
Understanding Gesture Input Articulation with Upper-Body
Wearables for Users with Upper-Body Motor Impairments

Radu-Daniel Vatavu
MintViz Lab, MANSiD Research Center
Ştefan cel Mare University of Suceava

Suceava, Romania
radu.vatavu@usm.ro

Ovidiu-Ciprian Ungurean
MintViz Lab, MANSiD Research Center
Ştefan cel Mare University of Suceava

Suceava, Romania
ungurean.ovidiu@gmail.com

spinal cord injury traumatic brain injury spina bifida multiple sclerosis osteogenesis imperfecta Parkinson's Friedreich's ataxia spastic quadriplegia phocomelia 

Figure 1: Users with upper-body motor impairments articulating touchscreen stroke-gestures and mid-air motion-gestures on
and with a wearable. The device is worn on the wrist (as a watch), on the index finger (as a ring), and on the head (attached to
the temple of a pair of glasses). Different colors in this figure indicate different motor impairment conditions and causes.

ABSTRACT
We examine touchscreen stroke-gestures andmid-airmotion-gestures
articulated by users with upper-body motor impairments with de-
vices worn on the wrist, finger, and head. We analyze users’ gesture
input performance in terms of production time, articulation con-
sistency, and kinematic measures, and contrast the performance of
users with upper-body motor impairments with that of a control
group of users without impairments. Our results, from two datasets
of 7,290 stroke-gestures and 3,809motion-gestures collected from 28
participants, reveal that users with upper-body motor impairments
take twice as much time to produce stroke-gestures on wearable
touchscreens compared to users without impairments, but articu-
late motion-gestures equally fast and with similar acceleration. We
interpret our findings in the context of ability-based design and pro-
pose ten implications for accessible gesture input with upper-body
wearables for users with upper-body motor impairments.

CCS CONCEPTS
• Human-centered computing→ Accessibility technologies.
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1 INTRODUCTION
Wearables are surpassing smartphones as today’s fastest-growing
technological innovation for mobile users [13,69]. Some wearables,
such as fitness trackers and smartwatches, have already become
mainstream with one-in-five Americans using them on a regu-
lar basis [98]. Others, such as NFC rings for POS payments and
smartglasses for AR/VR, represent growing markets [33,84]. In
this context, designing wearable interactions, such as interactions
based on touch [63,65] and motion [36,59,108] gestures, that are
effective [46], intuitive [30], socially acceptable [72], and comfort-
able [51] is paramount for the successful adoption of wearables.

However, gesture-based interactions with off-the-shelf wear-
ables are based on certain assumptions about users’ motor abilities,
reflected in the form factors and intended uses of these devices.
For instance, a swipe on a smartwatch [63] assumes the ability
to move the hand towards the watch, land a finger on the watch,
move the finger steadily to produce a straight, uninterrupted path
on the touchscreen, and lift off the finger to finalize input. A ring

https://doi.org/10.1145/3491102.3501964
https://doi.org/10.1145/3491102.3501964


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean

gesture [30] assumes the motor ability to move the wearing finger,
rotate the wrist, make a hand pose, and possibly raise the forearm
as well. A head gesture [108] assumes the ability to use the cervical
muscles to rotate and tilt the head. Upper-body motor impairments
cause challenges in producing gesture input with wearables imple-
menting such assumptions; see Figure 1 for various finger, hand,
and body poses adopted by users with motor impairments while
performing gestures on devices worn on the finger, wrist, and head.
Thus, designing gesture interactions that match diverse motor abil-
ities is key to making wearables more accessible.

Unfortunately, few works have examined gesture input for de-
vices worn on the upper body and users with upper-body motor
impairments to understand the impact of such assumptions on
users’ input performance. Most of this prior work has focused on
documenting accessibility challenges for off-the-shelf fitness track-
ers, smartwatches, and smartglasses [16,66,68,70], while only a few
studies have quantified numerically users’ gesture input perfor-
mance by reporting preference ratings [63,65], task completion
times and error rates [64], and Fitts’ law evaluations [65] for these
devices. Although this prior work has contributed useful findings
about how people with upper-bodymotor impairments use gestures
with off-the-shelf wearables and recent work has started explor-
ing new promising wearables designed for the upper body that
feature new types of gesture input, such as teeth [85], facial [34],
and eye gaze [111] gestures, there is still little research available on
this topic,1 which limits our understanding of gesture input perfor-
mance with wearables under various motor abilities. Moreover, the
gesture types that have been examined in the scientific literature
for wearable interactions are simple, mostly taps and directional
swipes, while for some commercially available wearables, such as
smart rings, gesture input performance has not been examined at
all for users with upper-body motor impairments; see Şiean and
Vatavu’s [21] literature review on accessible wearable interactions.

In this paper, we contribute new empirical results about gestures
articulated by users with upper-body motor impairments by con-
sidering (i) multiple locations for placing a wearable on the upper
part of the body, (ii) a large palette of gesture types, and (iii) a
variety of corresponding assumptions to perform those gestures.
Specifically, we focus on stroke-gestures (i.e., gesture paths articu-
lated on touchscreens [80,91,104], such as drawing letter “S” on a
smartwatch) and motion-gestures (i.e., movements of a body part
in mid-air [30,59,108], such as a clockwise rotation of the finger
wearing a smart ring). These two input modalities encompass many
gesture types that involve both large and small muscle groups as
well as gross and fine motor skills of the fingers, hands, and arms.
Thus, they address a diversity of assumptions about users’ motor
abilities. In this context, our practical contributions are as follows:

(1) We present results from an experiment with 28 participants,
of which 14 with upper-body motor impairments, that eval-
uated the articulation characteristics of stroke-gestures pro-
duced on a small touchscreen worn as a watch, as a ring, and
on the temple of a pair of glasses. We report, from a large

1A recent scientific literature review on wearable interactions for users with motor
impairments [21] identified only four papers on smartwatch input, five papers on
smartglasses, and one position paper about smart rings.

dataset of 7,290 gestures, that users with upper-body mo-
tor impairments produce stroke-gestures that are two times
slower, 36% less consistent, and with 39% more strokes as the
same gesture types produced by users without impairments.

(2) We present results from a second dataset of 3,809 motion-
gestures articulatedwith thewrist, finger, and head. Unlike for
stroke-gestures, we found no significant differences in pro-
duction times between motion-gestures articulated by users
with and without upper-body motor impairments. Moreover,
we found similar acceleration and jerk characteristics of the
motion-gestures produced by the two user groups.

(3) Based on our empirical results, we use the principles of
ability-based design [101] to discuss ten implications for
accessible gesture input for users with upper-body motor
impairments and wearables for the finger, wrist, and head.

2 RELATEDWORK
We examine in this work stroke-gestures and motion-gestures ar-
ticulated by users with upper-body motor impairments with rings,
watches, and glasses. Thus, we relate primarily to prior work on
gesture input for such devices in Subsections 2.1 and 2.2, and discuss
accessible wearable interactions in Subsection 2.3.

2.1 Stroke-Gesture Input with Wearables
Research on stroke-gesture input for wearables has addressed top-
ics from prototyping new devices [11,32,87] to gesture recogni-
tion techniques [87,106], analyses of users’ preferences for ges-
ture input [24,30], and investigations of application opportuni-
ties [1,31,41,44,109]. For example, TouchRing [87] is a finger-worn
input device that leverages a capacitive sensor to enable touch
and swipe gestures on the surface of a ring. Ringteraction [32]
is an interaction technique for coordinated thumb-index input
on a ring integrating a small display and capacitive sensors. The
Swipeboard [19] and SwipeZone [37] techniques for eyes-free in-
put on ultra-small touchscreens leverage users’ spatial memory
of the QWERTY keyboard for text entry on smartwatches and
smartglasses with 19.58 and 8.73 words-per-minute, respectively.
Regarding users’ preferences for intuitive gestures for wearables,
Gheran et al. [30] conducted a gesture elicitation study [103] for
smart rings and reported that 16.4% of the 672 gestures proposed
by their participants were performed on the ring surface as button
presses, touches, and stroke-gestures. Also, a recent systematic lit-
erature review on ring input [94] analyzed a number of 954 ring
gestures found in academic publications, of which 30.6% were taps
and touch input on the ring and 26.2% were swipes and stroke-
gestures on a supporting surface, including the ring.

