to the Engine; two devices act as Consumers (WallDisplay and SurroundSound);
and two devices are both Producers and Consumers (Smartphone and Tablet). For example, the
data collected from Vicon (in the form of location and orientation of the entities registered in
the smart environment) and Tablet (touch input events) are delivered by means of the Engine
to the ATTENTION-DETECTION-MODULE, which produces a probabilistic estimate of the device
most likely to capture Sandra’s focus of attention; see Figure 7 for actual JavaScript code and
our discussion from the next section. Default priorities for each device are available to the sim-
ulator according to the specifics of Sandra’s scenario, ie., Tablet is high priority, followed by

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:18 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

w
-

C@ @ Notsecure | www.eed.usv.rofmintviz/resources/SAPIENS/simulator/ ¥ ® @

SAPIENS DEMO X

Control Panel

‘ShowiHide panels

‘Show JSON messages
/ _ AttentionModule || ContextAwareness
‘Show JavaSciipl code —

\ Pﬂamymanagemem‘ ‘ InterruptibilityPrediction ‘

Smartphone

No nofification | i
Low priority nalification - header: {
deviceName: “"Vicon",

e] | highLevelDevice: “MotionTracker”,
High priority nofification _ deviceIP: "192.168.0.7",
eventName: "enMotionTrackingData”,

timestamp: 1556093959890

Wall display
On /O
Surround sound sysltem

On/of

Tablet

on/om

Microphone

on/on

Handles
onllessageRead(m

switch (message.header.eventiame) {
case "onTouchDown™: this.entityFocus =

case "onMotionTrackingData”: this.enti

Fig. 6. Screenshot of our online simulator for the Sandra scenario running SAPIENS software mod-
ules and the EurpHORIA Engine. Notes: a Control Panel is available to the user on the left side of the
screen to activate/deactivate devices and control the priority of notifications, while JSON messages
and JavaScript code can be consulted in the panels shown on the right side of the screen.

SurroundSound and WallDisplay. This information is available to the PRIORITY-MANAGEMENT-
MobDULE to compile a list of devices based on their default priorities and the attention probabilities
computed by the ATTENTION-DETECTION-MODULE. In our simulated scenario, low priority notifica-
tions from the Smartphone require just Sandra’s peripheral attention and, consequently, they are
forwarded to the WallDisplay. However, when a critical notification arrives, the INTERRUPTIBILITY-
PREDICTION-MODULE uses its priority to direct it to the device that captures the focus of Sandra’s
attention based on the highest probability computed by the ATTENTION-DETECTION-MODULE. The
CONTEXT-AWARENESS-MODULE is subscribed to events produced by Vicon and uses the correspond-
ing messages to compile an ordered list of devices that are located in Sandra’s vicinity.

4.3 Simulator

Our simulator is available at the web address http://www.eed.usv.ro/mintviz/resources/SAPIENS
(see Figure 6 for a screenshot) and consists of the following user interface components:

(1) A 3-D graphical representation of Sandra’s environment, as depicted in Figure 1 from Section
1. The perspective of the scene can be adjusted by zooming in and out, panning, and rotating
the point of view using mouse drag & drop and scroll actions.

(2) A control panel is available to users to activate/deactivate various functionalities and devices
in the Sandra scenario (Figure 6, left). Check boxes are provided for each device to toggle
operation on and off, e.g., the Tablet can be deactivated with the immediate visible effect
in the simulator that JSON messages are no longer produced by this device; deactivating
the SurroundSound will stop the music from playing, etc. The control panel also enables
simulation of priorities for the notifications received on Sandra’s smartphone. This way, users

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

http://www.eed.usv.ro/mintviz/resources/SAPIENS

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:19

can observe the effect of low, medium, and high priority notifications on the JSON messages
exchanged in the architecture and their corresponding impact on the output devices.

(3) JSON messages exchanged by the various components of the architecture are visible at all
time (Figure 6, top right) and updated automatically. This feature enables users to observe
live messages created by Producers (e.g., touch input events produced by the Tablet, byte
arrays generated by the Microphone object, or an array of location and orientation data for
all registered devices provided by the Vicon object). The specialized components of SAPIENS
also produce and consume messages, e.g., the message created by the ATTENTION-DETECTION-
Moputk to inform subscribed components about the device that captures Sandra’s focus of
attention. The fact that data are simulated for the input devices of our online environment
(e.g., the Tablet produces touch input events with screen coordinates generated at random)
does not affect the implementation of the SAPIENS specialized components.

