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ABSTRACT

We conduct a systematic literature review on wearable interactions
for users with motor impairments and report results from a meta-
analysis of 57 scientific articles identified in the ACM DL and IEEE
Xplore databases. Our findings show limited research conducted on
accessible wearable interactions (e.g., just four papers addressing
smartwatch input), a disproportionate interest for hand gestures
compared to other input modalities for wearable devices, and low
numbers of participants with motor impairments involved in user
studies about wearable interactions (a median of 6.0 and average of
8.2 participants per study). We compile an inventory of 92 finger,
hand, head, shoulder, eye gaze, and foot gesture commands for
smartwatches, smartglasses, headsets, earsets, fitness trackers, data
gloves, and armband wearable devices extracted from the scientific
literature that we surveyed. Based on our findings, we propose four
directions for future research on accessible wearable interactions
for users with motor impairments.
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1 INTRODUCTION

Wearable devices are becoming mainstream as consumers increas-
ingly adopt and integrate them in their lives [11, 65, 78, 141]. Ac-
cording to an IDC report [53], global shipments of wearable devices
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were of 345 million units in 2019 and forecast to reach 637 million
units in 2024. Of these, smartwatches and wrist bands represented
91 and 67 million units, respectively. Other types of wearables, such
as smartglasses and head-mounted displays (HMDs), are gaining
momentum with the increased interest for Virtual and Augmented
Reality (VR/AR) technology [114]. Also, the global market for Blue-
tooth and NFC smart rings is projected to reach US$12.6 million by
2027 according to a Global Industry Analysis report [42], enabling
users with simple access authorization and contactless payments.

In this context, getting the right design for wearable interactions
is paramount for mobile users to be able to operate effectively small
screens [3, 41], tiny buttons [1, 56, 130], eyes-free UIs [87], and be
efficient with gesture input involving precise movements of the fin-
gers, hand, and head [66, 107, 135]. For example, touch interactions
on the Samsung Galaxy Watch! include taps and variations of taps,
drag gestures, where the finger touches an on-screen target and
moves across the screen at a constant speed, and the palm touch
gesture, where the display is covered with the palm to deactivate
the screen. Fitbit Sense? features a small, 10mm-wide solid-state
button that, when pressed for two seconds, gives quick access to
applications. The Vuzix Blade AR glasses> are operated via taps and
swipes on the touch pad embedded in their right temple. The Myo
armband,* now a discontinued product yet employed in several of
the systems identified in our literature review, enables several hand
gestures, such as making a fist or spreading the fingers.

1.1 Context for Wearable Interactions and
Users with Motor Impairments

Research on accessible wearable interactions for people with motor
impairments has been scarce and mostly focused on rehabilita-
tion systems, e.g., we found just four papers [57, 71-73] examining
accessibility challenges for touch, gesture, and voice input on smart-
watches, despite the large body of research available on smartwatch
input in general [17, 65, 68] and the large worldwide adoption of
these devices [53]. To put this finding into perspective, the focus on
users with motor impairments has been overall disproportionate
in the accessibility research community compared to addressing
the needs of other user groups. For example, in their survey of
506 accessibility papers published at CHI and ASSETS between
2010 and 2019, Mack et al. [69] found that almost half of the papers
addressed blind people or people with visual impairments, while
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motor or physical disabilities were discussed in just 72 of the papers
they analyzed. In this context, it is no surprise that research on the
niche topic of accessible wearable interactions has been scarce.

1.2 Contributions

We make the following contributions in this paper:

(1) We report results from the first Systematic Literature Review
(SLR) conducted on wearable interactions for users with mo-
tor impairments. Our findings show that only a small number
of scientific papers has been published on this topic, e.g., only
four papers about smartwatch input [57, 71-73], five papers
about input on smartglasses [2, 71, 74, 75, 79], and only one
paper on possible applications of smart rings [37] for users
with motor impairments, while most of the wearable proto-
types from the literature were developed and discussed in
the context of medical rehabilitation.

(2) We compile an inventory of 92 interactions for wearables
consisting of gestures performed with the fingers, hands,
head, shoulders, and feet, which we extracted from a number
of 57 papers addressing smartwatches, smartglasses, HMDs,
fitness trackers, earsets, headsets, data gloves, and armbands.

(3) We draw implications for future research on accessible wear-
able interactions and users with motor impairments. We
identify four directions and propose the WISE framework
(Wearable prototypes, Interaction techniques, Studies with
users with motor impairments, and Expansion to other de-
vices and smart environments) to structure future scientific
investigations and practical developments in this area.

2 SCOPE AND METHOD

We present the method employed in our SLR study to address two
research questions (RQs) specifying our scope of investigation for
accessible wearable interactions and users with motor impairments:

RQ1: What categories of wearable devices have been considered
in the scientific literature for users with motor impairments?

RQ2: What types of wearable interactions have been proposed
(designed, developed, evaluated, discussed, etc.) for users
with motor impairments?

The answer to RQy structures the landscape of contributions from
the scientific literature from the perspective of their focus on spe-
cific types of wearables (e.g., smartwatches, smartglasses, etc.),
while the answer to RQj is useful to understand the interactions
that were proposed for these devices to inform future work.