Besides dedicated gesture recognition and interaction techniques
developed for the unique sensing capabilities of various wearables,
touchscreens and touchpads integrated in watches and glasses
enable stroke-gesture input that can be recognized with estab-
lished recognizers, such as the “$-family.” For example, $1 [104] is a
unistroke gesture recognizer, $N [5] extends $1 to multistrokes, and
$P [91] enables articulation-independent stroke-gesture recogni-
tion. Moreover, several tools exist for evaluating user performance
with stroke-gesture input in terms of gesture articulation consis-
tency [4] and relative accuracy [92,93].
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2.2 Motion-Gesture Input with Wearables
The scientific literature on motion-gesture input with wearables is
equally rich in terms of gesture recognition algorithms [59,60,106],
interaction techniques [20,35,107], and applications [35,36,41]. For
example, WRIST [110] is a gesture sensing and interaction tech-
nique that employs IMU readings from a smartwatch and a smart
ring to exploit the relative orientation difference of the two devices.
Wen et al. [99] presented “Serendipity,” a technique for recogniz-
ing fine-motor finger gestures with off-the-shelf smartwatches,
Xu et al. [107] demonstrated finger-writing on surfaces with hand
movements detected by the smartwatch, and Liu et al. [59] elicited
movements of the fingers and wrist to understand the potential of
wrist-worn recognition with an IMU-only recognizer vs. a low-cost
wrist-flex sensor. WristWhirl [36] enables wrist gestures in the
form of directional marks and free-form shapes for one-handed
continuous input on smartwatches; in WrisText [35], users enter
text on smartwatches by whirling the wrist to point to letters ar-
ranged on a circular keyboard; Cioată and Vatavu [20] explored
interactive opportunities for two watches worn on both hands; and
RotoSwype [38] was designed for word-gesture typing by leverag-
ing the orientation of a smart ring.

Several tools exist to assist the design of motion-gestures. For in-
stance, MAGIC (Multiple Action Gesture Interface Creation) [7] en-
ables gesture creation, recognition testing, and identification of false
positives; GDATK (Gesture Dimensionality Analysis Toolkit) [90]
evaluates dissimilarity measures for motion-gestures and reports
recognition rates and execution times for gesture sets with vari-
ous sampling rates and bit depths; and GestMAN (GESTure MAN-
agement) [62] is a cloud-based tool designed to assist with the
acquisition and management of gesture sets.

2.3 Accessible Wearable Interactions for Users
with Motor Impairments

Despite the rich literature on gesture input for wearables, research
on accessible gesture-based interactions for users with motor im-
pairments has been scarce. A recent systematic literature review on
this topic [21] identified just a handful of papers addressing smart-
watches, smartglasses, and head-mounted displays (HMDs), while
most of the prior work has largely focused on applications, such as
navigation assisted by AR glasses for wheelchair users [2], provid-
ing assistance during everyday activities [68], control of assistive
robots with head gestures and eye gaze input [39], and enabling
immersive VR experiences with HMDs [26].

A few studies have documented accessibility challenges for wear-
ables [63,65,70] and proposed design recommendations and more
accessible input techniques. For example, after examining the ac-
cessibility of Google Glass, Malu et al. [65] proposed an alterna-
tive input technique involving touchpads affixed to the body or
wheelchair. Mott et al. [70] conducted semi-structured interviews
with people with limited mobility to understand their experience
with VR, and reported barriers regarding the physical accessibility
of VR devices, such as putting on and taking off HMDs, adjust-
ing the HMD head strap, or maintaining view of the controllers.
They also documented preferences for alternative input methods
for HMDs, such as voice and gaze input instead of less accessible

motion controllers. Malu et al. [63] evaluated the accessibility of ex-
isting smartwatch gestures (taps, swipes, and scribbling letters for
text input) with ten users with upper-body motor impairments, and
reported several challenges regarding button, swipe, and tap-based
interactions, e.g., some of their participants found edge swipes to be
the most difficult types of directional stroke-gestures. The authors
also elicited gesture alternatives involving the touchscreen, bezel,
and wristband for sixteen common smartwatch actions. Of the total
number of 528 gestures created by users with upper-body motor
impairments, 69% involved interactions with the index, middle, or
little fingers, and there was a majority preference for unistrokes.
In a follow-up study, Malu et al. [64] compared touchscreen and
bezel watch gestures, and reported a speed-accuracy tradeoff: the
touchscreen was faster, but the bezel more accurate. The study also
revealed that participants largely favored the touchscreen, which
felt more comfortable and easy to use despite the higher error rate.

Designing accessible computing for wheelchair users has been
equally addressed in terms of studies to understand accessibility
challenges [16,66], but also to inform the design of new input de-
vices [17,18,65]. For instance, Carrington et al. [18] introduced
“chairables,” i.e., devices designed to work within the workspace of
the wheelchair that are either worn on the body or mounted on the
wheelchair frame that, among several input modalities, also enable
gesture input. An example is GestRest [17], a chairable input device
for the armrest featuring a pressure-sensitive surface that enables
touch, flick, and pressure-based gestures.

Gesture input for other wearables has been examined to a less
extent for people with motor impairments: Gheran et al. [29] dis-
cussed in a position paper potential applications of smart rings as
assistive devices; Pedrosa et al. [74] and Rajanna [77] examined
foot-operated wearables for text entry; and Fu and Ho [28] and
Postolache et al. [75] developed applications for data gloves. A
few works have explored new forms of gesture-based input, imple-
mented with various body parts, for interaction with mobile and
wearable devices. For example, Fan et al. [25] explored gestures
performed with eyelids for navigating mobile applications, and in-
troduced an interaction language of eyes opening and closing, e.g., a
“double blink” gesture is the sequence eyelids closing, opening, and
closing again. Goel et al. [34] described a wireless, non-intrusive
and non-contact X-band Doppler system for detecting facial ges-
tures, such as touching the tongue against the cheek, puffing the
cheeks, and moving the jaws. Sun et al. [85] explored teeth gestures,
such as different ways to tap with the teeth, useful for various con-
tent navigation and control tasks, e.g., a discreet teeth tap can be
used to reject a phone call during a socially inconvenient situation,
while a “holding” tap with delayed release provides continuous
input for adjusting audio volume. We refer readers to Şiean and
Vatavu’s [21] survey of accessible wearable interactions for users
with motor impairments.

In this context, more scientific investigations are needed to un-
derstand how users with upper-body motor impairments articulate
gestures onwearable devices of various kinds in order to consolidate
and advance the current knowledge in the community regarding
the design of accessible wearable interactions. In the next section,
we present our experiment designed to collect and analyze a vari-
ety of stroke-gestures and motion-gestures performed with devices
worn on the upper body.
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Table 1: Demographic details about the participants with upper-body motor impairments, their self-reported impairments
using the categories from [27], WHODAS 2.0 health and disability scores [105], and task completion rates for our experiment.

Participant Health condition† Since Self-reported impairments‡ WHODAS Stroke-gestures CR§ Motion gestures CR§
Mo Sp St Tr Co Fa Gr Ho Se Dir Dis 2.0 score Watch Ring Glasses Watch Ring Glasses

P1 (41 yrs., male) Spinal cord injury (C4-C5) 2003 − ✓ ✓ − − ✓ ✓ ✓ ✓ ✓ ✓ 52.1 100% − 100% 100% − 100%
P2 (44 yrs., male) Traumatic brain injury 1996 ✓ − − − ✓ ✓ − − − − ✓ 45.8 100% 100% 100% − 100% 100%
P3 (57 yrs., male) Spinal cord injury (T7) 2013 − − − − − ✓ − ✓ − − − 41.7 100% 100% 100% 100% 100% 100%
P4 (47 yrs., female) Spina bifida 1974 − − ✓ − − ✓ − ✓ − − − 39.6 100% 100% 100% 95.8% 100% 100%
P5 (48 yrs., male) Multiple sclerosis 1987 ✓ − ✓ − ✓ ✓ − ✓ − − − 52.1 100% 97.9% 100% 97.9% 100% 100%
P6 (48 yrs., male) Osteogenesis imperfecta 1973 − − − − − ✓ − ✓ − − − 33.3 − 100% 100% − 100% 100%
P7 (49 yrs., male) Multiple sclerosis 1999 ✓ − ✓ − ✓ − ✓ ✓ − − ✓ 39.6 100% 100% − 100% 100% 100%
P8 (65 yrs., male) Spinal cord injury (C4-C5) 2011 ✓ ✓ ✓ − ✓ ✓ ✓ ✓ ✓ ✓ ✓ 37.5 100% − − 100% − 100%
P9 (53 yrs., female) Parkinson’s disease 2008 − ✓ ✓ ✓ ✓ ✓ ✓ ✓ − ✓ − 37.5 − 99.0% − 100% 100% 41.7%
P10 (43 yrs., female) Friedreich’s ataxia 2013 ✓ − ✓ − ✓ − ✓ − − − − 14.6 99.0% 100% 100% 100% 100% 100%
P11 (47 yrs., female) Spastic quadriplegia 1974 ✓ ✓ ✓ − − ✓ ✓ ✓ − ✓ ✓ 37.5 100% 99.0% 100% 100% 100% 100%
P12 (46 yrs., female) Spastic quadriplegia 1975 − ✓ ✓ − ✓ − ✓ ✓ − ✓ ✓ 33.3 100% 100% 100% 100% 100% 100%
P13 (57 yrs., female) Parkinson’s disease 2013 ✓ ✓ − ✓ − − − ✓ − ✓ − 12.5 99.0% 100% 100% 100% 100% 100%
P14 (27 yrs., male) Phocomelia 1994 − − − − − − ✓ − − − − 16.7 100% − 100% 100% 100% 100%