(4) Actual JavaScript code implementing devices and specialized components is available for
users to consult (Figure 6, bottom right). For example, Figure 7 illustrates an excerpt of the
JavaScript implementation of the ATTENTION-DETECTION-MODULE highlighting: (a) con-
sumption of messages delivered through the EupHORIA Engine from the Tablet, Smartphone,
and Vicon devices (implemented under the onMessageRead(. .) function); (b) computation
of probabilities regarding Sandra’s focus of attention for each device (implemented by the
AttentionModule.probability[] array) using a technique based on rules; (c) computa-
tion of proactivity, expressed in seconds, for the device that has Sandra’s focus of attention
representing the likeliness of that device to keep Sandra engaged in the following seconds.
We implemented proactivity using a function that decreases in geometric progression with
common rate 0.9, i.e, A(t) = A(t — 1) - 0.9, according to the notations from the previous
section; and (d) production of a new message (corresponding to the onAttentionFocus event
implemented under the onMessageWrite(..) function) to be delivered via the EuPHORIA
Engine to other components of the architecture that subscribed to that event. For space
concerns, we don’t list in this article the source code of the other components, but instead
we refer the interested reader to our online simulator.

5 CONCLUSION AND FUTURE WORK

We introduced SAPIENS, our proposal for software architecture to support engineering of peripheral
interactions in smart environments. SAPIENS is multi-layer, modular, and flexible in terms of I/O
devices. Future work will consider evaluation of practical implementations of SAPIENS, such as the
Sandra scenario discussed in this paper, but also other scenarios of different levels of complexity to
understand aspects of technical performance, e.g., the influence of the number of users, devices,
and messages transferred through SAPIENS on response time, by following the evaluation protcol
from Schipor et al. [58]. Further exploration and engineering of the specialized components, such
as more effective and generic ways to implement probabilistic reasoning and estimate hazard
functions are also left for future work. At this moment, we deliver the description of SAPIENS
to the community as the first attempt to address engineering aspects of peripheral interaction
through a dedicated software architecture with flexible layers and components. We also provide our
specific implementation of the Sandra scenario in the form of an online simulation environment
that practitioners can use to examine the dataflows of messages created, processed, and transmitted
in SAPIENS. Our software architecture has a dedicated web page, which invites constructive, fruitful
discussion from the community towards consolidating a solid practice for engineering peripheral
interactions in smart environments.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

11:20 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

1 class AttentionModule {

2 constructor (outputURL, inputURL, IP, events) {

3 this.consumer = new EuphoriaConsumer (outputURL,events, this.onMessageRead.bind(this));

4 this.producer = new EuphoriaProducer (inputURL,"AttentionModule","AttentionModule", IP,
this.onMessageWrite, true);

5 this.entityFocus = ""; // computes the entity that has the focus of attention

6 this.message = this.producer.message; // message to be sent to the Engine

7 this.onMessageWrite = this.onMessageWrite.bind(this);

8 setInterval (() => {

9 for (var key in AttentionModule.proactivity)

10 AttentionModule.proactivityl[key] *= ©0.9; // non-linear decrease in time

11 }, 1000);

12 3

13

14 /// Handles messages from I/0 devices

15 onMessageRead (message) {

16 switch (message.header.eventName) {

17 case "onTouchDown": this.entityFocus = message.header.deviceName; break;

18 case "onMotionTrackingData": this.entityFocus = Vicon.getFocus(message); break;
19 3

20

21 // Compute probabilities of focus of attention for each device

22 if (AttentionModule.probability[this.entityFocus] === undefined ||

23 AttentionModule.probability[this.entityFocus] <

24 AttentionModule.PROB_TRESHOLD)

25 AttentionModule.probability[this.entityFocus] = AttentionModule.PROB_TRESHOLD;
26 else AttentionModule.probability[this.entityFocus] *= 1.1; // non-linear increase
27

28 // Normalize probabilities

29 let sum = 0;

30 for (var key in AttentionModule.probability) sum += AttentionModule.probabilityl[key];
31 for (var key in AttentionModule.probability) AttentionModule.probabilityl[key] /= sum;
32

33 // Set proactivity for the device that has the focus of attention

34 AttentionModule.proactivity[this.entityFocus] = AttentionModule.PROACTIVITY_DEFAULT;
35

36 // Send message to the Engine

37 this.producer.onMessageWrite();

38 this.onMessageWrite();

39 this.producer.sendMessage();

40 3

4

42 /// Sends an attention message to the Engine

43 onMessageWrite() {

44 this.message.header.eventName = "onAttentionFocus";

45 this.message.body.entityFocus = this.entityFocus;

46 this.message.body.probability = AttentionModule.probability[this.entityFocus];

47 this.message.body.proactivity = AttentionModule.proactivity[this.entityFocus];

48 3

49

50 %}

51

52 AttentionModule.probability = {}; // probability of attention, per device

53 AttentionModule.proactivity = {}; // proactivity, per device

54 AttentionModule.PROACTIVITY_DEFAULT = 10; // default proactivity, in seconds

AttentionModule.PROB_TRESHOLD = 1; // default (maximum) probability for devices having the
user's focus of attention

o
a

Fig. 7. An excerpt of the JavaScript implementation of the ATTENTION-DETECTION-MODULE, illus-
trating processing of messages received from input devices, computation of probabilities of atten-
tion for each device and of proactivity for the device that has the focus of attention, and production
of an attention-related message transmitted to the EupHORIA Engine.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:21