2.1 Scope

We start by presenting our operational definition of wearable inter-
actions to delimit precisely the scope of our SLR. This delineation
is important since wearables come in many flavors to address a
variety of needs and present a wide range of functionality, from
devices designed to track fitness and health [15, 76, 77] to notifi-
cation implementers [40, 108], navigation tools [31, 36], gaming
devices and controllers [125], personal mobile computers [35, 85],
and fashion accessories [54, 106]. In this context, examining wear-
ables as devices that were simply designed to be worn [4, 51] or
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Figure 1: Flow diagram specifying the scope of our investiga-
tion on wearable interactions and users with motor impair-
ments; see requirements Reqi, Req, and Reqs described in
the text.

incorporated into items of clothing and accessories [109] repre-
sents a definition too broad for our scope as it does not capture the
interaction part—in fact, such a broad definition encompasses all
devices, sensors, and electronics that, admittedly wearable, may
not necessarily require interaction, e.g., medical sensors [5, 140].
Instead, a definition approach based on identifying relevant cate-
gories of wearables [105], their characteristics such as always-on
operation and interactivity [51, 131], and design requirements for
interactions, such as comfort, safety, usability, and satisfaction [32],
is better suited to our scope. We are thus interested in all devices
that can be worn, either directly or integrated into items that are
worn, and that enable direct interaction on the device itself, such
as tap input to read a smartwatch notification [24], or using the
wearable for indirect interaction to control something else, such
as performing a gesture with the finger wearing a smart ring to
turn on the lights [38]. From this perspective, our operational defi-
nition for interactive wearables is specified by the following three
requirements (see also Figure 1):

Reql: The device is worn or integrated into an item that is worn.
Examples include smartwatches [72], rings [37], fitness
trackers [15], smartglasses [79], data gloves [33], HMDs for
VR [82], but also sensors embedded into clothes, such as
IMUs sewed onto a hat [8] or touch pads placed on the
body [75].

Req2: The device enables direct interaction to operate the device
itself or mediates interaction, e.g., to control a computer [49],
a robot [18], a virtual world [30], or the electric-powered
wheelchair [52]. A wearable may also be used to control an-
other wearable [43, 75]. Wearable devices that do not require
interaction, such as heart rate sensors [45], are excluded.

Req3: Our scope addresses people with motor impairments, i.e.,
with any impairment in the ability to move all or parts of the
body. Thus, our third requirement specifies physical move-
ment of a part of the body to implement the interaction.
For example, smartglasses that track head movement, ges-
tures performed with smart rings [37], touch input on smart-
watches [72] or on the body [75], earsets that require tilting
and movement of the head [18], are relevant to our scope,
whereas electroencephalography (EEG) neuroheadsets [62]
are not, since they do not require physical movement. The
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movement can be subtle, such as a small gesture of the finger
wearing a ring [37], or more ample, such as rotating the wrist
wearing a smartwatch to activate its screen. In general, the
large muscle groups of a limb are expected to be involved
in the interaction according to the design expectations of
current wearable devices (see Section 1 for a few examples)
and, consequently, this criterion excludes eye movements.
With this requirement, we delimit our scope to wearables that
involve a part of the body to implement the interaction and,
because of this design expectation, may present accessibility
challenges for people with motor impairments.

Requirements Req; to Reqs specify our scope of investigation
precisely, while they are broad enough to encompass a variety of
wearables (Req;) as long as the corresponding interactions (Reqy)
require motor skills (Reqs); see Figure 1. For other categories of
wearables and goals of wearable computing, we refer to Lara and
Labrador’s [60] survey of wearable sensors for activity recognition,
Thalman and Artemiadis’ [117] review of wearable assistive robots,
Siean et al. [111] for assistive technology involving mixed reality
and ambient intelligence, Rose et al.’s [97] survey of VR for rehabili-
tation, Lazarou et al. [62] and Tiwari et al. [118] for brain-computer
interfaces, and Pasqualotto et al. [88] for eye gaze input.

2.2 Study Design

There are many ways to conduct SLRs, which can be quantitative
(like ours) or qualitative (e.g., narrative reviews) [10, 110]. In this
work, we conduct a meta-analysis to structure numerically the
landscape of research on accessible wearable interactions. We follow
Siddaway et al.’s [110] Best Practice Guide and adopt PRISMA® [63]
for reporting meta-analyses; see Figure 2 for an illustration of the
identification, screening, eligibility, snowballing, and inclusion stages
of our study. In the following, we describe each stage in detail.

2.2.1 Identification. The role of the identification stage is to locate
work that addresses the research questions, a stage operationalized
with search terms and queries in scientific databases. We chose
the ACM DL® and IEEE Xplore’ as two major databases for Com-
puter Science research and DBLP® as a multi-publisher bibliography
source to cover other publishers as well. After performing searches
in these databases to familiarize ourselves with the literature, we
concluded that by searching only through the titles of the articles,
relevant references would be lost, while searching through the
entire text would result in too many irrelevant results. Thus, we
decided to search the abstracts as a compromise, and considered
various categories of wearables to specify our keywords, such as
“watch,” “glasses,” “bracelet,” etc. alongside the generic keyword
“wear” The ACM DL query was:
"query": {

Abstract: ((motor) AND (impair* OR disabx) AND

(wear* OR worn OR watchx OR (fitness AND band*) OR

ringx OR bracelet* OR jewel* OR

glassx OR HMD* OR ("head" AND "mountx*")))

3

5The PRISMA acronym stands for Preferred Reporting Items for Systematic reviews
and Meta-Analyses.

