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ABSTRACT

We address in this work visual menus for smartglasses by proposing
a wide range of design options, such as shape, location, orientation,
and presentation modalities, which we compile in a design space
with eight dimensions. From this design space, we select a subset
of fourteen 2-D menus, for which we collect users’ preferences
during a vignette experiment with N=251 participants. We report
numerical measures of absolute, relative, and aggregate preference
for smartglasses menus, and employ a particular Thurstone’s pair-
wise comparison technique, the Bradley-Terry model, to evaluate
menu designs. Our results highlight key variables influencing users’
preferences regarding the visual appearance of smartglasses menus,
which we use to discuss opportunities for future work.
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1 INTRODUCTION

Advances in wearable computing and Augmented/Mixed Reality
(AR/MR) technology have rendered smartglasses devices available
to mass consumers with forecasts projecting 22 million units to
be shipped worldwide by the year 2022 [67] that will generate a
total expected revenue of 19.7 billion US dollars [66]. Smartglasses
designs range from Head-Mounted Displays (HMD) that render
photorealistic computer-generated graphics in the form of holo-
graphic computing [47,52] to fashionable tech eyewear, such as
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“Spectacles by Snapchat” [64], and to miniaturized gadgets with
micro video cameras embedded into their temples, impossible to dis-
tinguish from regular eyeglasses by the uninformed passerby [57].
Applications for smartglasses address a variety of user needs, from
the simple feature of redirecting smartphone notifications [81] to
showing maps and street views to aid with navigation [50], video
games [69], lifelogging [3,4], and assistive technology for people
with visual [2,60,89] and motor impairments [29,36,49].

Just like any other interactive device, smartglasses need some
form of input to enable users to react to notifications and to se-
lect their preferred choice among the options presented by the
user interface. Organizing those options in menus remains one
of the most common approach to structure input and to interact
effectively with computing systems and devices [11,44], including
wearables, and smartglasses are no exception. However, menu de-
sign for smartglasses comes with specific challenges, e.g., limited
screen real estate to display the menu items and potential occlusion
and interference with the user’s field of view. Unfortunately, design
knowledge to handle such constraints properly is missing and the
reasonable option for practitioners is to resort to generic menu
designs [10,11,44], which may not always comply with the specific
characteristics, form factors, and contexts of use for smartglasses.
For example, should menu items be presented on smartglasses
horizontally or rather vertically? If horizontally, should menus be
displayed at the top, bottom, or in the middle of the see-through
lenses and, consequently, in the middle of the central visual field?
Are 1-D linear menus preferable to 2-D circular menus in terms
of visual appearance? These are just a few examples of possible
design options for which little is known about users’ preferences.

In this paper, we address these aspects with a design space for
smartglasses graphical menus and a vignette experiment [7,30,38]
that we conducted to collect, quantify, and analyze users’ prefer-
ences regarding the visual appearance of smartglasses menus. Our
contributions are as follows:

(1) We outline a space of visual design options for graphical
menus for smartglasses informed by the literature on graph-
ical menus and guided, among others, by Bertin’s visual
variables [15] and work from visual aesthetics [37,88].

(2) We conduct a vignette experiment [7,30] with N=251 par-
ticipants by implementing a randomized A/B testing proce-
dure [72] to quantify preferences regarding the visual ap-
pearance of smartglasses menus. To this end, we introduce
and employ six measures of absolute, relative, and aggregate
preference based on dismissal, preference, and ties rates, the
Bradley-Terry model [19] for evaluating design alternatives,
and Kendall’s coefficient of concordance among raters [40].
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2 RELATED WORK

We discuss in this section prior work on designing interaction tech-
niques for smartglasses and we briefly overview the vast literature
on graphical menus with a focus on visual aesthetics.

2.1 Interaction Techniques for Smartglasses

Interaction techniques for smartglasses generally fall into one of
three broad categories: handheld, touch-based either on the device
or on the body, and touchless by means of mid-air gesture input and
voice commands; see Lee and Hui [45] for a survey and discussion.
The question of how to effectively design smartglasses graphical
menus remains open since current interaction techniques for menu
item selection, such as from [45], have been introduced on the
assumption that menu design has already been achieved.

Touch input, in the form of taps and swipe gestures performed
on the touchpads embedded in smartglasses can be used for item
selection and for scrolling menu items. For example, LYRA [8], a
Google Glass application designed to assist flight attendants by
displaying situated information regarding requests made by pas-
sengers, is controlled with taps and swipes: a tap on the touchpad
marks a passenger request as completed, while swipes to the left
and right show more information about the passenger. The au-
thors’ goal with their design was to keep “navigation through the
application simplistic to allow discrete and easy control” (p. 213) but
essentially this meant falling back on existing design knowledge
for interacting with touchscreens and touchpads, repurposed for
input on smartglasses. Touch input was also considered by Islam et
al. [39], who proposed ten tap gestures for an authentication sys-
tem for smartglasses. Their input method was informed by tapping
techniques previously developed for smartwatches, i.e., “tapping
gestures have also been previously explored on wearables... This con-
cept and the timing threshold influenced the design of the tapping
gesture set proposed in this paper” [39, p. 16:4]. Other examples of
adaptations of existing techniques to work on smartglasses can be
found in the literature; e.g., SwipeZone [35] is a text entry tech-
nique for smartglasses that uses gesture input to select letters from
a 3 X 3 rectangular menu, which draws inspiration from input on
ultra-small touchscreens [23]; the WISEGlass system [82] leveraged
context awareness and implemented input multimodality for con-
textual menus; and Dingler et al. [25] were interested in gesture
commands for Rapid Serial Visual Presentation (RSVP) controls to
be consistently used across smartphones, smartwatches, and smart-
glasses. Such examples show how, in the absence of explicit design
knowledge on smartglasses graphical menus, the community has
resorted to adapting existing designs and interaction techniques
to accommodate the form factors and specific characteristics of
smartglasses. While successful in some situations, this approach
may not work in others, such as touch input on smartglasses for
users with upper-body motor impairments [48,49].