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-
UEFISCD], project number PN-III-P3-3.1-PM-RO-CN-2018-0032 (3BM/2018), within PNCDI IIL

REFERENCES

(1]

— —
w)
— —

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete Steggles. 1999. Towards a
better understanding of context and context-awareness. In Proceedings of the International Symposium on Handheld
and Ubiquitous Computing. Springer, 304-307. https://doi.org/10.1007/3-540-48157-5_29

Hamed S. Alavi and Pierre Dillenbourg. 2012. An Ambient Awareness Tool for Supporting Supervised Collaborative
Problem Solving. IEEE Trans. Learn. Technol. 5, 3 (Jan. 2012), 264-274. https://doi.org/10.1109/TLT.2012.7

Erik van Alphen and Saskia Bakker. 2016. Lernanto: Using an Ambient Display During Differentiated Instruction. In
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’16). ACM,
New York, NY, USA, 2334-2340. https://doi.org/10.1145/2851581.2892524

[4] Jorge Alves Lino, Benjamin Salem, and Matthias Rauterberg. 2010. Responsive environments: User experiences

for ambient intelligence. Journal of Ambient Intelligence and Smart Environments 2, 4 (2010), 347-367. https:
//doi.org/10.3233/AlS-2010-0080

[5] Juan Carlos Augusto. 2007. Ambient Intelligence: The Confluence of Ubiquitous/Pervasive Computing and Artificial

Intelligence. Springer, London. https://doi.org/10.1007/978-1-84628-943-9_11

[6] Juan Carlos Augusto, H. Nakashima, and H. Aghajan. 2010. Ambient Intelligence and Smart Environments: A State of

[11]

[12]

[13]

the Art. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-93808-0_1

Saskia Bakker. 2013. Design for peripheral interaction. Eindhoven University of Technology (2013). http://www.
saskiabakker.com/PhDthesis_SaskiaBakker.pdf

Saskia Bakker, Doris Hausen, and Ted Selker. 2016. Introduction: Framing peripheral interaction. In Peripheral
Interaction. Springer, 1-10. https://doi.org/10.1007/978-3-319-29523-7 1

Saskia Bakker, Elise Hoven, and Berry Eggen. 2015. Peripheral interaction: Characteristics and considerations. Personal
and Ubiquitous Computing 19, 1 (2015), 239-254. https://doi.org/10.1007/s00779-014-0775-2

Saskia Bakker and Karin Niemantsverdriet. 2016. The interaction-attention continuum: considering various levels of
human attention in interaction design. International Journal of Design 10, 2 (2016), 1-14. http://ijdesign.org/index.
php/l)Design/article/view/2341/737

Saskia Bakker, Elise van den Hoven, and Berry Eggen. 2013. FireFlies: Physical Peripheral Interaction Design for the
Everyday Routine of Primary School Teachers. In Proceedings of the 7th International Conference on Tangible, Embedded
and Embodied Interaction (TEI '13). ACM, New York, NY, USA, 57-64. https://doi.org/10.1145/2460625.2460634
Saskia Bakker, Elise van den Hoven, Berry Eggen, and Kees Overbeeke. 2012. Exploring Peripheral Interaction Design
for Primary School Teachers. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied
Interaction (TEI ’12). ACM, New York, NY, USA, 245-252. https://doi.org/10.1145/2148131.2148184

Norbert Baumgartner, Wolfgang Gottesheim, Stefan Mitsch, Werner Retschitzegger, and Wieland Schwinger. 2010.
Editorial: BeAware!-Situation Awareness, the Ontology-driven Way. Data Knowl. Eng. 69, 11 (Nov. 2010), 1181-1193.
https://doi.org/10.1016/j.datak.2010.07.008

[14] John N.A. Brown. 2014. Unifying interaction across distributed controls in a smart environment using anthropology-

[15]

[16]
[17]
[18]
[19]

[20]

based computing to make human-computer interaction "Calm". (2014). https://doi.org/10.13140/2.1.5166.4645
Yaliang Chuang, Lin-Lin Chen, and Yoga Liu. 2018. Design Vocabulary for Human-IoT Systems Communication. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 274. https://doi.org/10.1145/
3173574.3173848

Diane Cook and Sajal Das. 2004. Smart Environments: Technology, Protocols and Applications (Wiley Series on Parallel
and Distributed Computing). Wiley-Interscience, New York, NY, USA.