Summary 7 6 9 2 7 9 8 11 2 6 6 35.3 85.6% 78.3% 78.6% 85.3% 85.7% 95.8%
†The code in the parentheses denotes the affected vertebra(e), e.g., “(C4)” refers to traumatic injury at the 4th cervical vertebra.
‡Mo = Slow movements; Sp = Spasm; St = Low strength; Tr = Tremor; Co = Poor coordination; Fa = Rapid fatigue; Gr = Difficulty gripping; Ho = Difficulty holding; Se = Lack of
sensation; Dir = Difficulty controlling direction; Dis = Difficulty controlling distance.
§Completion Rate (CR) of the experiment, e.g., if a participant performed only 34 of the 12 (gestures) × 8 (repetitions) = 96 stroke-gesture trials for watch, then CR=34/96=35.4%.

3 EXPERIMENT
We conducted a gesture collection experiment to understand the
performance of people with upper-body motor impairments with
gesture input articulated on and with devices worn on the wrist (as
a watch), finger (as a ring), and head (as glasses).

3.1 Participants
A number of 14 people with upper-body motor impairments (8 male
and 6 female), aged 27 to 65 years (M=48.0, SD=8.8), participated in
our experiment. They were recruited via a non-profit organization
providing technical assistance to people with disabilities. Partici-
pants’ scores on the WHODAS 2.0 test—a generic instrument from
WHO for standardized measurement of health and disability across
cultures [105]—varied between 12.5 and 52.1 (M=35.3, SD=12.6) on
a scale of 100.2 Other demographic details are presented in Table 1.
We used convenience sampling to recruit a control group of 14
people without impairments: 11 male and 3 female with an age
range of 21 to 67 years (M=32.9, SD=12.0) similar to that of the
motor impairments group. In total, 28 people took part in our ex-
periment. Except for one person with motor impairments, all of the
participants were smartphone users. Four participants (14.3%), of
which one with motor impairments, were also using smartwatches.

3.2 Design
Our experiment design wasmixed with three independent variables:

(1) MotorImpairment, nominal variable with two conditions:
with and without upper-body motor impairments, adminis-
tered between subjects.

(2) Wearable, nominal variable with three conditions: watch,
ring, and glasses, representing devices worn on the wrist,
finger , and head, administrated within subjects.

2According to the normative data report of Andrews et al. [3] based on 8,841 respon-
dents, individuals scoring between 20 and 100 on the WHODAS scale are in the top
10% of the population distribution likely to have clinically significant disabilities.

(3) Modality, nominal variable with two conditions: stroke-
gestures performed on the device and motion-gestures of the
body part wearing the device, administered within subjects.

The two Modality conditions require distinct motor abilities to
touch and draw on a small surface and to move a body part in mid-
air, respectively. In combination with the conditions of Wearable,
the motor abilities are further differentiated. Thus, we designed
gesture sets for each combination of Wearable and Modality;
see Subsection 3.4. Although the individual gestures from these
sets, e.g., “circle” or “swipe left,” specify the conditions of a fourth
variable, Gesture, we do not consider the effect of specific gestures
in our analysis, but instead see the gestures as a sample drawn from
all possible gesture types, and we perform data aggregation on this
variable.3 However, we do refer to individual gestures in Section 6
to provide applied information to practitioners regarding gesture
set design for accessible input on wearable devices.

3.3 Apparatus
We used the Samsung Gear Fit 2 smartwatch4 (1GHz Exynos 3250
Dual Core CPU, 512MB RAM, Wi-Fi), for which we developed
a custom Tizen Web application5 to collect stroke-gestures with
the integrated touchscreen (216×432 pixel resolution, 322ppi) and
motion-gestures with the built-in 3-axis accelerometer in the watch
condition. To ensure that gestures were collected with the same
sensing resolution across all of the Wearable conditions, we re-
purposed the Gear Fit 2 device for the glasses and ring conditions as
well. To this end, we detached the watch from its strap and affixed
it with a 3D-printed support to the temple of a pair of glasses and to
a 3D-printed ring, respectively; see Figure 2. The small size of Gear
Fit 2 (17mm × 34mm) and its small weight (30g) made it suitable for
these other two conditions from several alternatives of touchscreen
devices that we considered for our experiment.

3TheGesture variablewould be treated as a random effect inmixed effectsmodels [67].
4https://www.samsung.com/us/mobile/wearables/smart-fitness-bands/samsung-
gear-fit2-large-black-sm-r3600daaxar
5https://docs.tizen.org/application/web/index

https://www.samsung.com/us/mobile/wearables/smart-fitness-bands/samsung-gear-fit2-large-black-sm-r3600daaxar
https://www.samsung.com/us/mobile/wearables/smart-fitness-bands/samsung-gear-fit2-large-black-sm-r3600daaxar
https://docs.tizen.org/application/web/index
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the
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We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).

symbol in the legend.
• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).

in Figure 3, top.
• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 (
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).

) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy (
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).
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Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).

).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).

http://www.eed.usv.ro/~vatavu/projects/GestuRING
https://support.google.com/wearos/answer/6312406?hl=en
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Figure 3: The sets of stroke-gestures (top) and motion-gestures (bottom) used in our experiment, 30 gesture types in total.

(3) Head gestures for the glasses condition were inspired from
Yan et al.’s [108] head gesture space for HMDs, Vander-
donckt et al.’s [89] elicitation study of head gestures, the
Headbang [43] and HeadTurn [73] interaction techniques,
and prior work on head gesture input for controlling the
power wheelchair for people with motor impairments [47].
Figure 3, bottom-right shows these gestures characterized
along the complexity,15 trajectory,16 and movement17 dimen-
sions (
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d f h 

a 

b 

i g e c 

Figure 2: Apparatus used during the experiment. The Samsung Gear Fit 2 device was worn on the wrist, finger, and head using
3D-printed hooks (a-c). Stroke-gestures were produced with the opposite hand in the watch condition (d), the thumb of the
same hand in the ring condition (f), and with the hand on the same side of the body for glasses (h). Motion-gestures were
produced with movements of the arm and wrist (e), finger (g), and head (i), respectively.

3.4 Gesture Sets
We designed a set of stroke-gestures for touchscreen input in
the watch, ring, and glasses conditions, and three sets of motion-
gestures involving movements of the wrist, finger, and head.

3.4.1 Stroke-gesture set. Stroke-gestures are paths produced on
a touchscreen, for which symbolic associations are created with
system functions, e.g., letter “S” for “Save.” We designed a set of
twelve stroke-gestures (Figure 3, top) by considering the following
attributes to ensure a diversity of gesture types in our experiment:

• Number of strokes. A stroke is a continuous movement of
the finger on the touchscreen between two finger-down and
finger-up events. For instance, a swipe is produced in one
stroke, but drawing letter “X” requires two strokes. Multi-
stroke gestures, for which the finger lifts off of the screen
to land at a different location, are more demanding in terms
of motor difficulty than unistrokes. Our set contains eight
unistrokes (66.7%) and four multistrokes (33.3%); see Figure 3,
top and the Sk symbol in the legend.

• Shape complexity.We used Isokoski’s [45] definition of shape
complexity6 to include in our set gestures of various complex-
ities, from 1 (directional swipes) to 6 (the “six-point star”);
see legend SC in Figure 3, top.

