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Abstract—We present results from a controlled experiment
with N=47 participants conducted in a mixed reality environment
to assess explicit and implicit learning of cognitive structures
instantiated by socio-emotional components. To this end, we
implemented a custom version of MR4ISL, the Mixed Reality
software tool for Implicit Social Learning, with a task involving
colors, numbers, and emotions. Our results show evidence of
explicit learning with participants’ responses being attributed to
conscious response bases, rules, and memory.
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L INTRODUCTION

Mixed Reality (MR) was specified by Milgram et al. [1],
[2] with the Reality-Virtuality (RV) continuum. More recently,
Skarbez et al. [3] revised this definition under the consideration
that pure VR is challenging to implement because interoceptive
senses cannot be controlled with the current level of computer
technology. Thus, Skarbez et al. put the RV continuum in
correspondence with the perception of augmented content,
from environments where “the real and virtual world objects
are presented within a single display” [1, p.1322] to
environments where “real world and virtual world objects and
stimuli are presented together within a single percept” [3, p.4].
From this perspective, the RV continuum specifies not just a
multitude of possibilities of designing MR systems, but also a
multitude of MR experiences.

In this paper, we focus on the specific experience of social
learning in a MR environment. We build on MR4ISL [4], a
MR HoloLens application designed for psychology
experiments, which we customize for a controlled experiment
with N=47 participants. We report evidence of explicit social
learning, and identify opportunities for future work and further
development of the MR4ISL application towards observing
implicit learning.
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II.  RELATED WORK

We relate to prior work on Implicit Social Learning (ISL),
and discuss MR applications, such as MR4ISL [4], which use
holographic avatars for psychology studies.

A. Implicit Learning

We start by introducing the cognitive process of implicit
learning (IL) with an example: could an intelligent agent
effectively use a complex set of rules in a given domain
without knowing that the domain is governed by rules? The
answer is a definite yes. For example, a five-year old child can
point out when an adult performs a grammatical error in
spoken language. However, beyond the fact that the child
cannot usually explain the grammatical rule, they do not even
know that an entire domain of grammar rules even exists. Over
the last decades, cognitive scientists have looked into
understanding how such a task can be performed by the human
mind. With a relatively general but, by no means unanimous,
support, the scientific community considers the human
cognitive system capable of unintentionally acquiring
information from the environment in the absence of conscious
awareness. In his seminal paper, Reber [5] coined the term
implicit learning to refer to this family of cognitive processes.

Besides anecdotal evidence, the scientific community has
developed standardized paradigms for the investigation of IL.
One of the most used methods is the Artificial Grammar
Learning (AGL) task [5]. In a prototypical AGL task,
participants are informed that they partake in a memory
experiment, and are asked to memorize several, apparently
meaningless, letter strings between 5 and 9 elements long.
After the acquisition phase, participants are informed that the
letter strings they just memorized were not constructed at
random, but using a very complex set of abstract rules, which
are not disclosed. In the second part of the AGL task, i.e., the
test phase, participants are presented with a new set of letter
strings. They are informed that some of the strings respect the
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same set of complex rules as the ones they have encountered
previously, i.e., grammatical strings, while the others respect a
different set of rules, i.e., ungrammatical strings. The task is to
indicate, to the best of their ability, whether each of the novel
strings is grammatical or not. Evidence of IL appears when the
participants classify the grammaticality of the strings above
chance level, even when they subjectively feel unaware of the
knowledge that guided their responses. In other terms, they
perform better than chance even when they feel that they rely
on an intuition or simply guess the correct response.

Scientists investigated the functioning of IL in relation to a
variety of factors. For instance, Norman and Price [6] asked if
the boundary conditions, i.e., the nature of the surface stimuli,
influence the nature of learning. They employed AGL and
designed a between-groups experiment. Half of the participants
completed the acquisition phase with strings composed of
letters and the other half with strings of pictures of yoga poses.
Results indicated that both groups had acquired knowledge
from the task but, when compared with the letters group, the
learning achieved by the yoga group was more implicit.
Moreover, Eitam et al. [7] showed that participants implicitly
learn an artificial grammar when it is instantiated by surface
stimuli depicting human faces. However, the same grammar is
not learned when instantiated by pictures of buildings. Given
that IL seems to be highly sensitive to the perceptual features
of the stimuli upon which it operates [7], [8], our chief goal is
to develop a research tool to assess the functioning of this
cognitive process upon socially relevant surface stimuli in a
manner as close as possible to a genuine social interaction.