Diane J Cook, Juan C Augusto, and Vikramaditya R Jakkula. 2009. Ambient intelligence: Technologies, applications,
and opportunities. Pervasive and Mobile Computing 5, 4 (2009), 277-298. https://doi.org/10.1016/j.pmcj.2009.04.001
Anind K. Dey. 2001. Understanding and Using Context. Personal Ubiquitous Comput. 5, 1 (Jan. 2001), 4-7. https:
//doi.org/10.1007/s007790170019

Krista M. Dombroviak and Rajiv Ramnath. 2007. A Taxonomy of Mobile and Pervasive Applications. In Proceedings of
the 2007 ACM Symposium on Applied Computing (SAC '07). ACM, New York, NY, USA, 1609-1615. https://doi.org/10.
1145/1244002.1244345

Antonio Fernandez-Caballero, Arturo Martinez-Rodrigo, José Manuel Pastor, José Carlos Castillo, Elena Lozano-
Monasor, Maria T Lopez, Roberto Zangroniz, José Miguel Latorre, and Alicia Fernandez-Sotos. 2016. Smart environment
architecture for emotion detection and regulation. Journal of Biomedical Informatics 64 (2016), 55-73. https://doi.org/
10.1016/j.jbi.2016.09.015

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1109/TLT.2012.7
https://doi.org/10.1145/2851581.2892524
https://doi.org/10.3233/AIS-2010-0080
https://doi.org/10.3233/AIS-2010-0080
https://doi.org/10.1007/978-1-84628-943-9_11
https://doi.org/10.1007/978-0-387-93808-0_1
http://www.saskiabakker.com/PhDthesis_SaskiaBakker.pdf
http://www.saskiabakker.com/PhDthesis_SaskiaBakker.pdf
https://doi.org/10.1007/978-3-319-29523-7_1
https://doi.org/10.1007/s00779-014-0775-2
http://ijdesign.org/index.php/IJDesign/article/view/2341/737
http://ijdesign.org/index.php/IJDesign/article/view/2341/737
https://doi.org/10.1145/2460625.2460634
https://doi.org/10.1145/2148131.2148184
https://doi.org/10.1016/j.datak.2010.07.008
https://doi.org/10.13140/2.1.5166.4645
https://doi.org/10.1145/3173574.3173848
https://doi.org/10.1145/3173574.3173848
https://doi.org/10.1016/j.pmcj.2009.04.001
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1145/1244002.1244345
https://doi.org/10.1145/1244002.1244345
https://doi.org/10.1016/j.jbi.2016.09.015
https://doi.org/10.1016/j.jbi.2016.09.015

11:22 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

[21]

[22]

[23]

[24

=

[25

[

[26]

[27

—

[28]

[29]

[30

—

(31

—

(32

—

[33

—

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

George H. Forman and John Zahorjan. 1994. The Challenges of Mobile Computing. Computer 27, 4 (April 1994), 38-47.
https://doi.org/10.1109/2.274999

Giancarlo Fortino, Daniele Parisi, Vincenzo Pirrone, and Giuseppe Di Fatta. 2014. BodyCloud: A SaaS Approach for
Community Body Sensor Networks. Future Gener. Comput. Syst. 35 (June 2014), 62-79. https://doi.org/10.1016/j.future.
2013.12.015

Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Gestures for Smart Rings: Empirical Results,
Insights, and Design Implications. In Proceedings of the 2018 Designing Interactive Systems Conference (DIS ’18). ACM,
New York, NY, USA, 623-635. https://doi.org/10.1145/3196709.3196741

Giuseppe Ghiani, Marco Manca, and Fabio Paterno. 2015. Authoring context-dependent cross-device user interfaces
based on trigger/action rules. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia.
ACM, 313-322. https://doi.org/10.1145/2836041.2836073

Milind S. Gide and Lina J. Karam. 2017. Computational Visual Attention Models. Foundations and Trends® in Signal
Processing 10, 4 (2017), 347-427. https://doi.org/10.1561/2000000055

Sylvain Giroux, Tatjana Leblanc, Abdenour Bouzouane, Bruno Bouchard, Héleéne Pigot, and Jérémy Bauchet. 2009. The
Praxis of Cognitive Assistance in Smart Homes. In Ambient Intelligence and Smart Environments, volume 3: Behaviour
Monitoring and Interpretation. 183-211. http://dx.doi.org/10.3233/978-1-60750-048-3-183

Christos Goumopoulos, Achilles Kameas, and Patras Hellas. 2009. Smart objects as components of ubicomp applications.
International Journal of Multimedia and Ubiquitous Engineering 4, 3 (2009). http://www.sersc.org/journals/IJMUE/
vol4_no3_2009/1.pdf

Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen Wang. 2011. Proxemic Interactions:
The New Ubicomp? Interactions 18, 1 (Jan. 2011), 42-50. https://doi.org/10.1145/1897239.1897250