• Execution difficulty.We employed Vatavu et al.’s [97] rank-
ing rule to evaluate perceived execution difficulty based on
production time,7which we estimated using GATO [55], a
prediction tool for stroke-gestures. The DR legend in Fig-
ure 3, top shows the ranking of the twelve gestures from the
easiest (1) to the most difficult (12) to execute.

6The minimum number of lines to represent the shape to still be recognizable by a
human observer [45], e.g., the complexity of letter “A” is 3.
7Gesture A is likely to be perceived more difficult to produce than gesture B if the
production time of A is greater than that of B [97].

• We included letters and common shapes and symbols in our
set due to their ubiquity in stroke-gesture UIs, such as in the
“augmented letters” [80] or “gesture search” [58] techniques.

3.4.2 Motion-gesture set. Motion-gestures are movements of a
body part, such as rotating the wrist or tilting the head.We designed
three gesture sets for the finger , wrist, and head corresponding to
the three conditions of Wearable independent variable:

(1) For the ring condition, we drew inspiration from Gheran et
al.’s [30] elicitation study of ring gestures, Liu et al.’s [59] elic-
itation study of finger gestures, and Vatavu and Bilius’ [94]
GestuRING library.8 The motion-gestures are shown in Fig-
ure 3, bottom-left, characterized according to the complexity9

and locale10 ( C L ) dimensions of Gheran et al. [30].
(2) Gestures for the wrist in the watch condition were inspired

from Shimon et al.’s [6] elicitation study of non-touchscreen
watch gestures, Liu et al.’s [59] elicitation of wrist gestures,
the WristWhirl [36] and WrisText [35] techniques for one-
handed input with smartwatches, wrist rotation gestures for
shortcuts [12], and the WearOS watch gestures.11 Figure 3,
bottom-middle illustrates the wrist gestures from our set
characterized along the complexity,12 duration,13 and size14

dimensions of Shimon et al.’s [6] taxonomy ( C , D , and S ).
8Available from http://www.eed.usv.ro/~vatavu/projects/GestuRING.
9Simple or compound: simple gestures have meaning on their own, while compound
gestures can be decomposed into individually meaningful gestures [30].
10The location where the gesture is performed. We adopt the on surface and in mid-air
categories from [30] and introduce the on other finger category.
11https://support.google.com/wearos/answer/6312406?hl=en.
12Hand gestures can be simple or compound [6].
13Short (less than 0.5s) medium (between 0.5s and 1.5s), and long (more than 1.5s) [6].
14Three categories: small (the gesture can be performed in less than 439cm3 of physical
space),medium (between 439cm3 and 1467cm35), and large (over 1467cm3) [6]. Shimon
et al. exemplify air taps as small, twists of the wrist as medium, and rotational motions
along multiple joints as large gestures, respectively (p. 3826).
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Figure 3: The sets of stroke-gestures (top) and motion-gestures (bottom) used in our experiment, 30 gesture types in total.

(3) Head gestures for the glasses condition were inspired from
Yan et al.’s [108] head gesture space for HMDs, Vander-
donckt et al.’s [89] elicitation study of head gestures, the
Headbang [43] and HeadTurn [73] interaction techniques,
and prior work on head gesture input for controlling the
power wheelchair for people with motor impairments [47].
Figure 3, bottom-right shows these gestures characterized
along the complexity,15 trajectory,16 and movement17 dimen-
sions ( C , T , and A ) from Vanderdonckt et al.’s [89] and
Yan et al.’s [108] taxonomies.

3.5 Task
A custom software application, running on a laptop, displayed the
gesture representing the current trial. Gestures were presented
both visually (as in Figure 3) and with a short text description,
e.g., “square” or “lean forward.” The order of gesture types was
randomized for each combination of Wearable ×Modality. After
each trial, the gesture collected by the wearable was sent to the
laptop application via Wi-Fi. For stroke-gestures, our application
logged x, y, and touch id data with timestamps. For motion-gestures,
it logged x, y, and z acceleration data with timestamps. Participants
were instructed to enter gestures at their normal speed, and had
total freedom in terms of the number of strokes, stroke direction,
and stroke order for stroke-gestures, and amplitude of movement
15Head gestures can be simple or compound. [89]
16Three categories: directional (the head moves in different directions), shape (the head
draws geometrical shapes), and character (the head draws characters or numbers) [108].
17Translation and rotation along the X, Y, and Z axes; see [108] (p. 198:10).

for motion-gestures. Our only instruction for stroke-gestures was
to execute them with the opposite hand in the watch condition, the
hand on the same side of the body for glasses, and with the thumb
of the same hand in the ring condition. The order of Wearable ×
Modality was randomized per participant. A training stage took
place for each condition with each gesture being performed twice.

3.6 Measures
We computed several measures of gesture articulation performance,
adopted from prior work on gesture recognition and analysis [4,10,
78,81,92,93,97], which we evaluated as dependent variables in our
experiment. Some of the measures are modality specific, e.g., we
computed ShapeBending (rad) [4] for stroke-gestures and Mean-
Jerk (m/s3) [82] for motion-gestures. Other measures apply to both
stroke-gestures and motion-gestures, as follows:

(1) TaskCompletionRate represents the percentage of gesture
articulation trials completed by a participant, e.g., 95.8% for
participant P4 and motion-gestures performed with the wrist
in the watch condition.

(2) The ProductionTime of a gesture, reported in seconds, rep-
resents an instance of the generic task time measure em-
ployed in HCI to evaluate user input efficiency [14,54,55,88].

(3) The ArticulationConsistency of a gesture, computed as:

max
(
0, 1 − averageℎ{𝛿 (𝑔, ℎ)}

averageℎ∗ {𝛿 (𝑔, ℎ∗)}

)
(1)

where 𝑔 is the gesture for which consistency is computed
(e.g., an articulation of an “asterisk”), ℎ represents gestures

) from Vanderdonckt et al.’s [89] and
Yan et al.’s [108] taxonomies.

3.5 Task
A custom software application, running on a laptop, displayed the
gesture representing the current trial. Gestures were presented
both visually (as in Figure 3) and with a short text description,
e.g., “square” or “lean forward.” The order of gesture types was
randomized for each combination of Wearable ×Modality. After
each trial, the gesture collected by the wearable was sent to the
laptop application via Wi-Fi. For stroke-gestures, our application
logged x, y, and touch id data with timestamps. For motion-gestures,
it logged x, y, and z acceleration data with timestamps. Participants
were instructed to enter gestures at their normal speed, and had
total freedom in terms of the number of strokes, stroke direction,
and stroke order for stroke-gestures, and amplitude of movement
for motion-gestures. Our only instruction for stroke-gestures was
15Head gestures can be simple or compound. [89]
16Three categories: directional (the head moves in different directions), shape (the head
draws geometrical shapes), and character (the head draws characters or numbers) [108].
17Translation and rotation along the X, Y, and Z axes; see [108] (p. 198:10).

to execute them with the opposite hand in the watch condition, the
hand on the same side of the body for glasses, and with the thumb
of the same hand in the ring condition. The order of Wearable ×
Modality was randomized per participant. A training stage took
place for each condition with each gesture being performed twice.

3.6 Measures
We computed several measures of gesture articulation performance,
adopted from prior work on gesture recognition and analysis [4,10,
78,81,92,93,97], which we evaluated as dependent variables in our
experiment. Some of the measures are modality specific, e.g., we
computed ShapeBending (rad) [4] for stroke-gestures and Mean-
Jerk (m/s3) [82] for motion-gestures. Other measures apply to both
stroke-gestures and motion-gestures, as follows:

(1) TaskCompletionRate represents the percentage of gesture
articulation trials completed by a participant, e.g., 95.8% for
participant P4 and motion-gestures performed with the wrist
in the watch condition.

(2) The ProductionTime of a gesture, reported in seconds, rep-
resents an instance of the generic task time measure em-
ployed in HCI to evaluate user input efficiency [14,54,55,88].

(3) The ArticulationConsistency of a gesture, computed as:

max
(
0, 1 − averageℎ{𝛿 (𝑔, ℎ)}

averageℎ∗ {𝛿 (𝑔, ℎ∗)}

)
(1)

where 𝑔 is the gesture for which consistency is computed
(e.g., an articulation of an “asterisk”), ℎ represents gestures
of the same type (other “asterisks”), and ℎ∗ denotes gestures
of other types. To compare gestures, we employed Dynamic
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Time Warping (DTW)—a dissimilarity function popular for
both stroke-gestures and motion-gestures [86,90]—denoted
by 𝛿 in Eq. 1. ArticulationConsistency computes to 0
when gesture 𝑔 is more similar to other gesture types than
to articulations of the same type (i.e., low consistency) and
towards 1 otherwise. Function max() makes sure that the
result is always zero for gestures that are highly inconsistent.