2.2 Design Principles for Graphical Menus

A large literature is available on designing graphical menus and
corresponding interaction techniques; see [11] for a review and
discussion. Graphical menus can be linear, rectangular, circular,
horizontal, vertical, static, dynamic, contextual, adaptive and can
feature many modalities to present items or to enable users to select
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those items. For example, contextual menus display options that
depend on the current task or context of use, limiting the number of
items presented to users to those relevant for the task at hand; e.g.,
after selecting a home appliance, a contextual menu is displayed to
show actions available to control that appliance [42]. Non-contextual
menus are independent of the underlying context and, therefore,
can be displayed according to generic, scene-independent criteria.
How to display graphical menus on smartglasses, however, intro-
duces new challenges represented by the limited screen real estate,
potential occlusion with the visual scene and, in some cases, lim-
ited input capabilities of the device itself [45]. Some smartglasses
models have relaxed these constraints, e.g., the Epson Moverio BT-
350 features a large optical display and Microsoft HoloLens [52]
complements 2-D user interface controls, e.g., windows and menus,
with photorealistic 3-D graphics aligned with the real world.

The extensive body of work on menu design for immerse vir-
tual environments (VR) could potentially be exploited to inform
design for AR smartglasses, including user interfaces and menus,
but further validation experiments are necessary. For example, Mul-
der [53] compared five techniques for selecting items from a 2-D
menu projected in a 3-D virtual environment: ray casting, sight-
based and orthogonal projective techniques, 3-D positioning, and
mouse-based selection. Their results showed that mouse-based
selection was the fastest technique, followed by orthogonal, sight-
based, ray casting, and 3-D positioning; however, for a large number
of menu items, ray casting was recommended [53], which implies
that additional equipment must be available to track users’ hand
movements and pointing gestures. Although wearing additional
equipment might not be a major issue in VR, such as for the “Tulip”
menu [18], it may prove cumbersome for mobile scenarios.

2.3 Vignette Studies to Collect Perceptions of
and Responses to Hypothetical Situations

In this work, we conduct a vignette study [30] in order to collect and
examine the perceptions of potential users regarding a variety of
graphical menu designs for smartglasses. In the rest of this section,
we present what a vignette study is since such studies have been
little employed in the HCI research and practice [34,38,46], and we
highlight the strengths and weaknesses of these type of studies.
A “vignette” is a description of a hypothetical situation, such
as Souza’s [24] illustration of the risky decision taken by a naive
user to store sensitive information in the internal storage of the
web browser running on their computer. Finch [30] described vi-
gnettes as “short stories about hypothetical characters in specified
circumstances, to whose situation the interviewee is invited to re-
spond” (p. 105). More generally, a vignette is “a short, carefully
constructed description of a person, object, or situation, representing a
systematic combination of characteristics” [7, p. 128]. In the case of
smartglasses menus, a vignette represents any textual or graphical
depiction suggesting a hypothetical arrangement and display of
menu items. However, even though the vignette is a fiction, it nev-
ertheless illustrates a potential real-world situation or scenario and,
consequently, vignettes operate in the realm of possibilities for the
phenomena and actions they describe. Thus, an important charac-
teristic of vignettes is that they empower interviewees and study
participants “to define the situation [depicted by the vignette] in their
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own terms” [14]. Finch [30] noted the distinctiveness of the vignette
method with respect to other survey techniques: “vignettes do make
possible one particular form of open-ended question which is situa-
tionally specific” (p. 106). According to this perspective, vignettes
approach projective techniques from psychology that enable study
participants to define the meaning of the situation for themselves.
This characteristic of vignettes comes very handy during interviews
since it limits the influence of the interviewer on inflicting their
perspective onto the interviewee.

When a vignette is employed as part of an experiment, such
as applying vignettes in psychology or sociology [13,14,16,30,84]
where participants are introduced to the situation pictured by the
vignette and their impressions and perceptions of that situation are
collected, the experiment is called a “vignette study” [1,7,9,28,59,65].
In such studies, the descriptions delivered by vignettes represent
the support for the study participants to form their understanding
of the hypothetical situation under investigation and to respond to
that situation. Atzmiller and Steiner [7] pointed to the strengths
and weaknesses of vignette studies compared to other methods. For
example, while traditional surveys have high external validity, they
also exhibit low internal validity caused by the multicollinearity of
the measured variables; and traditional experiment designs have
high internal validity, but may exhibit low external validity because
of the samples of participants not being representative of the target
population [7]. In this context, vignette studies address the limita-
tions of both surveys and experiments [7,65]: according to Aguinis
and Bradley [1], the vignette method represents “a way to address
the dilemma of conducting experimental research that results in high
levels of confidence regarding internal validity but is challenged by
threats to external validity versus conducting nonexperimental re-
search that usually maximizes external validity but whose conclusions
are ambiguous regarding causal relationships” (p. 351).

The use of vignette studies has been scarce in the HCI commu-
nity, where we were able to identify just a handful of papers. For
example, Lindgaard et al. [46] used vignettes to present participants
with fictitious cover stories about patient symptoms in their study
to inform the design of diagnostic decision support systems; Ellis
and Tyre [26] conducted a vignette study to examine help-seeking
and help-giving by technology users and technical specialists; and
Goodman et al. [34] used vignettes to illustrate everyday interaction
design work to demonstrate how professionals negotiate research
questions relevant to interaction design. More recently, Hoyle et
al. [38] reported results from an online factorial vignette study con-
ducted using Amazon Mechanical Turk with N=279 participants to
collect judgments regarding the appropriateness of posting private
photographs online.