Robert P. Hawkins, Suzanne Pingree, Jacqueline Hitchon, Barry Radler, Bradley W. Gorham, Leeann Kahlor, Eilleen
Gilligan, Ronald C. Serlin, Toni Schmidt, Prathana Kannaovakun, and Gudbjorg Hildur Kolbeins. 2006. What Produces
Television Attention and Attention Style? Human Communication Research 31, 1 (2006). https://doi.org/10.1111/j.
1468-2958.2005.tb00868.x

Marigo Heijboer, Elise Hoven, Bert Bongers, and Saskia Bakker. 2016. Facilitating Peripheral Interaction: Design
and Evaluation of Peripheral Interaction for a Gesture-based Lighting Control with Multimodal Feedback. Personal
Ubiquitous Comput. 20, 1 (Feb. 2016), 1-22. https://doi.org/10.1007/s00779-015-0893-5

Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King, Youssef Kaddoura, and Erwin Jansen. 2005. The Gator
Tech Smart House: A programmable pervasive space. Computer 3 (2005), 50-60. https://doi.ieeecomputersociety.org/
10.1109/MC.2005.107

Laurent Itti. 2000. Models of Bottom-up and Top-down Visual Attention. Ph.D. Dissertation. Pasadena, CA, USA.
Advisor(s) Koch, Christof. https://thesis.library.caltech.edu/4722/ AA19972609.

Jae Yeol Lee, Min Seok Kim, Dong Woo Seo, Sang Min Lee, and Jae Sung Kim. 2012. Smart and Space-aware
Interactions Using Smartphones in a Shared Space. In Proceedings of the 14th International Conference on Human-
computer Interaction with Mobile Devices and Services Companion (MobileHCI ’12). ACM, New York, NY, USA, 53-58.
https://doi.org/10.1145/2371664.2371676

Vicon Motion Systems Limited. 2019. Vicon Motion Capture. https://www.vicon.com/

Jaime Lloret, Alejandro Canovas, Sandra Sendra, and Lorena Parra. 2015. A smart communication architecture for
ambient assisted living. IEEE Communications Magazine 53, 1 (2015), 26—-33. https://doi.org/10.1109/MCOM.2015.
7010512

Logbar. 2015. Ring ZERO | Shortcut anything. Retrieved April 18, 2019 from https://web.archive.org/web/
20170511131824/http://ringzero.logbar.jp/

J. Maisonnasse, N. Gourier, O. Brdiczka, P. Reignier, and J. L. Crowley. 2006. Detecting privacy in attention aware
system. In Proceedings of the 2nd IET International Conference on Intelligent Environments (IE "06), Vol. 2. 231-239.
http://dx.doi.org/10.1049/cp:20060700

Sathiya Kumaran Mani, Ramakrishnan Durairajan, Paul Barford, and Joel Sommers. 2018. An Architecture for IoT
Clock Synchronization. In Proceedings of the 8th International Conference on the Internet of Things (IOT ’18). ACM, New
York, NY, USA, Article 17, 8 pages. https://doi.org/10.1145/3277593.3277606

Steve Mann. 1997. Wearable Computing: A First Step Toward Personal Imaging. Computer 30, 2 (Feb. 1997), 25-32.
https://doi.org/10.1109/2.566147

Alexander Mariakakis, Mayank Goel, Md Tanvir Islam Aumi, Shwetak N. Patel, and Jacob O. Wobbrock. 2015. Switch-
Back: Using Focus and Saccade Tracking to Guide Users’ Attention for Mobile Task Resumption. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, New York, NY, USA, 2953-2962.
https://doi.org/10.1145/2702123.2702539

Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. 2011. The Proximity Toolkit: Prototyping
Proxemic Interactions in Ubiquitous Computing Ecologies. In Proceedings of the 24th Annual ACM Symposium on User

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://doi.org/10.1109/2.274999
https://doi.org/10.1016/j.future.2013.12.015
https://doi.org/10.1016/j.future.2013.12.015
https://doi.org/10.1145/3196709.3196741
https://doi.org/10.1145/2836041.2836073
https://doi.org/10.1561/2000000055
http://dx.doi.org/10.3233/978-1-60750-048-3-183
http://www.sersc.org/journals/IJMUE/vol4_no3_2009/1.pdf
http://www.sersc.org/journals/IJMUE/vol4_no3_2009/1.pdf
https://doi.org/10.1145/1897239.1897250
https://doi.org/10.1111/j.1468-2958.2005.tb00868.x
https://doi.org/10.1111/j.1468-2958.2005.tb00868.x
https://doi.org/10.1007/s00779-015-0893-5
https://doi.ieeecomputersociety.org/10.1109/MC.2005.107
https://doi.ieeecomputersociety.org/10.1109/MC.2005.107
https://thesis.library.caltech.edu/4722/
https://doi.org/10.1145/2371664.2371676
https://www.vicon.com/
https://doi.org/10.1109/MCOM.2015.7010512
https://doi.org/10.1109/MCOM.2015.7010512
https://web.archive.org/web/20170511131824/http://ringzero.logbar.jp/
https://web.archive.org/web/20170511131824/http://ringzero.logbar.jp/
http://dx.doi.org/10.1049/cp:20060700
https://doi.org/10.1145/3277593.3277606
https://doi.org/10.1109/2.566147
https://doi.org/10.1145/2702123.2702539