While ProductionTime is useful to evaluate the efficiency of ges-
ture input [14,54,55] and ArticulationConsistency provides in-
sights into the variation naturally induced during gesture input [4]
with impact on recognition accuracy [4,92], several other measures
have been employed in the scientific literature, either for stroke-
gesture analysis [56,88,95–97] or recognition [10,49,81] purposes.
From these, we selected three commonly used measures to under-
stand the geometric structure (NumStrokes), size (PathLength),
and curviness (ShapeBending) of stroke-gesture articulations:

(4) NumStrokes, the number of strokes that constitute a gesture,
is a measure of gesture structure that characterizes users’
preferences for gesture articulation [4,78,92] or their ability
to touch the surface steadily [49,96].

(5) We measured the PathLength of a gesture as the sum of
the lengths of the individual strokes, which we computed as
the sum of Euclidean distances between consecutive points
on the gesture path, as in [78,81,96].

(6) We measured ShapeBending (rad) as the sum of absolute
turning angles defined by triples of consecutive points on
the gesture path, as in [4,78,78,81,95–97].

For motion-gestures, we selected the following three measures
from the scientific literature on gesture analysis [59,82,82]:

(7) MeanAcceleration (m/s2) is the average magnitude of the
composite acceleration as an indicator of the physical effort
to produce the gesture. Prior work has used this measure to
refer to gesture strength [40] or energy [79].

(8) MeanJerk (m/s3) is the average magnitude of the composite
jerk of the gesture movement, adopted from Ruiz et al.’s [82]
“Kinematic impulse” category of their taxonomy (p. 202).

(9) NumAxesOfMovement (dimensionless) represents the num-
ber of axes on which acceleration is detected, a measure
adapted from Ruiz et al.’s [82] “Dimension” category of their
taxonomy of motion-gestures.18

3.7 Statistical Analyses
We employ ANOVA for split-plot designs to analyze the data from
our experiment with two independent groups and repeated mea-
sures. However, when the normality assumptions are not met (ac-
cording to Shapiro-Wilk tests) or heteroscedasticity is present in
the data (according to Levene’s test), we employ a robust statistic
procedure described byWilcox [100] (p. 545) based on 20%-trimmed
means.19 This procedure reports the 𝑄 statistic that, like ANOVA,

18Since Ruiz et al. [82] were not explicit about how they computed this measure,
we counted one axis if the MeanAcceleration for that axis was above 0.1m/s2 , a
threshold that we adopted from https://docs.microsoft.com/en-us/windows-hardware/
drivers/sensors/accelerometer-thresholds.
19Implemented with the bwtrim(...) function from the Rallfun-v38 library, https://
dornsife.usc.edu/labs/rwilcox/software.

uses the 𝐹 distribution for the decision rule, but computes Win-
sorized variances; seeWilcox [100] for advantages of using trimmed
means when there are even slight deviations from normality in the
data. For multiple comparisons, we use the BWMCP method from
Wilcox [100] (p. 610) to control the familywise error rate (FWE).

4 RESULTS: STROKE-GESTURES
We report in this section user performance with stroke-gestures
entered on a wearable touchscreen device in the watch, ring, and
glasses conditions. We start our analysis with task completion rates.

4.1 Task Completion
We collected a total number of 7,290 gestures from the maximum
of 8,064 trials = 3 (conditions of Wearable) × 12 (stroke-gesture
types) × 28 (participants) × 8 (repetitions), representing an overall
task completion rate of 90.4%. The completion rate was 100% for the
participants without impairments and varied between 33.0% and
100% (M=80.8%, SD=25.1%) for the participants with upper-body
motor impairments. Participants P6 (osteogenesis imperfecta) and
P9 (Parkinson’s) could not articulate gestures on the watch with the
opposite hand, P1 and P8 (SCI C4-C5) could not move the fingers
and wrist and, thus, did not enter gestures in the ring condition, and
participants P7 (multiple sclerosis), P8 (SCI), and P9 (Parkinson’s)
had difficulties raising their arms to touch the glasses. Table 1 shows
the trial completion rate of each participant.

4.2 Gesture Production Time
Production time data deviated from normality for the watch and
glasses conditions and participants without impairments (𝑝<.05 ac-
cording to Shapiro-Wilk tests) and heteroscedasticity was present
(according to Levene’s tests, 𝑝<.05) and, thus, we used the robust
𝑄 test. We found a statistically significant main effect of MotorIm-
pairment on ProductionTime (𝑄 (1,10.037)=27.771, 𝑝<.001), a sig-
nificant main effect of Wearable (𝑄 (2,10.499)=27.513, 𝑝<.001), and
a significant interaction between MotorImpairment and Wear-
able (𝑄 (2,10.499)=5.654, 𝑝<.05). Overall, participants with upper-
body motor impairments performed stroke-gestures two times
slower (3.16s vs. 1.56s) compared to participants without impair-
ments. Specifically, they took 76% more time to articulate stroke-
gestures on the watch (2.29s vs. 1.30s, 𝑝=.011), 125% more time on
the ring (4.02s vs. 1.79s, 𝑝=.004), and 105% more time on glasses
(3.26s vs. 1.59s, 𝑝=.002); see Figure 4a. Also, participants with upper-
body motor impairments produced stroke-gestures that were 43%
slower on the glasses (𝑝=.018) and 76% slower on the ring (𝑝=.004)
compared to the same gesture types on the watch (FWE for multiple
comparisons controlled at 𝛼=.05). These results suggest the need for
techniques to make gesture input faster for users with upper-body
motor impairments, such as gesture abbreviation [9,15], an aspect
that we resume in our discussion from Section 6.

4.3 Consistency of Gesture Articulation
ArticulationConsistency data deviated from normality in the
ring and watch conditions (𝑝<.05), hence we used the 𝑄 test. We
found a significant main effect of MotorImpairment (𝑄 (1,15.152) =
11.119, 𝑝<.005), a main effect of Wearable (𝑄 (2,13.271)=41.187,
𝑝<.001), and a significant interaction between MotorImpairment

https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/accelerometer-thresholds
https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/accelerometer-thresholds
https://dornsife.usc.edu/labs/rwilcox/software
https://dornsife.usc.edu/labs/rwilcox/software
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Figure 4: Characteristics of stroke-gestures articulated by participants with and without upper-body motor impairments.

andWearable (𝑄 (2,13.271)=6.112, 𝑝<.05). Overall, participantswith
upper-body motor impairments were less consistent than the par-
ticipants without impairments (0.55 vs. 0.67, 17.9% less consistency)
with statistically significant differences found in the ring (𝑝=.002)
and watch (𝑝=.05) conditions; see Figure 4b. ArticulationConsis-
tency increased significantly from glasses to ring to watch, except
for the participants with upper-body motor impairments, for which
no statistically significant difference was found between glasses
and ring (𝑝=.212, FWE controlled at 𝛼=.05). According to Vatavu
et al. [92], less consistent gestures impact negatively recognition
accuracy, unless the recognition approach is tolerant to variations
in how stroke-gestures are being articulated [91]. We resume this
aspect in Section 6, where we combine ArticulationConsistency
and ProductionTime in one single measure of gesture input per-
formance to discuss individual gesture types.

4.4 Geometric Characteristics
We characterize the stroke-gestures produced by our participants
with stroke count, length, and shape bending measures.

4.4.1 Number of strokes. Data deviated from normality in four of
the six combinations of MotorImpairment × Wearable (𝑝<.05)
and heteroscedasticity was present in the glasses and watch condi-
tions (𝑝<.05). We found a significant main effect of MotorImpair-
ment (𝑄 (1,9.732)=7.51, 𝑝<.05), a significant main effect of Wear-
able (𝑄 (2,12.669)=16.579, 𝑝<.001), and a significant interaction be-
tweenMotorImpairment andWearable (𝑄 (2,12.669)=7.419, 𝑝<.01).
Overall, participants with upper-body motor impairments articu-
lated stroke-gestures with a geometric structure having 33% more
strokes (2.12 vs. 1.60) compared to the same gesture types artic-
ulated by the participants without impairments with statistically
significant differences for glasses (2.22 vs. 1.60, 𝑝=.004) and watch
(1.73 vs. 1.50, 𝑝=.038); see Figure 4c.