B.  Mixed Reality Applications for Studies in Psychology

The scientific literature presents several applications and
systems that employ virtual or holographic avatars. For
instance, Hatada et al. [9] developed “Double Shellf’, a VR
application for interacting with virtual avatars. They reported
intense eeriness when the virtual avatar was acting
autonomously. Putra et al. [10] implemented a holographic
avatar for multimodal conversation. Starting from the premise
that it is unknown if an avatars’ appearance can also influence
the user’s psychological response to physical exercises, Kocur
et al. [11] examined psychological and perceptual responses to
athletic avatars while cycling in VR. Shao et al. [12]
implemented ASL teaching in an immersive learning
environment featuring a virtual avatar. Kocur et al. [11] were
also interested in analyzing the effects of self and external
perceptions of avatars on cognitive task performance in VR. To
the best of our knowledge, there are no MR applications except
MRA4ISL [4] that employ holographic avatars to facilitate
implicit learning. Due to its high relevance to our work, we
present MR4ISL in detail in the next subsection.

C. MRA4ISL

Pampardu et al. [4] introduced MR4ISL, the Mixed Reality
tool for Implicit Social Learning, a HoloLens 1st generation
application designed to examine the psychological aspects
involved by implicit social learning. MR4ISL follows the
principles of implicit and explicit learning of socio-emotional
information [8], and implements voice and gesture-based input
to enable participants from controlled studies to interact with

virtual avatars in MR. In a follow-up work, Pamparau et al.
[13] introduced XR4ISL by porting MR4ISL to a HTC HMD.
They used XR4ISL to discuss differences of conducting
experiments in MR and VR; see [13] for more details.

III. EXPERIMENT

A. Objective

We conducted an experiment to assess learning of cognitive
structures instantiated by socio-emotional components in a MR
setup with three goals: (1) creating an immersive environment
saturated in structural regularities that are likely to be learned
through repeated exposure, (2) evaluating whether the
environment induces learning, and (3) evaluating whether the
environment induces implicit learning.

B.  Participants

A number of N=47 participants (mae.=19.54, SD=0.83), all
psychology undergraduate students, underwent this research in
exchange for partial course credits. Participants signed an
informed consent to participate in the experiment and for their
anonymized data to be made publicly available. This research
received the approval of the Babes-Bolyai University’s
institutional Ethics Committee, and complied with the 1964
Declaration of Helsinki and its later amendments.

C. Apparatus

We implemented a custom version of MR4ISL using the
second generation Microsoft HoloLens HMD featuring an
ARMVS architecture, 65GB UFS 2.1 flash and 4GB LPDDR4x
DRAM memory, and running Windows 10. We used Visual
Studio 2019, Unity3D, and the Windows SDK for Windows 10
to implement our custom version of MR4ISL as a C#/C++
Universal Windows Platform (UWP) application. Gesture
recognition was implemented with the HoloLens built-in
technique for detecting touch gestures.! Voice recognition was
implemented as a C# script using the HoloLens built-in
feature.> The experiment was organized in three phases:
training, acquisition, and festing. Next, we discuss each phase
in detail.

The training phase. The purpose of training was to familiarize
participants with the MR environment and interacting with
virtual objects. We ensured that participants acquired this skill
by presenting them with a structured sequence of events. Audio
instructions were provided as guidance during the training
phase. For example, the participants were asked to look at their
hands in MR and notice the augmentations (Figure 1, left)
represented by blue spheres from the top of their index fingers,
which were used to touch and interact with MR holograms.
Next, the participants followed a brief interaction exercise
during which they had to touch/select one cube and then
touch/select five cubes in a particular order (Figure 1, middle).

! https://docs.microsoft.com/en-us/dynamics365/mixedreality/
guides/authoring-gestures-hl2basic-actions-and-gestures-to-know
2 https://docs.microsoft.com/en-us/windows/mixed-
reality/design/voiceinput
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Fig 1. Left The overlayed augmented version of hand; Mzddle: Five blue cubes numbered from 1 to 5 to appear in scene in training phase; Right: The answer
options for participants.

- Fig 2. Emotional facial expressions presented to the participants.