SAPIENS: Towards Software Architecture to Support Peripheral Interaction 11:23

Interface Software and Technology (UIST °11). ACM, New York, NY, USA, 315-326. https://doi.org/10.1145/2047196.
2047238

[42] Andrii Matviienko, Sebastian Horwege, Lennart Frick, Christoph Ressel, and Susanne Boll. 2016. CubeLendar: Design

of a Tangible Interactive Event Awareness Cube. In Proceedings of the 2016 CHI Conference Extended Abstracts on

Human Factors in Computing Systems (CHI EA ’16). ACM, New York, NY, USA, 2601-2608. https://doi.org/10.1145/

2851581.2892278

Microsoft. 2017. Kinect for Windows 1.5, 1.6, 1.7, 1.8. Skeleton Class. https://msdn.microsoft.com/en-us/library/

microsoft.kinect.skeleton.aspx

[44] Irina Mocanu, Ovidiu-Andrei Schpor, Bogdan Cramariuc, and Lucia Rusu. 2017. Mobile@Old: A Smart Home Platform
for Enhancing the Elderly Mobility. Advances in Electrical and Computer Engineering 17, 4 (2017), 19-27. http:
//dx.doi.org/10.4316/AECE.2017.04003

[45] Meredith Ringel Morris. 2012. Web on the Wall: Insights from a Multimodal Interaction Elicitation Study. In Proceedings

of the 2012 ACM International Conference on Interactive Tabletops and Surfaces (ITS ’12). ACM, New York, NY, USA,

95-104. https://doi.org/10.1145/2396636.2396651

MyGaze. 2019. myGaze eye tracker. http://www.mygaze.com/products/mygaze-eye-tracker/

Alfredo Navarra, Cristina M. Pinotti, Mario Francesco, and Sajal K. Das. 2015. Interference-free Scheduling with

Minimum Latency in Cluster-based Wireless Sensor Networks. Wirel. Netw. 21, 7 (Oct. 2015), 2395-2411. https:

//doi.org/10.1007/s11276-015-0925-0

[48] Michael Nebeling, Elena Teunissen, Maria Husmann, and Moira C. Norrie. 2014. XDKinect: Development Framework
for Cross-device Interaction Using Kinect. In Proceedings of the 2014 ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’14). ACM, New York, NY, USA, 65-74. https://doi.org/10.1145/2607023.2607024

[49] North. 2019. Getting started with your Myo armband. Retrieved April 18, 2019 from https://support.getmyo.com/hc/
en-us/articles/203398347-Getting-started-with-your-Myo-armband

[50] Bogdan Pogorelc, Artur Lugmayr, Bjorn Stockleben, Radu-Daniel Vatavu, Nina Tahmasebi, Estefania Serral, Emilija
Stojmenova, Bojan Imperl, Thomas Risse, Gideon Zenz, and Matjaz Gams. 2013. Ambient Bloom: New Business,
Content, Design and Models to Increase the Semantic Ambient Media Experience. Multimedia Tools and Applications
66, 1(2013), 7-32. http://dx.doi.org/10.1007/s11042-012-1228-4

[51] Bogdan Pogorelc, Radu-Daniel Vatavu, Artur Lugmayr, Bjérn Stockleben, Thomas Risse, Juha Kaario, Estefania Con-
stanza Lomonaco, and Matjaz Gams. 2012. Semantic ambient media: From ambient advertising to ambient-assisted
living. Multimedia Tools and Applications 58, 2 (May 2012), 399-425. https://doi.org/10.1007/s11042-011-0917-8

[52] Irina Popovici, Ovidiu-Andrei Schipor, and Radu-Daniel Vatavu. 2019. Hover: Exploring cognitive maps and mid-
air pointing for television control. International Journal of Human-Computer Studies 129 (2019), 95-107. https:
//doi.org/10.1016/j.ijhcs.2019.03.012

[53] Robbie Schaefer and Wolfgang Mueller. 2003. Multimodal interactive user interfaces for mobile multi-device environ-
ments. In Workshop" Multi-Device Interfaces for Ubiquitous Peripheral Interaction.