Our choice for a vignette experiment to conduct our scientific
investigation vs. other types of research methods will be thoroughly
motivated in Section 4. For now, we simply note the flexibility of the
vignette method for interviewers and interviewees alike as well as
the opportunity to administer it over the web, e.g., by delivering it
as part of a web-based tool [72], in order to reach a large audience of
participants (N=251 in our experiment), difficult to reach otherwise
in laboratory studies. We also note the opportunity of web-based
vignette experiments to enable HCI researchers to collect responses
from participants with reduced mobility, such as people with motor
impairments, or people under the constraints of social distancing.
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Figure 1: A design space for smartglasses menus guided by
Bertin’s [15] visual variables, Hashimoto’s [37] and Zen and
Vanderdonckt’s [88] work on visual aesthetics, and by con-
necting design characteristics with design goals [61].

3 A DESIGN SPACE FOR SMARTGLASSES
GRAPHICAL MENUS

We propose a design space to structure a practical problem, how to
design visual menus for smartglasses?, into a solution space that can
be readily used to arrive at clear design options. To this end, we build
on a rich literature on designing visual menus [10,11,54,62], from
which we draw inspiration with respect to input modalities [10,11],
input information [54], menu item geometry and scrolling [10],
menu geometry, and menu position [62]. Also, since we focus on
visual menus, we adopt Bertin’s [15] visual variables as guidance
to structure the dimensions of our design space by considering
position, orientation, size, shape, value, color, texture, and motion
options. We equally draw from the work of Hashimoto [37] on
the fundamentals of visual design and from Zen and Vanderdon-
ckt [88] on the aesthetics of graphical Uls. For example, according
to Hashimoto [37], visual design applied to graphical Uls aims to
optimize the usage of visual elements to ensure aesthetics toward
a rich user experience. Thus, visual aesthetics can be assessed by
evaluating visual properties, such as balance, symmetry, equilib-
rium, and proportion as part of the multi-factorial aspect of visual
design [88]. Lastly, we follow the principles of “connecting design
characteristics with design goals” of Samp [61], which we adapt
to smartglasses graphical menus. For example, we use the visual
structure principle to inform the item presentation dimension in
our design space and the item shape categories to inform various
shapes for smartglasses graphical menus.

Based on the above considerations, our design space consists of
eight dimensions: (1) menu location, (2) shape, (3) orientation, (4)
dimensionality, (5) item presentation, (6) item count, (7) selection
indicator, and (8) item scrolling; see Figure 1. For example, the loca-
tion of the menu can be at the top, bottom, in the middle, on the left
or right side of the lenses; menu items can be displayed horizontally,
vertically, diagonally, circularly, or at a custom angle; the shape of
the menu can be linear, rectangular, etc. Our design space distills
established concepts from the literature on menu design and visual
aesthetics into the first adaptation for smartglasses.
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Figure 2: The scope of our experiment in terms of the frameworks of Whitefield et al. [83] (left) and Rohrer [58] (right).

4 EXPERIMENT

We conducted a vignette study [7,30,38] to collect prospective users’
preferences regarding the visual appearance of smartglasses menus.
In our study, a vignette consists of a graphical mock-up of a smart-
glasses menu derived by manipulating one or multiple dimensions
of our design space, e.g., location and item presentation. Two such
vignettes are presented simultaneously to participants to generate a
contrasting effect. To control the presentation of multiple pairs, we
employed the A/B testing method [41] due to its popularity in many
areas of research [12,41,87]. According to this method, participants
are elicited for their preferences regarding several alternatives. We
used the AB4Web software tool [72] to implement the A/B testing
method. Before proceeding further with the description of our ex-
periment design, we briefly present the scope of our vignette study
since such studies have been little employed in HCL

4.1 The Scope of Our Experiment

Since we collect the preferences of prospective (not actual) users
regarding mock-up (not actual) designs of smartglasses menus,
it is important to clarify the contextual framework in which our
experiment is conducted next to its specific nature of a vignette
study [7,13,30]. To this end, Figure 2 illustrates the scope of our
experiment in terms of two frameworks proposed by Whitefield et
al. [83] and Rohrer [58], respectively.

The dimensions of Whitefield et al. [83] instantiate both real
artifacts and representations of the user and the Ul In our experi-
ment, we target prospected users, for which little to no experience
in wearing and using smartglasses is expected, in order to reach a
sample of participants as large and diverse as possible. Similarly,
smartglasses menus are represented in our experiment by means
of graphical abstractions (the vignettes) in order not to influence
participants with the particular look and feel induced by a specific
operating system, model of smartglasses, or application. The top-
right quadrant of Figure 2, left reflects the positioning desired for
our experiment in terms of the framework from [83].

The two dimensions from Rohrer [58] contrast the qualitative vs.
the quantitative (on the horizontal axis) and the attitudinal vs. the

behavioral components (on the vertical axis) for empirical research
studies. The first contrast establishes whether the research method
produces data about participants by means of direct observation
as opposed to using indirect observations. The second contrast
makes the distinction between perceived attitudes and participants’
actual behavior. We believe that capturing participants’ behavior
indirectly on various smartglasses designs may lead to inconsis-
tencies due to the various form factors of those devices and their
heterogeneous interaction capabilities. Consequently, we designed
our experiment to collect data directly in terms of preferences for
the visual appearance of menus depicted using vignettes in ways
that are independent of any smartglasses model, operating sys-
tem, or application, which positions our experiment design in the
bottom-left part of Rohrer’s [58] framework; see Figure 2, right.

4.2 Participants

A number of 290 volunteers responded to our invitation to partici-
pate in an online questionnaire implemented using AB4Web [72].
Participants’ demographics covered a broad range of nationalities
from seventeen countries (in alphabetical order: Algeria, Austria,
Belgium, Brazil, Columbia, France, Germany, Greece, Japan, Lux-
embourg, Portugal, Romania, Spain, The Netherlands, Tunisia, UK,
USA), spoken languages, and professional domains (e.g., admin-
istration, business, education, finance, government, health care,
information technology, law, management, software development,
and students of various fields of study). We discarded the responses
of 39 participants (13.7%) because of incomplete data or uncommit-
ted responses, such as participants repeatedly entering the same
answer (e.g., always picking the left or the right variant for all or
most of the comparisons) or too rapid responses. In the end, the
number of effective participants with valid data considered for our
analysis was N=251. Participants’ ages ranged between 10 and 81
years old (M=31.1, SD=12.4 years) and 30.7% were female.