4.4.2 Path length. Path length data was normal, but heteroscedas-
ticity was present in the glasses condition (𝑝<.05). We found a statis-
tically significant main effect of MotorImpairment (𝑄 (1,17.577) =
12.665, 𝑝<.005), a significant effect of Wearable (𝑄 (2,15.014)=18.503,
𝑝<.001), and no interaction betweenMotorImpairment andWear-
able (𝑄 (2,15.014)=0.033, 𝑝=.968, 𝑛.𝑠.). Participants with upper-body
motor impairments produced gestures that were 11% longer on
average (4.60cm vs. 4.14cm) compared to the same gesture types
entered by the participants without impairments with significant

differences (𝑝<.05, FWE controlled at 𝛼=.05) for each Wearable
condition and the largest difference observed for stroke-gestures
on the ring (4.51cm vs. 3.93cm, +15% longer paths); see Figure 4d.

4.4.3 Shape bending. Data deviated from normality for the watch
condition and participants without impairments (𝑝<.001) and het-
eroscedasticity was present for glasses (𝑝<.002). We found a statisti-
cally significantmain effect of MotorImpairment (𝑄 (1,9.661)=17.154,
𝑝<.005), a statistically significant effect of Wearable (𝑄 (2,10.702) =
19.189, 𝑝 < .005), and no interaction between MotorImpairment
and Wearable (𝑄 (2,10.702)=3.371, 𝑝=.073, 𝑛.𝑠.). Overall, partici-
pantswith upper-bodymotor impairments articulated stroke-gestures
that were two times more bent or “wavy” (53.71rad vs. 27.21rad,
+97%) than the gestures produced by the participants without im-
pairments with significant differences (𝑝<.05, FWE 𝛼=.05) observed
in all of the Wearable conditions; see Figure 4e.

4.5 Summary
Stroke-gestures produced by users with upper-body motor impair-
ments on wearable touchscreens at various locations on the upper
body are longer, wavier, less consistent, with more strokes, and
take significantly more time to articulate compared to the same
gesture types produced by users without impairments. Moreover,
stroke-gesture articulation performance is influenced by the lo-
cation of the wearable. Stroke-gestures performed in the watch
condition were the fastest, least wavy, and with the highest con-
sistency, while stroke-gestures articulated on the ring and glasses
—two input conditions involving either high finger dexterity (ring)
or manual dexterity and eyes-free hand and finger coordination
(glasses)—exhibited significantly lower performance. Implications
can be drawn for the difficulty perceived by users to execute ges-
tures since longer production times, longer gesture paths, and more
bending are known to correlate positively with perceived execution
difficulty [78,97], but also on recognition accuracy [92] and the
choice of the recognizer, e.g., a large number of strokes would make
some recognizers, such as $N [5], slow to execute.

5 RESULTS: MOTION-GESTURES
We report user performance with motion-gestures produced with
the finger, wrist, and head corresponding to the ring, watch, and
glasses conditions of Wearable. The data that we analyze is the
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Figure 5: Characteristics of motion-gestures articulated by participants with and without upper-body motor impairments.

linear acceleration of motion-gestures, for which we first applied a
high-pass filter to remove the effect of the force of gravity.20

5.1 Task Completion
We collected a total number of 3,809 gestures from a maximum of
4,032 trials = 3 (conditions for Wearable) × 6 (gesture types per
set) × 28 (participants) × 8 (repetitions), representing an overall
task completion rate of 94.5%. The completion rate was 100% for the
participants without impairments and varied between 66.7% and
100% (M=88.9%, SD=15.5%) for the participants with upper-body
motor impairments. Participants P2 (traumatic brain injury) and
P6 (osteogenesis imperfecta) could not articulate motion-gestures
in the watch condition, P1 and P8 (SCI C4-C5) could not move the
fingers and, thus, did not enter gestures in the ring condition, and
participant P9 (Parkinson’s) reported fatigue during the articulation
of head gestures, of which she completed less than half of the trials.
Table 1 shows the trial completion rate of each participant.

5.2 Gesture Production Time
Production time data deviated from normality for the ring condition
and participants without impairments (𝑝<.05) and heteroscedastic-
ity was present (𝑝<.05), so we used the 𝑄 test. We did not find a
significant effect of MotorImpairment (𝑄 (1,11.514)=0.215, 𝑝=.651,
𝑛.𝑠.), but we found a main effect of Wearable (𝑄 (2,12.033)=17.476,
𝑝<.005) with no interaction betweenMotorImpairment andWear-
able (𝑄 (2,12.033)=3.708, 𝑝>.05, 𝑛.𝑠.); see Figure 5a. The body part
involved in the movement led to different gesture production times
with statistically significant differences for participants with upper-
body motor impairments between glasses and ring (𝑝<.001) and
glasses and watch (𝑝<.005), respectively. Overall, participants with
upper-body motor impairments were as fast as the participants
without impairments to articulate motion-gestures (1.73s vs. 1.72s).
Also, participants with upper-body motor impairments were faster
by 16% (1.62s vs. 1.92s) at watch gestures, but the difference was
not statistically significant (𝑝=.145).

5.3 Gesture Articulation Consistency
ArticulationConsistency data was normal and homoscedastic,
so we report the ANOVA 𝐹 test. We found a statistically significant

20https://developer.android.com/guide/topics/sensors/sensors_motion

main effect of MotorImpairment (𝐹 (1,22)=17.818, 𝑝<.001), a sig-
nificant main effect of Wearable (𝐹 (2,44)=296.523, 𝑝<.001), and a
significant interaction between MotorImpairment and Wearable
(𝐹 (2,44)=19.568, 𝑝<.001). Overall, participants with upper-body mo-
tor impairments were less consistent in gesture articulation than
the participants without impairments (0.45 vs. 0.52), with significant
differences for glasses (𝑝=.010) and watch (𝑝=.002); see Figure 5b.

5.4 Kinematics of Motion-Gestures
5.4.1 Mean acceleration. Data was normal, but heteroscedasticity
was present in the ring condition (𝑝<.005). We found a significant
main effect of Wearable on MeanAcceleration (𝑄 (2,13.184) =
100.501, 𝑝<.001) with the largest difference observed for watch
(2.98m/s2 vs. 2.63m/s2, 𝑝<.05). There was no effect of MotorImpair-
ment (𝑄 (1,15.606)=0.558, 𝑝=.466, 𝑛.𝑠.) nor an interaction between
MotorImpairment andWearable (𝑄 (2,13.184)=2.681, 𝑝=.105, 𝑛.𝑠.).
On average, motion-gestures were produced with the same accel-
eration magnitude by both participants with and without motor
impairments (1.86m/s2 vs. 1.85m/s2); see Figure 5c. The body part
involved in the movement, however, significantly affected accelera-
tion in all conditions (𝑝<.05, FWE controlled at 𝛼=.05).

5.4.2 Mean jerk. Data was normal, but heteroscedasticity was
present in the ring condition (𝑝<.05). We found a significant main
effect of Wearable (𝑄 (2,13.05)=74.918, 𝑝<.001), but no effect of
MotorImpairment (𝑄 (1,14.975)=0.098, 𝑝=.758, 𝑛.𝑠.) and no interac-
tion between MotorImpairment and Wearable (𝑄 (2,13.05)=1.615,
𝑝=.236, 𝑛.𝑠.). On average, motion-gestures were produced with the
same jerk (28.91m/s3 vs. 33.49m/s3) by both participants with and
without motor impairments; see Figure 5d. When employing Ruiz et
al.’s [82] thresholds for classifying motion-gestures by jerk range,21
we found that 2.44% of the gestures were low impulse, 11.11% were
moderate, and 86.45% were high impulse, respectively.

5.4.3 Number of axes of movement. Data deviated from normality
in the ring and watch conditions (𝑝<.05). We detected a statistically
significant main effect of Wearable (𝑄 (2,15.062)=29.381, 𝑝<.001),
but no effect of MotorImpairment (𝑄 (1,14.129)=1.178, 𝑝=.296, 𝑛.𝑠.)
and no interaction between MotorImpairment and Wearable
(𝑄 (2,13.891)=0.367, 𝑝=.670, 𝑛.𝑠.). Motion-gestures were articulated
on three axes for the ring (2.97 and 2.97) and watch (2.97 and 2.96),

21Thresholds of 3m/s3 and 6m/s3 delimit low, moderate, and high impulse gestures [82].

https://developer.android.com/guide/topics/sensors/sensors_motion
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and on two and three axes (2.70 and 2.63) for glasses; see Figure 5e.
Multiple comparisons analysis (FWE controlled at 𝛼=.05) showed
significant differences between glasses and ring (𝑝<.001) and glasses
and watch (𝑝<.05) for both participants with and without upper-
body motor impairments.