[54] Ovidiu-Andrei Schipor, Stefan-Gheorghe Pentiuc, and Maria-Doina Schipor. 2011. Towards a multimodal emotion
recognition framework to be integrated in a Computer Based Speech Therapy System. In 2011 6th Conference on Speech
Technology and Human-Computer Dialogue (SpeD). IEEE, 1-6. https://doi.org/10.1109/SPED.2011.5940727

[55] Ovidiu-Andrei Schipor, Stefan-Gheorghe Pentiuc, and Maria-Doina Schipor. 2012. Toward Automatic Recognition of
Children’s Affective State Using Physiological Parameters and Fuzzy Model of Emotions. Advances in Electrical and
Computer Engineering 12, 2 (2012), 47-50. https://doi.org/10.4316/aece.2012.02008

[56] Ovidiu-Andrei Schipor, Doina-Maria Schipor, Emilia Crismariu, and Stefan-Gheorghe Pentiuc. 2011. Finding key
emotional states to be recognized in a computer based speech therapy system. Procedia-Social and Behavioral Sciences
30 (2011), 1177-1182. https://doi.org/10.1016/j.sbspro.2011.10.229

[57] Ovidiu-Andrei Schipor and Radu-Daniel Vatavu. 2018. Invisible, Inaudible, and Impalpable: Users’ Preferences
and Memory Performance for Digital Content in Thin Air. IEEE Pervasive Computing 17, 4 (2018), 76-85. https:
//doi.org/10.1109/MPRV.2018.2873856

[58] Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2019. Euphoria: A Scalable, event-driven
architecture for designing interactions across heterogeneous devices in smart environments. Information and Software
Technology 109 (May 2019), 43-59. https://doi.org/10.1016/].infsof.2019.01.006

[59] Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang, and Frank Maurer. 2015. Sod-toolkit: A toolkit for interactively
prototyping and developing multi-sensor, multi-device environments. In Proceedings of the 2015 International Conference
on Interactive Tabletops & Surfaces. ACM, 171-180. https://doi.org/10.1145/2817721.2817750

[60] StackOverflow. 2018. Stack Overflow Developer Survey 2018. https://insights.stackoverflow.com/survey/2018#

technology-programming-languages

Cristian Andy Téanase, Radu-Daniel Vatavu, Stefan-Gheorghe Pentiuc, and Adrian Graur. 2008. Detecting and tracking

multiple users in the proximity of interactive tabletops. Advances in Electrical and Computer Engineering 8, 15 (2008),

[43

—

[46
[47

—

[61

—

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

https://doi.org/10.1145/2047196.2047238
https://doi.org/10.1145/2047196.2047238
https://doi.org/10.1145/2851581.2892278
https://doi.org/10.1145/2851581.2892278
https://msdn.microsoft.com/en-us/library/microsoft.kinect.skeleton.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.skeleton.aspx
http://dx.doi.org/10.4316/AECE.2017.04003
http://dx.doi.org/10.4316/AECE.2017.04003
https://doi.org/10.1145/2396636.2396651
http://www.mygaze.com/products/mygaze-eye-tracker/
https://doi.org/10.1007/s11276-015-0925-0
https://doi.org/10.1007/s11276-015-0925-0
https://doi.org/10.1145/2607023.2607024
https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
http://dx.doi.org/10.1007/s11042-012-1228-4
https://doi.org/10.1007/s11042-011-0917-8
https://doi.org/10.1016/j.ijhcs.2019.03.012
https://doi.org/10.1016/j.ijhcs.2019.03.012
https://doi.org/10.1109/SPED.2011.5940727
https://doi.org/10.4316/aece.2012.02008
https://doi.org/10.1016/j.sbspro.2011.10.229
https://doi.org/10.1109/MPRV.2018.2873856
https://doi.org/10.1109/MPRV.2018.2873856
https://doi.org/10.1016/j.infsof.2019.01.006
https://doi.org/10.1145/2817721.2817750
https://insights.stackoverflow.com/survey/2018#technology-programming-languages
https://insights.stackoverflow.com/survey/2018#technology-programming-languages

11:24 Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Wenjun Wu

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

(77

61-64. http://dx.doi.org/10.4316/AECE.2008.02011

Peter Tolmie, James Pycock, Tim Diggins, Allan MacLean, and Alain Karsenty. 2002. Unremarkable Computing. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’02). ACM, New York, NY, USA,
399-406. https://doi.org/10.1145/503376.503448

Sandra Trullemans, Lars Van Holsbeeke, and Beat Signer. 2017. The context modelling toolkit: A unified multi-
layered context modelling approach. Proceedings of the ACM on Human-Computer Interaction 1, EICS (2017), 8.
https://doi.org/10.1145/3095810

Radu-Daniel Vatavu. 2012. Presence Bubbles: Supporting and Enhancing Human-Human Interaction with Ambient
Media. Multimedia Tools and Applications 58, 2 (2012), 371-383. http://dx.doi.org/10.1007/s11042-010-0674-0
Radu-Daniel Vatavu. 2012. User-defined Gestures for Free-hand TV Control. In Proceedings of the 10th European
Conference on Interactive TV and Video (EuroITV °12). ACM, New York, NY, USA, 45-48. https://doi.org/10.1145/
2325616.2325626