Ohttps://dl.acm.org

"https://ieeexplore.ieee.org/Xplore

8https://dblp.org
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"filter": {NOT VirtualContent: true}

and returned 79 results. For IEEE Xplore, the advanced search form
did not allow searching with all the wildcards * in one query, so we
split the query in two parts (Q; and Qz), as follows:

Q1: ("Abstract": motor) AND ("Abstract": impairx OR

"Abstract": disabx) AND ("Abstract": wear* OR "Abstract":

worn OR "Abstract": watchx OR "Abstract": glassx OR
("Abstract": fitness AND "Abstract": bandx))

Q2: ("Abstract": motor) AND ("Abstract":impairx OR "Abstract":

disabx) AND ("Abstract": ring* OR "Abstract": braceletx*
OR "Abstract": jewel* OR "Abstract": HMDx OR
("Abstract": head AND "Abstract": mountx))

for which we obtained 192 and 37 results, respectively, but 12 were
returned by both Q; and Q, so the total number of distinct results
from IEEE Xplore was 217. The following form of the query:

motor impair|disab wear|worn|watch|glass|fitness|band|
ring|bracelet|jewel |HMD|head|mount

returned 17 results from DBLP. All the queries were ran on Oct. 28th,
2020. Overall, we identified a number of 313 articles; see Figure 2.

2.2.2  Screening. We discovered 22 duplicates that we eliminated
from our list, resulting in a total number of 291 unique titles. We
read the abstracts to determine whether the identified references
were relevant according to our scope. We excluded 60 references
that did not address people with motor impairments, but for which
the keyword “motor” appeared in the abstracts in conjunction with
“impairments” to denote, for example, electric motors used to deliver
vibrotactile feedback to people with visual impairments [55]. We
excluded another 4 references that did not focus on humans, but
addressed wearables for dogs or monkeys [47, 80]. Also, a number
of 40 references did not match our definition of interactive wear-
ables: we excluded devices not designed to be worn, such as those
integrated into wheelchairs, stretchers, robotic assistants, etc., and
prototypes for which the operation was internal to the body, e.g.,
devices operated with the tongue [137] or designed to replace body
parts, such as implants [112] and prosthetic limbs [119]. After the
screening stage, we arrived at 187 references.

2.2.3  Eligibility. We formulated the following eligibility criteria
(EC) to further filter out work not relevant to our scope:

EC1: Availability of full text. The full text of the work must be
available and the work must be written in English.

EC2: Peer-reviewed work. The work must be academic and peer
reviewed, e.g., journal articles, conference papers, PhD dis-
sertations. Magazine articles, brochures, etc., are excluded.

EC3: Focus on interactions. The wearable must enable interactions
either to operate it or to control another device or system.
From this perspective, medical rehabilitation devices [98],
systems for mobility assistance [116], and sensors employed
for the assessment of motor skills [22] were excluded. We
refer readers interested in such topics to Avutu et al. [5] and
Zhou and Hu [140] for surveys on smart devices and human
motion tracking for rehabilitation, Thalman and Artemi-
adis [117] for wearable assistive robots, and Rose et al. [97]
for a review of VR for rehabilitation. This eligibility criterion
connects to Reqa specifying wearable interactions.
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Figure 2: The PRISMA [63] diagram illustrating the results of the identification, screening, eligibility, snowballing, and inclu-
sion stages of our SLR study on the topic of wearable interactions for users with motor impairments.

EC4: Focus on motor abilities. We excluded brain-computer inter-
faces (BCI) and mobile eye gaze tracking systems because,
even though they represent devices designed to be worn, do
not require motor abilities of the large muscle groups® and,
thus, act as mere sensors affixed to the body. We refer the
interested reader to the literature on BCI [7, 62, 118] and
eye gaze input [27, 70, 88] for results in these areas. This
criterion connects to our requirement Reqs from Figure 1.

By applying these eligibility criteria, we eliminated 149 references,
leaving a subset of 38 papers relevant for our scope; see Figure 2.

2.24  Snowballing. We used the 38 papers in two snowballing [134]
procedures: backward snowballing (by looking at the lists of refer-
ences of the selected papers) and forward snowballing (the citations
are considered). Backward snowballing identified 9 more relevant
papers. By scrutinizing the 583 citations (Google Scholar) identified
with the forward snowballing, we selected 10 more papers relevant
for our scope. Our final set consists of 57 peer-reviewed scientific
papers published between 2005 and 2020; see Figure 2.

3 RESULTS

We present results from a meta-analysis of the 57 papers identified
on the topic of wearable interactions and users with motor impair-
ments. Figure 3 shows the distribution of these papers according
to their publication year, starting with Moon et al’s [52] work
on wearable electromyography (EMG) control of electric-powered
wheelchairs. A growing interest can be identified (R?=.439) for
wearable interactions but, overall, the number of papers is small.