5.5 Summary
Motion-gestures were produced equally fast and with similar kine-
matic characteristics by both participants with and without motor
impairments. The results on the kinematics of motion-gestures
complement the findings on gesture production times, e.g., faster
gestures in thewatch condition are explained by higher acceleration
produced by users with motor impairments. Overall, there seems
to be similar performance with motion-gesture articulation with
wearables for both groups of participants, unlike for stroke-gesture
input (see Section 4), a finding that is corroborated across multiple
dimensions of motion-gesture analysis. The wearable location did
affect gesture articulation, but in a way that was similar to both
groups of participants. Motion-gestures with the finger and wrist
were faster than head gestures, but also less consistent.

6 DISCUSSION
We discuss our findings from the perspective of individual users’
performance with stroke-gesture and motion-gesture input. We
also propose implications for accessible gestures for wearables by
capitalizing on the principles of ability-based design [101].

6.1 A Glimpse into Individual Users’
Performance with Gesture Input

The approach to gesture analysis that we adopted in this work
was to report overall user performance across a variety of ges-
tures, which we interpreted as a sample drawn from all possible
gesture types. To this end, our choice of stroke-gestures and motion-
gestures was carefully considered during the experiment design to
cover gesture types with a diversity of characteristics; see Subsec-
tion 3.4 for our rationale. Evidently, some of the gestures from our
set are easier to execute, faster to execute, or are articulated with
higher consistency compared to other gesture types. To identify
gestures with such desirable characteristics, the practitioner can
chose one or several measures of gesture performance relevant to
their goal, e.g., ProductionTime to identify fast gestures, in order
to inform design decisions about which gesture types to include
in the user interface. Next, we present an example of such a pur-
suit. Our goal is not to provide a detailed analysis, but rather to
demonstrate how such an analysis could be accomplished.

Figure 6 shows rankings that we computed for the 30 gesture
types used in our experiment according to the ratio of Articula-
tionConsistency and ProductionTime, a combined measure that
we employ for demonstration purposes. The higher the articulation
consistency and the lower the production time of a gesture, the bet-
ter the ranking that gesture receives. Using this measure, we ranked
stroke-gestures from 1 to 12 (1 is better) and motion-gestures from
1 to 6 (1 is better) for each Wearable. A few observations are in-
teresting to note. For instance, directional swipes generally ranked
first (1 and 2), but variations involving rankings 1 to 4 can be ob-
served for glasses and ring, highlighting difficulties with producing

straight paths in those conditions. Also, “six-point star,” “asterisk,”
and “heart” are among the lowest ranked stroke-gestures for both
users with and without motor impairments, which confirms their
difficulty, as estimated during our experiment design (Figure 3).
Other stroke-gestures also ranked low for some of the participants
with upper-body motor impairments, e.g., “circle” for P2 (traumatic
brain injury), P3 (SCI), and P12 (Friedreich’s ataxia) ranked on the
10th position for glasses, but between 4th and 7th for ring andwatch,
showing different levels of performance of the same gesture type
with wearables at different locations on the upper body. Regard-
ing motion-gestures, circular movements of the head and double
taps performed with the finger ranked low, while leaning the head
forward and tapping with the wrist received good rankings overall.

Our results also showed that some combinations of gesture
modalities and locations of wearables on the upper body were
not feasible for all of the participants with upper-body motor im-
pairments. For example, participants P1, P8, and P14 did not enter
stroke-gestures in the ring condition because they could not move
their thumb (SCI at vertebrae C4-C5 for P1 and P8) or did not have
the thumb (P14, phocomelia), while P7 (multiple sclerosis), P8 (SCI),
and P9 (Parkinson’s) could not raise their arms to the glasses. Other
participants with upper-body motor impairments adopted coping
strategies to enter stroke-gestures, which resulted in the larger pro-
duction times that we observed compared to the same gesture types
articulated by the participants without impairments. For instance,
P11 (spastic quadriplegia) hold the temple of the glasses between
their thumb and middle fingers and entered stroke-gestures with
the index. While she was able to produce stroke-gestures that way,
the average production time was 4.58s, a value 40.5% larger than
the average obtained across all of the participants with upper-body
motor impairments and 288.1% larger than the average production
time of the participants without impairments (see Figure 4a). To
enter stroke-gestures on the ring, P4 repositioned the device at
the knuckle of the index finger for more stability and control, and
performed the gestures on the part of the touchscreen where it was
easier to reach with the thumb. P12 (spastic quadriplegia) preferred
to held the glasses with the other hand to keep them stable, and P9
and P13 (Parkinson’s) held the ring steadily with the other hand
while entering stroke-gestures with the thumb.

These qualitative observations indicate that different motor abil-
ities lead to different levels of performance with stroke-gesture and
motion-gesture input for rings, watches, and glasses, but also to
different types of coping strategies to use gesture input on these
devices. To understand more about individual differences between
users, Figure 7 shows the results of a clustering process22 of the
gesture input performance of the fourteen participants with upper-
body motor impairments characterized by the combined Articu-
lationConsistency and ProductionTime ratio measure. Several
observations are interesting to note. For instance, participants P11
and P12 (spastic quadriplegia) exhibited similar performance when
articulating stroke-gestures in the glasses and ring conditions, and
are part of the same cluster (height of cutting the dendrogram
ℎ=0.1723) for the watch condition; participants P1 and P8 (same

22Agglomerative hierarchical clustering with average linkage.
23 This value corresponds to the average ArticulationConsistency and Produc-
tionTime observed for the participants with upper-body motor impairments, i.e.,
0.55/3.16 = 0.17 for stroke-gestures; see Section 4.
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Figure 6: Rankings of stroke-gestures from 1 to 12 (1 is better) and motion-gestures from 1 to 6 (1 is better) according to their
combined ProductionTime and ArticulationConsistency characteristics; see Figure 3 for the gesture descriptions.
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Figure 7: Clusters of participants with upper-body motor impairments according to their input performance with stroke-
gestures (the three dendrograms on the left) and motion-gestures (the three dendrograms on the right), characterized conjointly
by the ArticulationConsistency and ProductionTime measures.

condition of SCI C4-C5) also fall in the same cluster (h=0.17) for
the watch condition. For motion-gestures, P9 and P13 (Parkinson’s)
had similar performance with both the ring and watch devices, but
the different severity of their conditions (see Table 1 for their self-
reported impairments with eight categories for P9 vs. five for P13)
led to different levels of performance with glasses gestures, where
P9 completed less than half of the experiment trials. This aspect is
observable in the fourth dendrogram from Figure 7. Another aspect
resulting from the composition of the clusters regards the effect of
the Wearable on the gesture input performance of the participants
with upper-body motor impairments. For instance, by cutting the

stroke-gesture dendrograms at ℎ=17,23 two clusters result for ring
and glasses (with slightly different compositions of participants)
compared to five clusters for the watch.

Although the examination of the relative differences between
users is interesting, we stop this analysis here, but practitioners
interested in specific gesture types can continue such examinations,
including with other gesture characteristics, e.g., NumStrokes for
stroke-gestures as in [4,92] or MeanJerk for motion-gestures as
in [82], or combinations thereof as in our example in order to iden-
tify gestures that are articulated efficiently by all users or gestures
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that work well for users with specific motor abilities towards per-
sonalized gesture UIs. Our freely available datasets enable such
examinations. Next, we continue our discussion by employingWob-
brock et al.’s [101,102] framework of ability-based design to derive
more general implications for accessible gestures for wearables.

6.2 Ability-based Design for Accessible Gesture
Input With Wearables

Our findings suggest the need for design approaches that capitalize
on users’ specific motor abilities. Ability-based design [101,102]
emphasizes the importance of focusing on users’ abilities in context
to deliver accessible interactions with computer systems based on
seven principles: ability, accountability, availability, adaptability,
transparency, performance, and context. In our case, abilities refer to
gross and fine motor skills in finger, wrist, arm, and neck muscles
to perform stroke-gestures and motion-gestures on and with rings,
watches, and glasses. In the following, we present ten practical
implications informed by our empirical findings, that we propose to
implement the principles of ability-based design towards accessible
gesture input for these wearables.