Radu-Daniel Vatavu. 2013. On Designing Interactivity Awareness for Ambient Displays. Multimedia Tools and
Applications 66, 1 (2013), 59-80. https://doi.org/10.1007/s11042-012-1140-y

Radu-Daniel Vatavu. 2015. Audience Silhouettes: Peripheral Awareness of Synchronous Audience Kinesics for Social
Television. In Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video (TVX
’15). ACM, New York, NY, USA, 13-22. https://doi.org/10.1145/2745197.2745207

Radu-Daniel Vatavu. 2017. Smart-Pockets: Body-Deictic Gestures for Fast Access to Personal Data during Ambient
Interactions. International Journal of Human-Computer Studies 103, C (July 2017), 1-21. https://doi.org/10.1016/].ijhcs.
2017.01.005

Radu-Daniel Vatavu and Ionut-Alexandru Zaiti. 2014. Leap Gestures for TV: Insights from an Elicitation Study. In
Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video (TVX ’14). ACM,
New York, NY, USA, 131-138. https://doi.org/10.1145/2602299.2602316

Jo Vermeulen, Steven Houben, and Nicolai Marquardt. 2016. Fluent Transitions Between Focused and Peripheral Interac-
tion in Proxemic Interactions. In Peripheral Interaction. Springer, 137-163. https://doi.org/10.1007/978-3-319-29523-7_7
Daniel Vogel and Ravin Balakrishnan. 2004. Interactive Public Ambient Displays: Transitioning from Implicit to Explicit,
Public to Personal, Interaction with Multiple Users. In Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology (UIST *04). ACM, New York, NY, USA, 137-146. https://doi.org/10.1145/1029632.1029656
Emily Vraga, Leticia Bode, and Sonya Troller-Renfree. 2016. Beyond self-reports: Using eye tracking to measure topic
and style differences in attention to social media content. Communication Methods and Measures 10, 2-3 (2016), 149-164.
https://doi.org/10.1080/19312458.2016.1150443

Florian Wahl, Martin Freund, and Oliver Amft. 2015. WISEglass: Smart Eyeglasses Recognising Context. In Proceedings
of the 10th EAI International Conference on Body Area Networks (BodyNets °15). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 11-17. https://doi.org/10.
4108/eai.28-9-2015.2261470

Miaosen Wang, Sebastian Boring, and Saul Greenberg. 2012. Proxemic Peddler: A Public Advertising Display That
Captures and Preserves the Attention of a Passerby. In Proceedings of the 2012 International Symposium on Pervasive
Displays (PerDis ’12). ACM, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/2307798.2307801

Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun. Rev. 3, 3 (July 1999), 3-11.
https://doi.org/10.1145/329124.329126

Mark Weiser and John Seely Brown. 1997. The coming age of calm technology. In Beyond calculation. Springer, 75-85.
https://doi.org/10.1007/978-1-4612-0685-9_6

Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined Gestures for Surface Computing.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI "09). ACM, New York, NY, USA,
1083-1092. https://doi.org/10.1145/1518701.1518866

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 11. Publication date: June 2019.

http://dx.doi.org/10.4316/AECE.2008.02011
https://doi.org/10.1145/503376.503448
https://doi.org/10.1145/3095810
http://dx.doi.org/10.1007/s11042-010-0674-0
https://doi.org/10.1145/2325616.2325626
https://doi.org/10.1145/2325616.2325626
https://doi.org/10.1007/s11042-012-1140-y
https://doi.org/10.1145/2745197.2745207
https://doi.org/10.1016/j.ijhcs.2017.01.005
https://doi.org/10.1016/j.ijhcs.2017.01.005
https://doi.org/10.1145/2602299.2602316
https://doi.org/10.1007/978-3-319-29523-7_7
https://doi.org/10.1145/1029632.1029656
https://doi.org/10.1080/19312458.2016.1150443
https://doi.org/10.4108/eai.28-9-2015.2261470
https://doi.org/10.4108/eai.28-9-2015.2261470
https://doi.org/10.1145/2307798.2307801
https://doi.org/10.1145/329124.329126
https://doi.org/10.1007/978-1-4612-0685-9_6
https://doi.org/10.1145/1518701.1518866

	Abstract
	1 Introduction
	2 Related Work
	2.1 Peripheral Interaction
	2.2 Designing Interactions in Smart Environments
	2.3 Software Architecture Design and Engineering for Smart Environments

	3 Sapiens
	3.1 Overview of the Euphoria software architecture
	3.2 From Euphoria to Sapiens
	3.3 Design Principles for the Sapiens software architecture
	3.4 Description of the Sapiens Architecture

	4 Resuming the Sandra Example: An Online Simulator for Sapiens
	4.1 Devices, Producers, and Consumers
	4.2 Dataflows
	4.3 Simulator

	5 Conclusion and Future Work
	Acknowledgments
	References