3.1 Research Contributions

To catalogue the contributions made by the papers identified in
our SLR, we employed the seven categories of Wobbrock and
Kientz [132]: (1) empirical research, (2) artifact, (3) methodological,
(4) theoretical, (5) data set, (6) survey, and (7) opinion. We found that

Eye gaze input does represent physical movement, but it falls outside our scope,
where we focus on motor abilities of larger muscle groups, such as finger touches on
smartwatches, hand gestures for fitness trackers, or head movements for smartglasses
and HMDs. Such types of movements are expected by the current designs of interac-
tions available for smartwatches, smartglasses, smart rings, etc. and, thus, they are
likely to lead to accessibility challenges for users with motor impairments.

16 Headset for Accessible
" Fitness trackers for :
14 control (Rechy-Ramirez smartwatch input

wheelchair athletes
etal,, 2012) (Carrington et al,, (Malu et al., 2018)

Wearable for || Wearable for 2 2015)
10 wheelchair assistive robot chairables Wearable control A "
control (Moon || control (Choi (Carrington et of HMDs (Malu & VRCT:/::tt :t
et al., 2005) etal., 2008) al, 2014) 5F|nd|ater, 2015) al, 2020)

2005 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 3: Number of papers from our SLR, shown per year.
Several milestones are highlighted.

the most frequent contribution was empirical research, which we
identified in 51 of the 57 papers (89.5%), followed by artifact (71.9%)
with application categories including rehabilitation [12, 19, 23, 115],
assistive robot control [8, 18, 46, 59], games [29, 127], text en-
try [34, 89, 92], and wheelchair navigation [2, 39]. The other types
of contributions were less or little represented. For example, we
found just two articles (3.5%) contributing opinions: Mott et al. [81],
who discussed opportunities and challenges of accessible VR, and
Gheran et al’s [37] position paper about smart rings as assistive
devices. Two articles (3.5%) made theoretical contributions: Carring-
ton et al. [16] presented conceptual designs of devices integrating
wheelchairs and Baldi et al. [8] described a method for tilt estimation
using quaternions for their interface designed to control a robotic
arm. We also identified three surveys (5.3%): Malu et al’s [71] sum-
marizing their prior work on accessible wearable interactions for
people with motor impairments, Dobosz et al.’s [25] overview of
head-based text entry methods, and Ghovanloo and Huo’s [39]
book chapter presenting an overview of wearable non-invasive
assistive technology. To the best of our knowledge, no work has
released datasets about wearable interactions and users with motor
impairments.

3.2 Types of Wearables and Input Modalities

We examined the categories of wearables addressed by the papers
identified in our SLR and extracted information about the body
parts for which they were designed (see Table 1):
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Table 1: Body parts for which wearables have been examined in the scientific literature for users with motor impairments, e.g.,

we found four devices designed for the ear [18, 100, 126, 127].

‘Worn on Freq.T % References
head 55 a73 L[2B[6L[8L.112],[14],[19][23].[25].[26].,[30],[391.[44].[46].[49].[59).[71,[74].[75].[79].
PR . 7 [81],[82],[911,[931,[941,[95],[961,[99],[100],[113],[115],[127],[128],[129],[129],[138]
sy ey wrist 10 135 [15],[281,[57],[71),[72].[73).[75),[761.[77].[113]
e T la% arm 10 135 [20],[29],[52],[64],[67].[75].(84],[90],[123],[128]
- hand 7 9.5  [33],[34],[64],[75],[86],[91],[113]
13.5% ear 4 54 [18],[100],[127],[126]
— finger 2 2.6 [37],[75]
135% M : foot 2 2.6 [89],[92]
¥ ... > thigh 1 14 [75]
9:5% 1.4% chest 1 14 [75]
neck 1 1.4 [75]
shoulder 1 1.4 [52]
26% Total' 74 100%

TFrequencies are reported cumulatively by considering all the devices reported in a paper, e.g., Wang et al. [129] described both a HMD for VR and a headset.

Armbands
12.2%

HMDs for VR
20.2%

Smartwatches
5.4% Bracelets
On-body 6.8%
Smart glasses tou::s:)t?:r,‘:;er Connected
6.8% glasses
. 2.7%
Rings Earsets
1.4% 5.4%
Smart clothing
Foot-mounted
devices
Passive glasses  Headsets Data gloves 2.7%
2.7% 12.2% 9.4%

Voice input Hand
Feet 13.0% gestures
ee
41.6%
gestures ¥
2.6%

Head
gestures

23.4%
Face Shoulder
gestures gestures
5.1% Eye gaze 1.3%

13.0%

Figure 4: Categories of wearables (left) and input modalities (right) identified in our SLR. Note: percentages reported in the
left figure are computed with respect to the total number of devices identified in the papers from our SLR (see Table 1).

(1) HMD:s for VR represent the category with the largest fre-
quency of occurrence (20.2%). For example, Hansen et al. [44] em-
ployed a FOVE HMD to enable remote control of a robot with head
and eye gaze input with video from the robot displayed in the HMD.
Ferracani et al. [30] used an Oculus Rift HMD to deliver immersive
experiences to people with motor impairments for museum visits
in VR. Bortone et al. [12] evaluated a wearable prototype for haptic
feedback in VR games for neuromotor rehabilitation and children.
Mott et al. [82] conducted interviews with people with limited
mobility to document their experiences with VR, and identified
barriers related to the accessibility of VR devices.

(2) Headsets were represented by 12.2% of the devices described
in the papers from our SLR. Headsets can embed various sensors,
such as IMUs [46, 94], electrodes for EEG [95], or magnetometers
to track tongue movement [99], among others.