4.3 Stimuli and Apparatus

Because of the wide range of possible combinations of the options
from our design space (Figure 1), we adopted two guiding principles
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Figure 3: The fourteen vignettes employed in our experiment. Notes: each menu is encoded using the notation LOM, where L
stands for location (T for top, B for bottom, S for side, M for middle), O for orientation (H horizontal, V vertical, C circular, R
rectangular), and M for the modality of presentation (Uni for unimodal icons and Bi for bimodal text and icons).

to reduce the number of distinct menu designs for our vignette
experiment so that the experiment would be (i) practical in terms of
the workload expected from participants to complete the study and
(ii) to cover as many design options as possible without affecting
the representation quality of the smartglasses menu vignettes. Our
two guiding principles address the suitability of graphical menus
represented using vignettes and directing participants’ attention
toward the menu design as a whole:

(1) Smartglasses menus should be effectively presented in the
form of 2-D graphical vignettes without any loss in repre-
sentation quality because of dimensionality reduction or
conversion of non-graphical modalities to graphical output.
For example, 2.5-D and 3-D menus are less straightforward to
represent on a 2-D display compared to 1-D/2-D designs and,
thus, we eliminated dimensionality from our experiment.

(2) The vignette should not draw participants’ attention toward
specific menu items, but rather focus it on the visual appear-
ance of the menu design as a whole. Furthermore, depicting
individual menu items in specific states (e.g., selected, dis-
abled, etc.) would have considerably increased the number of
vignettes to be presented to our participants. Therefore, we
decided to eliminate the selection indicator and item scrolling
design dimensions from our experiment. Future work can
address users’ perceptions regarding item-specific visual
appearance, such as evaluating various types of selection
indicators to indicate item scrolling options.

By following these two guiding principles, we were left with
the location, orientation, shape, item count, and item presentation
dimensions. To eliminate the potential effect of the number of menu
items on participants’ perceptions of visual appearance, we decided
that each vignette should present the same number of menu items.
In the end, we selected a number of 14 representative menu types
defined by the following four dimensions: location (with the options:
top, bottom, middle, and side), orientation (horizontal and vertical),
shape (linear and rectangular), and item presentation (unimodal
icons and bimodal text and icons). We created mock-ups of each of

the 14 smartglasses menu types with six menu items: four generic
items (“Send email”, “Open browser”, “Connect glasses to platform”,
and “Show list of contacts”) and two navigation items (“Previous”
and “Next”). For each menu design, a vectorial image was produced
(see Figure 3) for the AB4Web application [72].

4.4 Task

Participants were presented with pairs of vignettes depicting menu
design alternatives and were asked to select the variants they pre-
ferred most by relying exclusively on the visual appearance of
the presented information. In case participants were undecided,
AB4Web [72] offered a “draw” option. By following the open end-
edness of vignette studies that expect respondents to define the
situation depicted by the vignettes by themselves [14,30], we did
not provide any specific guidance to our participants regarding how
visual appearance should be evaluated nor any context informa-
tion (i.e., there was no illustration of any background perceivable
through the glasses or any suggestion of an application domain).
By adopting this minimalistic representation for menus and by not
anchoring our participants’ preferences in any set of visual aesthet-
ics criteria or specific context of use for smartglasses, we aimed
for eliciting a wide range of preferences resulted from self-formed
impressions of what visual appearances would work best for menus
shown in the context of a pair of glasses. In other types of studies
conducted to elicit users’ preferences, such as end-user gesture
elicitation [73,79,86], similar minimalistic approaches are adopted
by removing unnecessary details, such as details of graphical Uls
pertaining to some specific operating system that might influence
participants’ responses. In some instances of applying the end-user
elicitation method [33] or in the case of standard forms of question-
naires and surveys that elicit users’ preferences [56], participants
are simply asked to imagine the effect based on a textual description
of the situation under examination. In our case, the use of vignettes
assures representations of graphical menus independent of any
smartglasses model, operating system, or application. Note that
this approach works well when the expected participation is large
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(the goal of our study) in order to understand consensus formation
from many responses and might not work as well for in-the-lab stud-
ies with few participants, for which controlled conditions are either
explicit (e.g., participants are presented with an actual graphical
representation of a menu) or implicit (e.g., there is an actual pair of
smartglasses of a given brand and model). Also, we followed recom-
mendations for implementing vignette studies, e.g., the presented
stories should not be too complex, should contain sufficient context
for participants to form an understanding about the depicted situa-
tion but also be vague enough to force them to contribute factors
that influence their decisions, and stories must appear plausible,
real, and reflect mundane occurrences [14]. These recommenda-
tions are reflected in the context-independent, device-independent,
application-independent, and operating system-independent graph-
ical representations of the menus illustrated in Figure 3.

A simulation revealed that about 30 minutes were needed to
complete all the 14 - (14 — 1)/2 = 91 trials, which we considered a
duration too long for volunteers of an online questionnaire with
potential negative influence on the completion rate of the experi-
ment and the quality of the results because of fatigue or boredom
effects. Therefore, a restricted number of 30 pairs of vignettes were
randomly generated for each participant making sure that, overall,
the numbers of presentations of each menu type, across all the
participants of the study, were roughly equal. The order of pairs
was randomized across participants and the order of presenting
the menus in each pair (left vs. right) was randomized across pairs.
No time constraint was imposed. With this procedure, participants
needed between 5 and 10 minutes to complete the questionnaire.