According to the ability principle [101], designers should focus
on users’ abilities in a given context. Our findings suggest:

➊ Design gesture sets that include stroke-gestures, motion-
gestures, and combinations thereof according to the motor
ability of the user to move fingers, land the finger on a sur-
face, maintain stable contact with the surface to produce
a gesture path, rotate the wrist, produce accelerated move-
ment, raise the hand, and control cervical muscles. Example:
P14 could not perform stroke-gestures on the ring because
of missing thumbs (phocomelia), but was able to move the
finger wearing the ring to produce motion-gestures (Table 1).

➋ Design customizable devices in terms of the location on the
body where they are worn to enable comfortable reaching
for stroke-gesture input and effortless motion-gestures with
movements of that body part. Example: P7 could not raise the
hand to perform stroke-gestures on the glasses (see Table 1),
but was able to use the same type of gestures on the same
device worn in the form of a watch and a ring, respectively.

The accountability principle [101] states that designers change sys-
tems, not users to foster usability. Accordingly, we propose:

➌ Adapt to user’s abilities by short-cutting input. Example:
wearables could implement gesture prediction, abbreviation,
and autocompletion [9,15] from partially entered gestures
to make input faster, since users with upper-body motor
impairments take twice as much time to articulate stroke-
gestures compared to users without impairments (Figure 4a).

➍ Reuse accessible gesture sets across devices and from exist-
ing devices to new devices. Example: stroke-gestures can
be performed effectively on touchscreens affixed to various
parts of the body as long as the device can be comfortably
reached (see similar rankings for some of the stroke-gesture
types in Figure 6) and, thus, could be reused across multiple
devices, including for new wearables that a user acquires or
that may become available in the future. Also, smartphone

stroke-gestures, evaluated in [96] as an effective input modal-
ity for users with upper-body motor impairments, could also
be reused for input with wearables.

Following the availability principle [101], designers use affordable
and available software and hardware. As smartwatches and fitness
trackers are becoming mainstream [98], requirements regarding
their affordability and availability are met implicitly. Smart rings
and glasses, however, are still to become largely adopted. Until then,
a practical solution to affordability and availability is to:

➎ Reuse the touchscreen of a smartwatch, a prevalent wear-
able, and affix it to various parts of the body for easier and
more convenient access with the finger or for instrumenting
that body part for motion-gesture input. Example: P6 could
not enter stroke-gestures on the watch (see Table 1), but was
able to use the watch repurposed as a ring and touchpad on
the glasses temple. Khurana et al. [50] discussed options for
morphing smartwatch displays into various forms, after de-
taching from the straps, towards “a better interaction device,
better display, and a better sensor suite” (p. 50:1). In our con-
text, “better” translates to easier to reach, touch, pinch, grasp,
move, rotate and, in general, to a more accessible device.

According to the adaptability principle [101], interfaces provide
the best possible match to users’ abilities. Based on our findings,
our proposed practical implementation for this principle is:

➏ Allow gesture commands to be personalized to how users
execute them in terms of the geometric characteristics of
the gesture path (Figures 4c to 4e), e.g., stroke-gestures with
various numbers of strokes, or kinematic characteristics of
the underlying movement (Figures 5c to 5e), e.g., different
jerk magnitudes, by using articulation-independent gesture
recognizers [71,91]. Example: “letter X,” a two-stroke gesture,
could also be performed in one continuous movement with
the two lines joint by an intermediate stroke, removing the
need for the finger to lift off of the screen after the first stroke,
travel in air, and then land again on the screen to continue
the gesture. Other options include enabling users to define
gestures according to their preferences and motor abilities
and also enabling personalized mappings between gestures
and system functions according to their preferences [63].

Transparency [101] means that interfaces give users awareness of
their adaptive behaviors. Our results inform the following:

➐ Provide feedback and feedforward during gesture input. Ex-
ample: participantswith upper-bodymotor impairments take
more time to produce stroke-gestures (Figure 4a). In that case,
feedback about the process of gesture sensing and recogni-
tion [48,52], e.g., the system gently informs that it is patiently
waiting for the gesture to be fully articulated, is likely to
increase usability and provide the user with the means to
inspect, discard, revert, and correct the outcome. Also, feed-
forward [22] to guide users during stroke-gesture [8] and
motion-gesture [23] input could be used in conjunction with
guideline ➌ to make gesture input faster.

According to the performance principle [101], systems employ users’
performance for best match with abilities. We suggest:
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➑ Model the user’s gesture articulation behavior. Example:
more time to produce a stroke-gesture (Figure 4a), more
strokes to draw the geometric shape of a stroke-gesture (Fig-
ure 4c), and performing motion-gestures along preferred
axes of movement (Figure 5e) are examples of information
that the wearable device could collect and use to tune the UI
settings, e.g., how long to wait for a multistroke gesture to
be entered before calling the gesture recognizer.

Following the context principle [101], systems utilize users’ con-
text to accommodate effects on abilities. Our proposed practical
implementations of this principle for wearable interactions are:

➒ Infer the context of use to switch to input modalities bet-
ter suited to that context. Example: accommodate gesture
input that is socially acceptable [79] for interactions involv-
ing wearables that do not draw attention to one’s disabil-
ity [76] by switching from motion-gestures in mid-air to
stroke-gestures on the device and vice versa.

➓ Design wearables that share information among each other.
Example: multiple devices share gesture sets to enable users
to employ the same gestures and, consequently, easily switch
between input devices according to context.

7 LIMITATIONS
There are a few limitations to our study. First, we asked participants
to produce stroke-gestures with the thumb of the same hand in the
ring condition and the with the hand located on the same side of the
body as the temple of the glasses to which the touchscreen was af-
fixed, since these articulations implemented different motor ability
requirements and corresponding assumptions; see Subsection 3.2.
However, this constraint resulted in some of the users with upper-
body motor impairments not being able to participate in all of the
conditions of our experiment. We acknowledge that in real life cop-
ing mechanisms would intervene, e.g., using the other hand, other
fingers, and other body parts [42,57] to implement the interaction.
Future work is recommended to examine such mechanisms. Second,
we used the same device in all of the conditions of our experiment.
While this choice enabled us to collect gestures consistently with
finger, wrist, and head wearables, the form factor of the device
was large for the ring condition, which might have impacted users’
articulations. Future work is recommended with smaller touchpads
worn on the finger. Third, it was not our goal to evaluate gesture
recognition accuracy and, thus, we allowed participants to enter
gestures as they wished, which provided great flexibility during in-
put and enabled us to observe unconstrained user behavior during
gesture articulation. For example, we did not constrain participants
to a specific number of strokes or stroke ordering when entering
stroke-gestures, although such a constraint would actually help
some gesture recognizers, such as $1 [104] for stroke-gestures and
$3 [53] and Jackknife [86] for motion-gestures, to increase accu-
racy. Future work on the recognition of gestures produced by users
with upper-body motor impairments is envisaged as well as corre-
lation analysis between recognition accuracy results and gesture
performance measures as in [92]. To address these limitations, we
provide in the following several ideas for future work as well as
free resources to support their implementation.

8 CONCLUSION AND FUTUREWORK
We examined gestures performed by users with upper-body motor
impairments with devices worn on the finger , wrist, and head in
the form of rings, watches, and glasses. Our results showed that
stroke-gestures are more challenging to produce under conditions
of upper-body motor impairments, but articulations of motion-
gestures presented similar characteristics for both users with and
without impairments. Based on our empirical findings, we proposed
ten implications of the principles of ability-based design towards
more accessible gesture input for wearable interactions.

To enable future work in this area, we release our two datasets
composed of 7,290 stroke-gestures and 3,809 motion-gestures col-
lected from 28 participants. The datasets are available for research
purposes from http://www.eed.usv.ro/~vatavu together with C#
source code that computes the measures reported in this paper.
Given the lack of public data for users with upper-body motor im-
pairments [21,61], we see several opportunities that these datasets
open for future work on accessible wearable interactions: (1) com-
pare stroke-gesture input on small wearables to stroke-gestures ar-
ticulated on smartphones and tablets with larger touchscreens [96];24
(2) evaluate the accuracy of popular gesture recognition approaches
[86,91,104] and explore, if needed, adaptations of these approaches
[71] for the gesture articulation characteristics of users with upper-
body motor impairments; (3) conduct further examinations with
other gesture analysis tools and measures, such as heatmap visual-
izations [93], to complete our understanding of users’ gesture input
performance with wearables. These future work directions can be
readily implemented by using our datasets, and we look forward to
new findings and developments towards more accessible wearable
interactions for users with all motor abilities.
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