(3) Glasses devices accounted for 12.2% of the wearables that we
examined, for which we identified three subcategories: passive, con-
nected, and smartglasses. Passive glasses do not embed sensing, but

are tracked by an external system, such as the glasses with infrared
LEDs used by Honye and Thinyane [49] and Azmi et al. [6] tracked
with the Wii Remote controller. Connected glasses embed sensors
and can process or stream data to another device. Examples include
the glasses used by Schifer and Gebhard [100] with electrodes in
the nose bridge and pads to measure the electrooculogram for con-
trolling a robot, and the glasses frame of Rodrigues et al. [96] with
a built-in gyroscope and accelerometer to enable remote control
of a computer via head movements. Unlike passive and connected
glasses, smartglasses integrate a display, such as the Google Glass
used in Malu and Findlater’s [74] and McNaney et al.’s [79] studies
documenting accessibility challenges and the ORA-2 device used
by Ajmi et al. [2] for AR navigation and wheelchair users.

(4) Armbands were found in nine systems (12.2%) and were repre-
sented in the majority of the cases by Myo.1? Applications ranged

Ohttps://developerblog.myo.com
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from interactions in smart homes [123], robot navigation and con-
trol [67, 84], games for children with motor impairments [29], and
controllers for VR games [127]. Moon et al. [52] developed a system
for recognizing shoulder elevation gestures using EMG measure-
ments to control the electric-powered wheelchair, for which the
processing unit was attached to the user’s forearm as an armband.

(5) Data gloves (9.4%) were used to implement text-based com-
munication [33, 34], remote monitoring of physical rehabilitation
of stroke patients [91], and multi-sensor gesture recognition [86].

(6) Earsets (5.4%) included EEG dry electrode sensors placed on
top of the ears to detect eye movements and facial expressions [127,
128], the ear-mounted laser pointer of Choi et al. [18] for the remote
control of an assistive robot, and electrodes positioned on and
around the ear for EMG on the posterior auricular muscle [100].

(7) Interactions with smartwatches were addressed by four papers
representing just 5.4% of the wearables examined in our SLR. Malu
et al. [72] assessed the accessibility of smartwatch gestures, such as
taps, swipes, and drawing letters for text input, and conducted an
end-user elicitation study [133] in which participants with motor
impairments were asked to create their own gestures. In a follow-up
study, Malu et al. [73] compared smartwatch touch and bezel input
and found that touchscreen gestures were faster, but bezel input was
more accurate. Kim et al. [57] described a smartwatch application
designed to assist in accessing the functions offered by a smart
campus, such as monitoring the temperature and illumination from
a room, calling elevators, and unlocking doors.

(8) Fitness trackers and bracelets (6.8%) were used to understand
accessible health and fitness tracking practices for people with
mobility impairments [76] and to provide implications for sharing
activity data [77]. Carrington et al. [15] examined the inaccessibility
of fitness trackers for wheelchair athletes.

(9) Other types of wearables were found in just one or two
papers, such as Gheran et al’s [37] position paper about rings,
Baldi et al’s [8] and Kyrarini et al’s [59] systems with motion
sensors attached to a hat, and Rajanna’s [92] and Pedrosa and
Pimentel’s [89] foot-mounted wearables. Malu and Findlater [75]
documented the preferences of users with motor impairments for
placing touch pads at various locations on their body—on the arm,
wrist, hand, finger, thigh, chest, and neck—which we counted as
seven types of location-dependent wearables (7/74=9.4%) enabling
personalized on-body input; see Figure 4, left.

We also analyzed the input modalities described in the papers
identified in our SLR to implement wearable interactions. These
included hand gestures (41.6%), movements of the head (23.4%), eye
gaze input (13.0%), and voice input (13.0%). Other modalities, such
as feet input, face gestures, and movement of the shoulders, were
less represented; see Figure 4, right for an overview.

3.3 User Studies

A number of nine articles (9/57=15.8%) did not report user studies,
while a number of eighteen articles (31.6%) reported studies con-
ducted solely with people without motor impairments. The rest of
the works (54.4%) involved participants with motor impairments,
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for which the number varied from one [28, 46, 89, 100] and two par-
ticipants [8, 57, 92, 93] to a maximum of twenty [127] and twenty-

nell [72], respectively, with a mean of 8.2 (SD=6.2) and a median
of 6.0 participants with motor impairments per study. Of these, a
number of fourteen studies (24.6%) involved both participants with
and without motor impairments. In some of these studies, partic-
ipants without impairments acted as the control group [92, 115],
while in others they were represented by therapists [15, 77] and
clinicians [16]. For example, Carrington et al. [15] included ther-
apists in their study about the inaccessibility of fitness trackers
for wheelchair athletes “to gain a perspective on the role and im-
pact of wearable technology from professionals who work with many
wheelchair users” (p. 196), and Malu et al. [77] conducted “interviews
with therapists [that] focused on understanding the opportunities and
value of automatically tracked health and fitness data to therapy,
while the interviews with people with mobility impairments focused
on participants’ interest in sharing such data both with therapists and
with peers who have similar impairments” (p. 138).