4.5 Measures

Computing consensus among users can be accomplished in sev-
eral ways, such as by employing Condorcet, Borda, or Dowdall
counts [27], Kendall’s coefficient of concordance [40], Bradley-
Terry’s estimates of abilities [19], or agreement and coagreement
measures from end-user elicitation studies [77,78,86]. For example,
the Borda count is a consensus-based voting system that determines
the outcome of a debate by assigning to each candidate a number of
points corresponding to the number of candidates that were ranked
lower. Another popular method was introduced by Bradley and
Terry [19], who proposed a model for estimating the probability of
preference for a specific element among many options. The Bradley-
Terry model has been adopted in the practice of HCI, such as by
Serrano et al. [63] to analyze user preferences for visual designs of
rectangular displays; Al Maimani and Roudaut [5] employed it to
examine users’ preferences for haptic feedback; Takao et al. [68]
used the model to understand the effects of differences in timing
between motion and utterance; and Chen et al. [22] evaluated the
Quality of Experience of multimedia content using crowdsourcing.
Several measures of agreement [6,74,77,78,86] have been popular-
ized in the context of gesture elicitation studies [80,85,86] to inform,
among other, the selection of “winning” gestures representative
of users’ preferences for specific devices or specific contexts of
use. Informed by this large literature on computing consensus, we
decided to employ multiple measures instead of just one; see next.
But first, we introduce two concepts:
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(1) NUM-PRESENTATIONS represents the number of times that a
particular menu was presented to participants as part of the
A/B-type comparisons. For example, if the BHBi design was
randomly selected to be presented in seven distinct A/B-type
comparisons for participant P12, then NUM-PRESENTATIONS
is 7. However, NUM-PRESENTATIONS can be aggregated for
the whole experiment, resulting in the total amount of pre-
sentations of a specific menu, e.g., BHBi was presented 1,095
times, all 251 participants considered.

PREFERENCE-MATRIX is a symmetric NXN matrix for which
cells store the number of preference votes for menu m; when
compared to mj. For example, if menu BHBi was preferred
79 times in direct comparisons with BHUni and other 25
comparisons were ties, then the corresponding cell of the
PREFERENCE-MATRIX contains 79 - 1 + 25 - 0.5 = 91.5 votes.

—
3
~

Based on these considerations, our measures to quantify users’
preferences for the visual appearance of menus are as follows:

(1) Absolute measures of preference (reported per menu):
(a) PREFERENCE-RATE represents the percentage of positive
votes received by a specific menu, all participants con-
sidered; e.g., if the BHBi menu design was preferred 551
times over other menus from a total number of 1,095 com-
parisons, then its PREFERENCE-RATE is 551/1095 = 50.3%.

(b) DismissAL-RATE represents the percentage of negative
votes received by a specific menu type, all participants
considered; e.g., if the BHBi menu design from the previ-
ous example was not the preferred option during 374 of
the total number of comparisons, then its DISMISSAL-RATE
is 374/1095 = 34.2%.

(c) TiEs-RATE represents the percentage of tie votes received
by a specific menu type, defined as 100 - (PREFERENCE-
RATE + DismissAaL-RATE). For our example, TIES-RATE is
100 - (50.3 + 34.2) = 15.5%.

(d) LATENT-PREFERENCE-RATE is the difference between the
preference and dismissal percentages for a given menu
type; e.g., the latent preference for the BHBi menu design
is (551-374)/1095=16.2%. Note that LATENT-PREFERENCE-
RATE can take negative values as well between -100% (ab-
solute dismissal) and 100% (absolute preference).

(2) Measures of relative preference (for pairs of menus):

(e) RELATIVE-PREFERENCE (p;, j) represents the probability
that menu m; will be preferred to m;. We used the Bradley-
Terry model [19] to estimate the probability that a menu
design is preferable over the rest. The model works by as-
signing strength parameters 7; to each menu (also called
“abilities”), based on the idea that competition results in-
form the underlying abilities of the competitors, which are
menu designs in our case. The abilities ; provide a rank-
ing of the menu designs, but also the relative preference
probabilities for each menu m;, as follows:

T _ 1

T + 7y B 1+ e*(l(’g(”i)*log(’fj))

pi,j = (1

where the first expression is easier to compute for our pur-

poses and the second is suited for logistic modeling [70].

(3) Measures of aggregate preference (reported for the en-
tire set of menus):
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(f) ConcorbaNnce. We used Kendall’s [40] W coefficient of
concordance to compute the agreement among partici-
pants in terms of their rankings of the preferred menus.
The W coefficient ranges from 0 (no agreement, no overall
trend) to 1 (absolute agreement, each participant has the
same order of preferences, or ranking, for smartglasses
menus). To compute W, we computed a ranking of the
menus for each participant using a Borda count method
starting from 1; see [27] for a description. Specifically, we
assigned 3 points to each menu design when that menu
won a direct A/B-type comparison, 2 points for each draw,
and 1 point when the alternative menu was preferred. For
example, if the BHBi menu design was preferred 551 times,
dismissed 374 times, and ended up in a draw for 170 direct
comparisons with other menu designs, its Borda count
was 3-551+2:170+1-374=2,367.

5 RESULTS

We report in this section results on the absolute, relative, and ag-
gregate preference regarding the visual appearance of smartglasses
menus. But first, we discuss the representativeness of our sample
of participants and the validity of the randomized A/B procedure.

5.1 Data Validity and Representativeness

The data collected from our study, after removing the uncommitted
participants (see the previous section), are represented by 7,530
preference responses collected from 251 (participants) x 30 (random-
ized A/B trials) regarding the visual appearance of 14 smartglasses
menus designed with the shape, orientation, location, and item pre-
sentation dimensions from our design space. In the following, we
analyze the age and gender distribution of our participants and the
random generation of the A/B pairs to confirm (1) the representa-
tiveness of our sample for the target user population and (2) the
validity of our randomized A/B procedure in terms of the number
of presentations of each vignette.