Regarding the medical conditions of the participants with motor
impairments involved in user studies, we found participants with
cerebral palsy in 30.0% (9/30) of the studies [12, 72-76, 82, 93, 94],
followed by people with spinal cord injury (6/30=20%) [14, 39, 74—
77], muscular dystrophy [72, 73, 75, 76, 82], multiple sclerosis [18,
59, 72, 76], and spinal muscular atrophy [73, 82], respectively. Note
that not all of the papers with user studies presented this kind of
information.

The ratio between the participants with and without impair-
ments varied between 0.07 (1:15) and 14.0 (14:1) with a mean of
1.66 (SD=3.62) showing that, on average, when both participants
with and without motor impairments where involved in a study, the
number of the former was larger. However, studies involving users
with motor impairments and wearables are overall small-scale, a
finding that we connect to Mack et al.’s [69] results from their sur-
vey of accessibility research published at CHI and ASSETS. In that
study, Mack et al. reported a median sample size of 13 for disabled
and older adult participant groups and of 10 (mean 15.3) for people
with motor/physical impairments. By comparison, the studies on
wearable interactions identified in our SLR have employed less
participants. An explanation may be given by the nature of these
studies: 30% were qualitative, 63.3% quantitative, and 6.7% reported
both qualitative and quantitative results.

3.4 An Inventory of Wearable Interactions

We extracted a total number of 152 gesture commands from the
57 articles identified in our SLR, representing 92 distinct ges-
tures. These include tap and touch input [28, 57], multitouch in-
put [72], pressing physical buttons on the device [49, 127], stroke
gestures [74, 75], free-hand and mid-air gestures [28, 67, 84], head
movement [46, 59, 127, 129], shoulder [52], face [129], and feet
gestures [89, 92].

In the following, we structure this information according to the
body parts involved in the interaction and consider: (i) interactions
performed with the hand (Figure 5) and (ii) interactions performed
with other body parts, such as the head or feet (Figure 6). In the
first category, we found 67 distinct gestures representing poses and

Two studies are reported in [72] with 10 and 11 participants, respectively.
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Figure 5: Interactions with wearables performed with the finger, hand, and wrist.

body [75]. In the second category, we found 25 distinct gestures
representing nineteen movements of the head (e.g., move up and
down [46, 59, 95]) and eye gaze input [127, 129], three gestures
produced with the feet (i.e., rotations of the heel [89], press button
with the foot [92]), and three movements of the shoulders [52].
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Figures 5 and 6 illustrate these results. For each gesture, we indicate
the reference where that gesture was addressed, e.g., the “grasp”
gesture was employed in [90] and [12], but also the device for which
it was intended, such as an horizontal movement detected by a
glove [23], a one-finger tap on the touchscreen of a smartwatch [72],
extension of the wrist sensed by an armband [20], or a tap on
the touch pad placed on the body to interact with a smartglasses
display [75].

Besides gesture input, our analysis revealed voice commands and
eye gaze input as two other modalities to implement interactions
with wearables with equal representativeness (13.0% of the papers);
see Figure 4, right. However, unlike gesture commands that were
explicitly documented by most of the papers implementing them,
interactions using eye gaze and voice have been less detailed.

Eye gaze tracking was employed in the form of directional com-
mands [128] to perform selections on a remote screen [92] and
for mapping eye gaze movements to control another device, such
as a robot [44]. For instance, Wang et al. [128] described a sys-
tem to “control any camera-mounted robot (e.g., endoscopic camera,
drone) in the first-person’s view to directly control the robot using
eye movements. For instance, users can use: left, right, up and down,
such eye movements to steer the robot (drone) in 2D direction” (p.
370). Hansen et al. [44] described the eye gaze input modality as
follows: “He [the user] now uses his gaze to mark a waypoint for
that room on a digital map, which launches the telerobot to drive
to this room autonomously” (p. 2). Figure 6 includes the eye gaze
directional gestures extracted from these studies, even though eye
movements were not part of our scope; see Section 2. We refer the
interested reader to Majaranta and Raihi [70], Duchowski [27], and
Pasqualotto et al. [88] for surveys on eye gaze input.

Regarding voice input, commands were not explicitly specified
either, e.g., “AR glasses allow users to have their hands free and to
be able to interact with the system via voice command” [2] (p. 4042).
In some cases, more details were provided regarding specific com-
mands or words that were implemented in the user interface. For
example, in their preliminary exploration of Google Glass for per-
sons with upper-body motor impairments, Malu and Findlater [74]
reported insights about accessibility challenges of voice commands,
e.g., for one participant the device only successfully recognized
the word “Google.” In a follow-up study [75], the authors provided
more insights into users’ preferences for voice commands, including
the preference of one participant to use head movements instead
of voice input for interactions in public places. Other papers pre-
sented in detail the voice commands employed in their systems,
but those commands were very simple. For example, Honye and
Thinyane [49] employed five voice commands to control mouse
events (left click, right click, double click, mouse press, and mouse
release), which were uttered by the users to “control a two button
mouse using spoken language as if they were transcribing to someone
how to perform the same actions with the physical mouse” (p. 192).
In other cases, voice commands were even simpler, e.g., “If the sub-
Jject says voice command ’click,’ for instance, then a mouse click is
made” [6] (p. 66). The most complex system and detailed description
of a voice input recognition system is Ferracani et al’s [30] that
described a rule-based dynamic grammar employed to enable users
to ask questions and express commands during virtual museum
visits, e.g., “When concepts are inferred, the grammar is updated and
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rules added so that the user may ask additional questions such as
"Which types of abstract art are present in the museum?’ or ’Is Jackson
Pollock an abstract painter?” [30] (p. 1234). Based on these findings,
we were not able to complement our set of wearable interactions
with voice commands, but we refer readers to McNaney et al. [79]
and Malu and Findlater [74, 75] for details regarding accessibility
challenges for voice input on smartglasses.

4 RESEARCH IMPLICATIONS FOR
ACCESSIBLE WEARABLE INTERACTIONS

Our results show that research on accessible wearable interactions
for users with motor impairments has been scarce, focused on
just few categories of wearable devices, addressing mostly hand
gesture input, while about half of the papers that we examined in
our SLR either did not conduct user studies or did not involve users
with motor impairments among their study participants. Based
on these findings, we formulate several directions to foster more
work on designing and evaluating interactions for users with motor
impairments in relation to our two research questions RQ; and RQ;
(Section 2) towards a diversity of wearables and input modalities
adapted to users’ motor abilities. We structure these directions
with our WISE framework regarding (1) Wearable devices and
prototypes (relation to RQ1), (2) Input modalities and interaction
techniques (RQ3), (3) Studies and evaluations involving users with
motor impairments (RQ3), and (4) Extensions to other devices (RQ1).
For each category we identify several opportunities for future work.

4.1 Exploration of a Diversity of Wearables

Our examination of the literature on wearable
interactions for users with motor impairments
has indicated a large focus on devices designed
to be worn on the head, such as HMDs for
VR [81, 82], smartglasses for AR [74, 75, 79],
and various prototypes of glasses with embed-
ded sensors [6, 49, 96, 100], which we found
to represent 44.6% of the devices examined in our SLR. Other cate-
gories of wearables, such as finger and foot augmentation devices,
were found in just 4.1% of the cases; see Table 1. It is easy to observe
a lack of proportion in the attention addressed to various types of
wearables. Unfortunately, this state of things has prevented accu-
mulation of practical knowledge for a large spectrum of wearable
devices, such as knowledge regarding how people with motor im-
pairments use smartwatches, rings, and armbands. For example,
we found just four papers addressing smartwatch input for users
with motor impairments [57, 71-73] despite the large adoption of
these devices by the general public [53] and the large body of liter-
ature on input techniques for smartwatches [17, 65, 68]. Also, there
has been an increasing interest in the HCI community for smart
rings [38, 104, 107, 139], but we found just one position paper [37]
pointing to the opportunities that smart rings may open for people
with motor impairments. Thus, one important research direction in
relation to our research question RQ; (Section 2) is to understand
usage patterns, user behavior, and accessibility challenges for a
variety of wearable devices. Complementary to this goal, prototyp-
ing new wearables is recommended to address practical needs. For
example, the athletes in wheelchairs from Carrington et al.’s [15]
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Figure 6: Interactions with wearables performed with eye gaze, movements of the head, feet, and shoulders.

study about the inaccessibility of fitness trackers expressed interest
in tracking their physical activity, but the generic system functions
of fitness trackers, such as step counting, need to be reconsidered,
e.g., “What happens to a step counter when the user does not take
steps?” [15] (p. 193). Moreover, multi-functional wearables that
combine medical sensing for rehabilitation purposes (a category of
wearables that fell out of scope for this work) and general-purpose
wearables, such as smartwatches and glasses, may be interesting to
explore in conjunction.

4.2 Input Modalities and Techniques for
Accessible Wearable Interactions

Our analysis has unveiled a large number of
interactions with wearables designed to be per-
formed using hand gestures (Figure 4, right),
of which 28 gestures were designed to be per-
formed on a surface (e.g., a double tap on the
touchscreen of the smartwatch [72]) and 31
in mid-air (e.g., the “victory” emblematic ges-
ture [34] or waving the hand [67]); see Figure 5. Unfortunately,
not all of these gestures have been evaluated with users with mo-
tor impairments and, consequently, their suitability to implement
accessible wearable interactions is unknown. Instead, end-user elic-
itation studies [133], such as Malu et al.’s [72] study on smartwatch

gestures, can give insights regarding interactions that are in accord
with users’ preferences and motor abilities. Thus, one direction
for future work regarding our research question RQ; (Section 2) is
designing interaction techniques that capitalize on such knowledge
to maximize motor abilities for accessible, effective, and efficient
wearable interactions. Another direction is represented by multi-
modal interactions, where different modalities can be employed
depending on the context, e.g., voice input where the social context
allows it and gesture input otherwise [79]. Validating the inven-
tory of wearable interactions in further studies with participants
with motor impairments will result in a useful resource for practi-
tioners interested in designing new prototypes of wearables, new
applications, and new interfaces for users with motor impairments.