5.2 Representativeness of Respondents

Figure 4 illustrates the age-gender demographic distribution of our
participants showing a good age coverage for both gender groups:
female participants between 11 and 63 years old and males between
10 and 81 years. The figure also shows that age distributions are not
normal (an observation confirmed by Shapiro-Wilk tests, W=.921,
p<.001 for female and W=.832, p<.001 for male participants, re-
spectively) with a higher representativeness of young people, less
than 35 years old, in our sample. This outcome is fortunate, how-
ever, as it is a known fact that young people use a greater breadth
of technologies compared to older adults and are more open to
new technology, whereas older adults are more likely to use tech-
nologies that have been around for a longer period of time [55].
From this perspective, the population sample fits well the topic of
our investigation, which is focused on understanding preferences
for a new type of smart gadget made available only recently to
the large public. Moreover, the mean ages are close for the two
gender groups (M=32.8, Mdn=29.0 years for female and M=30.4,
Mdn=25.0 years for male participants, respectively, Wilcoxon’s
rank sum W=7367, p=.207, n.s.) and the age distributions are not
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Figure 4: Statistics for our participants’ age-gender demo-
graphics with mean ages highlighted.

significantly different (as indicated by a Kolmogorov-Smirnov test
D=.147, p=.175, n.s.). Although non significant results cannot be
used to accept null hypotheses, they increase our confidence in the
representativeness of our sample of participants. To summarize, we
report in this study users’ preferences (i) across a large variety of
age groups with (ii) similar age distributions for men and women,
while (iii) the opinions of the age group most likely to adopt and
use smartglasses, i.e., young people less than 35 years old, are given
appropriate representativeness in our sample.

5.3 Validity of the A/B Randomized Procedure

Table 1 lists the number of presentations of each menu design across
all the randomized A/B trials, e.g., the BHBi design was presented
1,095 times, all participants considered, out of all the 7,530 (A/B-
type trials) X 2 (vignettes presented per trial) = 15,060 total number
of menu presentations. The expected number of presentations per
menu is 15,060 divided by 14 (distinct menu designs) = 1,075. The
standard deviation was 16.98 with absolute errors varying between
0 and 32 (0% and 2.98%) with respect to the expected mean. These
results confirm that the randomized A/B procedure was applied
correctly with no menu design being favored over the others in
terms of a significantly larger presentation count.

Table 1: Characteristics and number of presentations of each
of our fourteen vignettes representing smartglasses menu
designs. Overall, a total number of 15,060 vignettes were pre-
sented to N=251 participants.

Menu . Orientation Item pre- Preference Presentation
. Location .

design & Shape sentation count count
BHBi bottom horizontal bimodal 551 1095
BHUni bottom horizontal unimodal 698 1107
MCBi middle circular bimodal 274 1075
MCUni middle circular unimodal 370 1063
MHBi middle horizontal bimodal 354 1064
MHUni middle horizontal unimodal 434 1068
MRBi middle rectangular bimodal 352 1065
MRUni middle rectangular unimodal 308 1101
MVBi middle vertical bimodal 455 1099
MVUni middle vertical unimodal 217 1067
SVBi side vertical bimodal 727 1072
SVUni side vertical unimodal 477 1062
THBi top horizontal bimodal 693 1065
THUni top horizontal unimodal 685 1057

Total 15,060
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SVBi [66.4% 23.1%  8.4% SVBi 44.2%
BHUni  63.7% 27.9% 9.5% THBI 39.6%
THBI [63.3% 24.7% 9.2% THUni 38.1%
THUNi  62.6% 25.8% 8.2% BHUNi 35.5%
BHBi 50.3% 40.3% 9.4% BHBI 10.0%
SVUni  |43.6% 43.3% 10.1% SVUni 0.3%
Average X3 43.0% Average 0.0%
MVBi  41.6% 42.9% 15.9% MVBI -1.4%
MHUni  139.6% 41.3% 16.6% MHUni -1.7%
MCUni  [33.8% 45.7% 17.6% MCUni -12.2%
MHBi  32.3% 51.9% 13.0% MHBi 20.1%
MRBi [32.1% 52.7% 12.4% MRBi 21.1%
MRUni  28.1% 58.9% 13.5% MRUni -30.6%
MCBi 25.0% 60.4% 12.8% MCBi -36.0%
MVUni 19.8%  63.6% 14.1% MVUni  -44.9%

Preferred  Dismissed © Ties

preference, dismissal & ties latent preference

Figure 5: Preferences expressed for our menu designs.

5.4 Absolute Preferences

Figure 5 shows participants’ preferences for our set of 14 menu
designs by reporting the PREFERENCE-RATE, DismIsSAL-RATE, T1Es-
RaTE (Figure 5, left), and LATENT-PREFERENCE-RATE measures (Fig-
ure 5, right). The most preferred menu was SVBi (i.e., side location,
vertical arrangement of items, and bimodal presentation using both
text and icons) with a preference rate of 66.4%, 8.4% ties, and a latent
preference of 44.2%. This result suggests that when menu items
are presented on the side of the smartglasses to address peripheral
vision, they should be aligned vertically to optimize navigation
and visual search, while text descriptions should be presented next
to the corresponding icons to assist exploration. The next three
positions were occupied by the BHUni, THBi, and THUni menus
with 63.7%, 63.3%, and 62.6% preference rates and 35.5%, 39.6%, and
38.1% latent preference rates, respectively. These findings show that
if menu items are presented at the bottom or the top of the lenses,
they should be presented horizontally and using icons only. The
least preferred menu was MV Uni, probably because of its middle
location, likely to affect overall visibility, vertically arranged items
being more difficult to scan, and taking up too much space with
the bimodal presentation.