4.3 More User Studies and Evaluations

The previous two research directions touched
on the importance of user studies to inform
design of wearables and to validate accessible
interactions for such devices. In the following,
we stress the need for such studies since 45.6%
of the papers that we surveyed in our SLR ei-
ther did not conduct user studies or did not
involve participants with motor impairments. For instance, Honye
and Thinyane [49] introduced WiiMS, a system combining head
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tracking and speech recognition to enable users with motor impair-
ments to control a laptop computer and performed an evaluation
with ten participants. However, they noted: “Although the system
was designed to help people with motor-impairments, able-bodied
people were used as participants in this study. This was so because of
the unavailability of motor-impaired users.” (p. 193). Another exam-
ple is Rodrigues et al. [96] that evaluated a low-cost head-tracking
pointing device with ten participants without motor impairments,
and concluded that “The metrics [...] prove the efficiency of the low-
cost IOM device evaluated. Obviously when the tests are done with
the target audience, the motor disabled users, we must compare it
to another tool that they have already had access to for the mouse
movement.” (p. 161). Spicer et al. [113] evaluated their VR system
designed for severe stroke upper limb motor recovery with twelve
participants without motor impairments and noted that “future
research will examine the feasibility and preliminary effectiveness
of using REINVENT with older adults after stroke” (p. 386). Other
studies mentioned having informed their wearable prototypes with
insights gained from involving people with motor impairments, but
performed the evaluation with participants without impairments;
see, for instance, Pedrosa and Pimentel’s [89] foot-based text entry
system: “Our design is informed by a man with a motor neuron dis-
ease and the Man-in-the-Barrel Syndrome. Unfortunately, he could
not be introduced to the current version of the prototype [...]” (p. 963).
Other studies were not explicit about whether their participants
had any motor impairments.

Not employing representative users in accessibility research is a
well-known problem [103], and participant recruitment from the
target user group can prove challenging [21, 61]. Nevertheless, the
need to study representative users is an imperative for inclusive
design technology to reach the desired impact [103]. Thus, one im-
mediate implication of our findings in relation to research question
RQ> (Section 2) is that more user studies are needed for accessi-
ble wearable interactions. Examples of relevant and informative
user studies in this case are represented by interviews to under-
stand accessibility problems [15, 76, 82, 120], questionnaires [29],
end-user elicitation [133] to understand preferences for input with
interactive technology [72], participatory design approaches [76],
and evaluation of user performance [12, 39, 73, 115] for specific
wearables. Also, open data will be helpful to the community to
advance knowledge and conduct replications. (Especially since the
number of replication studies in HCI is overall low, of about 3%
according to an estimation from Hornbeek et al. [50].) We did not
find any work to release data about wearable interactions, while
such data are, unfortunately, rarely published [69].

4.4 Extending Wearable Interactions to Other
Computing Devices and Environments

Conjoint utilization of multiple wearables may
be beneficial for maximizing the use of motor
abilities for effective wearable interactions. In
their work about wearable IoT devices, Hire-
math et al. [48] mentioned the utilization of
multiple wearables toward “the ability to de-
velop innovative services utilizing the storage,
processing, connectivity and sensing capabilities available through
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multiple wearables,” where such devices formed a personal wearable
network. We also position in this category research that combines
wearables with other devices for cross-device input [13]. Examples
include conjoint operation of the smartwatch and smartphone [58],
smartwatch and smart ring [136], and smartglasses and the smart-
phone [24], respectively. Although such interaction techniques
have been examined in the HCI community, they have not been
considered for users with motor impairments, to the best of our
knowledge. An exception is Malu et al. [75] that explored input
on touch pads placed on a surface or on the body for controlling
the display of smartglasses. Their results showed that, by taking
advantage of personalized locations for touch pad input, e.g., on
the arm, finger, neck, thigh, all the twelve participants with motor
impairments from their study were successful in controlling the
smartglasses display. Other examples of cross-device input could
involve wearables and gesture input performed on smartphones
and tablets [122, 124], wearables and large interactive displays [83],
or wearables and remote controls [120]. Besides cross-device inter-
actions, interesting work is combining wearable input with interac-
tions in smart environments characterized by a heterogeneity of
devices, platforms, and services [101]. For instance, the smartwatch
could be used to turn on the TV set, while voice commands could
also be picked up by the smart environment as an alternative input
modality, giving users more choices for how to interact with vari-
ous devices, applications, and services from the smart environment
they would like to access [121]. Moreover, such interactions could
leverage information about user proximity [9] or take place at the
periphery of user attention [102].

5 LIMITATIONS

There are several limitations to our work. First, we conducted our
SLR in the form of a meta-analysis of the scientific literature avail-
able on wearable interactions for users with motor impairments.
Since ours represents the first survey on this topic, we considered
useful to characterize numerically the landscape of the research
contributions, devices, and interactions in order to provide a first
overview on the state of the art in this area. A qualitative survey,
however, such as a narrative review [10] to link studies conducted
on different topics and support the interconnection of their find-
ings, will reveal further insights from a complementary perspective.
Second, we conducted our search in just three scientific databases,
but searching in others, such as Scopus and SpringerLink, will likely
reveal other papers on the topic of accessible wearable interactions.
We recommend such opportunities as future work.

6 CONCLUSION

We presented findings from a systematic literature review on acces-
sible wearable interactions for users with motor impairments. We
examined the number and types of research contributions and the
categories of wearables addressed by prior work, and compiled an
inventory of 92 gesture-based commands for wearable interactions.
Our findings revealed that more work is needed to understand ac-
cessibility challenges, usage patterns, interaction preferences, and
user performance for a variety of wearable devices, for which we
proposed four research directions with the WISE framework. We
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hope that our contributions will foster new studies and develop-
ments in these directions towards wearable user interfaces and
interactions adapted to various motor abilities.
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