Figure 6 reports preference rates for each applicable design di-
mension, which we computed by counting the number of positive
votes (+1) and half a vote for ties (+0.5) each time a specific menu
was preferred to others. For instance, each time the BHBi menu
(bottom, horizontal, bimodal) won a direct comparison, the bot-
tom location received 1 point, the horizontal orientation received
1 point, and the bimodal modality of item presentation received
1 point, respectively. Similarly, each time the BHBi design ended
up in a tie, each of its design options received 0.5 points. By divid-
ing the result to the total number of presentations of each menu,
we obtained the preference rates from Figure 6. For example, the
bottom location received 1,352.5 points from 2,202 direct compar-
isons (involving BHBi and BHUni) and, thus, its preference rate
was 1352.5/2202 - 100% = 61.4%. Also, the middle location received
more points (3,398.5) from more comparisons (8,602) due to the
MCBi, MCUni, MHBi, MHUni, MRBi, MRUni, MVBi, and MV Uni
designs, and resulted in a lower preference rate compared to the
bottom location, 3398.5/8602 - 100% = 39.5%. Regarding the ori-
entation and shape dimensions, the linear horizontal design was
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preferred in 58.5% of the cases, followed by linear vertical (49.8%),
while the circular and rectangular designs both scored 37%. The
distribution between unimodal and bimodal designs was roughly
equal, with slightly more preference for the bimodal presentation
of menu items using both text and icons (51.1% vs. 48.9%).

5.5 Relative Preferences

Besides the absolute preference rates, we were also interested in rel-
ative preferences, e.g., how likely is it for menu m; to be preferred
over m;. To this end, we fit the Bradley-Terry model to our data us-
ing the BradleyTerry2 R library [70], which uses the glm.fit method
with the binomial family and the logit link function. The model
needed four Fisher scoring iterations to converge, and the analysis
indicated a better fit (AIC=397.88, residual deviance 105.73, d f=64)
compared to an intercept-only model (AIC=1088, null deviance
1088, d f=77).

Figure 7 reports the ability 7; of each menu m; to win users’ pref-
erences computed by the Bradley-Terry model [70]. These results
confirmed our previous findings (see Figure 5): SVBi had the great-
est ability (0.75), followed by THBi (0.67), THUni (0.61), and BHUni
(0.55). We found no significant differences between SVBi and THBi
(Z=-0.894, p=.371, n.s.) nor between SVBi and THUni (Z=-1.494,
p=.135, n.s.), but the SVBi menu design had significantly larger
ability than all the other menus (p<.05 for BHUni and p<.001 for
the other menus) to attract participants’ preferences. Based on the
values of abilities 7r; and Eq. 1, Figure 8 illustrates the probabilities
pi,j that menu design m; will be preferred over menu mj, e.g., SVBi
(side location, vertical orientation, bimodal presentation) is likely
to be preferred over MCUni (middle, circular, unimodal) in a direct
comparison with 77.4% chance.

5.6 Aggregate Preference

We employed Kendall’s [40] W coefficient of concordance to un-
derstand the consensus between participants’ rankings of menus,
which we computed using the Borda count [27]. We found W=0.109
()((2250)=356.32, p<.001), a result that indicates low consensus and
a diversity of rankings for the set of fourteen menus. Our pre-
vious analysis of cumulated preferences showed that consensus
over particular menu designs emerged nonetheless despite a wide
variety of individual rankings; see Figure 5. However, this result
suggests that groups of participants with similar preferences in
terms of menu rankings could potentially be identified by running
further exploratory analysis. For example, we found that male par-
ticipants were slightly more in agreement about their menu rank-
ings than female participants (W=0.120 vs. W=.094, respectively,
both p < .001).

6 DISCUSSION

We present in this section a summary of our results, which we distill
into takeaways. We also discuss limitations of our experiment and
suggest ways to address those limitations in future work.

6.1 Summary of Results and Takeaways

Our empirical results showed location to be the most determinant
variable for smartglasses graphical menus with some design op-
tions for location winning participants’ preferences in over 60%
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Figure 6: Preference rates for various design options regarding menu location, orientation, shape, and item presentation.
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Figure 7: Bradley-Terry abilities estimated for each menu.
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Figure 8: Relative preference probabilities computed from
the abilities estimated by the Bradley-Terry model [19,70].

of the direct A/B comparisons. Next followed orientation, shape,
and item presentation. In the following, we summarize takeaways,
implications, and ideas for future work:

6.1.1  The location of the visual menus should be chosen to minimize
interference with the visual scene, achieving thus good visual search
and good utilization of the screen real estate. Our results showed
that the top location was the most preferred option (69.1% votes),
followed by bottom (61.4%) and side (61.2%). These findings suggest
interesting directions for future work in terms of positioning con-
tent, including menu items and other controls, for smartglasses Uls.
For example, the bottom location is normally reserved for proximal
vision, useful for reading, while the top location can be assimilated
with far-away vision. Consequently, contextual menus could be
displayed either at the top or the bottom, depending on the task at
hand, e.g., reading or performing visual search. Also, an interesting
fact about side menus (61.2% preference votes) is that they do not
require the user to shift the focus of attention to the menu and then
back to the visual scene, as menu perception can be achieved with
the peripheral vision. Our participants’ preferences for side menus

is a finding in line with performance results from prior work that
reported users spending 50% less time looking at the side menu on
their smartglasses by exploiting peripheral vision [21].

6.1.2  Menus should not be displayed in the middle. Our results
showed that the middle location was the least preferred among
all the design options for the location dimension (39.5%; see Fig-
ure 6), while all the menu designs that featured this option scored
preference rates below average (less than 43%; see Figure 5, left)
and negative latent preference rates (between —1.4% for the MVBi
design and —44.9% for MV Uni; see Figure 5, right).

6.1.3 The arrangement and orientation of menu items should opti-
mize visual scanning. The vertical orientation for presenting menu
items is not only convenient for the side location (i.e., the SVBi and
SVUni designs ranked first and sixth place, respectively; see Fig-
ure 5), but is also efficient for visual scanning. When items are left
justified, there is no need to reacquire item locations; when items
are located and arranged in ways that are consistent across existing
applications, they match the common locations where users nor-
mally expect menus to be positioned, facilitating thus visual search.
Overall, the horizontal orientation was preferred for 58.5% of the
menu designs located at the bottom (61.4%) and the top (69.4%) of
the lenses; see Figure 6.

6.1.4 Menu designs with 2-D navigation were often dismissed in
favor of linearly structured menus. Both circular and rectangular
menus were the least preferred (37.9% and 37.0%; see Figure 6).
A possible explanation is that these designs suggested a spatial
navigation scheme that was perceived more difficult to perform
compared to the more simple, linear structure of the horizontal and
vertical menu designs. Also, both circular and rectangular shapes
require more screen real estate to display compared to linear menus.
However, 2-D menus may be useful to depict commonly accepted
2-D orderings of items, such as the digits of 3x3 numerical key-
boards. Further studies are needed to understand the compromise
between preference and performance for such designs.

6.1.5 Unimodal and bimodal presentations of menu items are equally
acceptable. Our empirical results revealed little difference between
the unimodal (graphical icons only) and bimodal (text and graphi-
cal icons) presentation of menu items (48.9% and 51.1% preference
votes, respectively; see Figure 6). This finding suggests new de-
sign ideas, such as a smooth transition from bimodal to unimodal
menus could also be acceptable to users, while saving screen space
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and fostering learnability. For example, when menus are first dis-
played, their presentation could be bimodal, after which menus
could progressively switch to a unimodal graphical presentation to
free screen space for expert users.

6.2 Limitations

We conducted in this work a large-scale user study (N=251 partici-
pants) by taking advantage of a vignette-based experiment design, a
web-based tool and online participation, a randomized A/B testing
procedure [72], and simple instructions provided to participants
regarding the evaluation of the visual appearance of smartglasses
menu designs. We managed to foster large participation and com-
mitment from our participants to complete the tasks, but we also
acknowledge several limitations of our experiment, as follows:

(1) To keep the user study practical in terms of the workload
expected from participants, we defined and applied two guid-
ing principles to reduce the number of dimensions from our
design space that we utilized to generate the menu design
options and the corresponding vignettes. The dimensions
that were not considered were item scrolling, item count,
selection indicator, and dimensionality. Future work is rec-
ommended to examine each dimension in depth to uncover
more findings about users’ preferences.

(2) In accordance with the specific nature of vignette studies,
we did not influence participants in any way regarding their
possible interpretations of the vignettes. Instead, we let par-
ticipants define the parameters of visual appearance regard-
ing smartglasses menus that mattered and made sense the
most for them; see Barter and Renold [14] and Finch [30]
for the benefits of having respondents defining the situation
depicted by the vignettes by themselves as well as our dis-
cussion from Section 4 in this regard. Future user studies,
such as in-the-lab controlled studies, could measure objec-
tive dependent variables regarding the visual aesthetics of
graphical Uls, such as variables informed by the metrics em-
ployed in [88]. We believe that correlating the values of such
objective variables with the self-defined notion of visual ap-
pearance will be interesting to explore and will lead to new
discoveries for smartglasses graphical menus.

(3) Since our experiment was a vignette study, we used graphical
representations of possible designs for smartglasses menus
instead of actual implementations on a specific device. This
approach brought us several advantages, such as the possibil-
ity to conduct evaluations of visual appearance without any
influence from specific operating systems or models of smart-
glasses that might have biased our participants’ responses
as well as to reach a wide range of participants of different
age, cultural backgrounds and professional fields. However,
generalization of our findings to actual implementations of
smartglasses menus should be done with care. Instead, our
empirical results should be seen as the first set of data, col-
lected using a large and diverse sample of potential end users,
on which to base further explorations.

In the next section we suggest ways to address these limitations
with several ideas for future work regarding graphical menu design
for smartglasses.
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7 CONCLUSION AND FUTURE WORK

We reported in this paper preference results collected from a vi-
gnette experiment with large participation conducted to compare
various design options for smartglasses graphical menus. These
results represent the first attempt in the community to structure de-
sign knowledge for visual menus and smartglasses. Consequently, it
is our hope that our work will generate constructive discussion and
lead to more studies on smartglasses menus toward accumulating
practical design knowledge in this regard.

Several future work directions can be envisaged. For example,
we employed only some of Bertin’s [15] visual variables to keep
the design space manageable for practitioners. Exploration of other
variables are recommended, such as color (e.g., showing menus with
color saturation and/or brightness levels in correspondence with
the visual scene); more orientations (e.g., items displayed horizon-
tally and vertically) and shapes (pie, semi-circular, etc.); distributed
menus, for which inspiration can be drawn from designing dis-
tributed Uls [51] (e.g., splitting menu items across the two lenses or
displaying one menu on the left lens and sub-menus on the right
one); adaptive menus [17,31] in which menu items are displayed
according to their frequency of use; or animated menus [43], includ-
ing visual effects, e.g., a smartglasses menu that fades into view. In
our experiment, we considered just four of the eight dimensions
of our design space in order to keep the experiment manageable
and foster commitment from our participants to complete the task.
Future work can focus on each dimension individually, including
the dimensions that we did not consider in this study, such as
item scrolling or selection indicator, to complete our understanding
about users’ preferences of the visual appearance of smartglasses
menus. Studies addressing the preferences of participants with
visual impairments [60] regarding the display of menu items on
smartglasses as well as of participants with upper-body motor im-
pairments [48,49] for controlling smartglasses menus, including
via touchscreens on mobile devices [71,75,76], wearables [32], and
chairables [20], are equally recommended for examination in future
work. While the explorations of such directions will definitely con-
tribute important information in the community, our design space
can already be employed to assist practitioners in their designs of
graphical menus for smartglasses.
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