The acquisition phase. The cover story was presented to the
participants, i.e., our experiment aims to investigate how colors
assist people in adjusting their emotions. Participants were
further instructed that they were interacting with Kevin, a
virtual avatar that can experience several emotional states.
Kevin was initially depicted with a neutral emotion, then
displayed the seven emotions and corresponding facial
expressions employed in our experiment; see Figure 2. Each
facial expression was named to the participant during the audio
instructions. The main task followed. Participants were
informed that Kevin would change his emotional state only as a
reaction to the color he is being shown, and the participant’s
task was to figure out Kevin’s preferences for colors to make
him maintain a calm emotional state (neutral facial expression)
in as many trials as possible. In the next instructional step, we
familiarized participants with the manner in which they could
show Kevin colors. Seven colored cubes (Figure 1, right) were
displayed in the MR scene, which participants could select with
the index finger. Participants completed a trial test to which
Kevin reacted with a preprogramed transition from Intense
Anger to Low Joy. At this point, participants were reminded
that (i) the change in Kevin’s expression is a consequence of
the selected color, and (ii) Kevin should reach the neutral
emotional state in as many trials as possible. In the last
instructional step, participants were informed that visual
feedback was available over Kevin’s right shoulder: (i) a green
symbol when Kevin gets in neutral state as a result of the
participant’s choice, (ii) a red symbol with the text “repeated
response” each time they answer with the same choice on
consecutive trails, (iii) a red symbol with the text “you have X
seconds left” when the participant does not choose an answer
within seven seconds from the beginning of the trial, and (iv) a
red symbol with the text “slow answer® if they took more than
ten seconds to answer. When the participants felt prepared,
they initiated the experimental task by pressing a virtual button.
The acquisition task consisted in 10 blocks of 30 trials each
separated by 30-second breaks. Unknown to the participants,
interactions with Kevin were structured by an abstract rule
represented by a looped numerical sequence. The starting point
of the sequence was set at position 0, the locus where we
arbitrarily placed Kevin’s facial expression of intense anger
and participants’ “red” response option. The starting point of

the sequence was constant throughout the task. The length of
the sequence was determined by a mathematical equation, e.g.,
to determine the avatar’s expression in the 4™ trial:

Su=0+ [St.3+ (P.Resp.u - St.3)] (l)

where Si4 denotes the avatar’s state in the 4™ acquisition trial,
“0” denotes the starting point of the sequence, S;3 denotes the
avatar’s state in the 3" trial, and P.Resp..3 the response given in
the 3™ trial. For a detailed description of our implementation of
this equation, see Costea et al. [8]. Participants were asked to
keep the avatar in the neutral emotional state in as many trials
as possible. Thus, if participants acquire knowledge from the
task, we expect to detect an increase in the number of trials in
which the avatar displays the target state.

The testing phase. Participants responded to a task composed
of 28 trials. For each trial, one of the seven possible facial
expressions was presented, and the participants had to pick a
color they thought would regulate Kevin’s facial expression in
the neutral state. We assessed the implicit/explicit character of
learning with subjective measures of awareness. As the
psychological literature indicates [14], [15], participants have
sometimes a relatively clear idea of what the correct answer is
based on a rule or reason they have learned and which they can
consciously remember, i.e., a phenomenology that typically
occurs in explicit learning. Quite often, however, the
participants have just a feeling that a certain answer is correct,
but do not know what their feeling is based on. In other cases,
participants have no idea of the correct answer, and try to guess
it. If participants perform better than expected by chance, this
finding is indicative of an implicit learning process.

To prevent learning from the test trials, participants
received no feedback about the correctness of their responses.
Instead, they were asked to answer a forced-choice question
with four options (Guess, Intuition, Rule and Memory) to
indicate the basis for their response:

a. Guess. Your answer had no basis whatsoever. You could
have just as well flipped a coin to decide.

b. Intuition. You felt that your answer was correct, but you
have no idea why.

c. Rule. Your answer was based on a rule (or on a fragment of
a rule) that you know consciously and can describe.



d. Memory. Your answer was based on the fact that you
consciously remember that by responding with that color
you were bringing Kevin in the neutral state.

Responses were given via voice input with no time limit.

D. Procedure

The experiment was conducted in a controlled room of the
Cognitive Psychology Laboratory, Babes-Bolyai University.
Distracting stimuli, e.g., background noise and ambient light,
were kept constant throughout the data collection process.
Given the special epidemiological circumstances (SARS-COV-
2), we implemented several specific measures for the safety of
our participants: only two people were present at any time in
the room (i.e., the participant and the experimenter), sanitary
masks were worn, the equipment was sanitized, and the space
ventilated between the sessions. Participants gave their written
informed consent and were assigned anonymized codes. At the
end of the experiment, which took approximately 50 minutes,
participants were debriefed.

E. Design

We implemented a within-group design with repeated
measures. The amount of learning induced by the task was
measured with the number of trials in which participants
regulated the avatar to the neutral state. Explicit learning was
measured with the difference between participants’ accuracy
in the test phase and the chance level in the trials in which
they indicated they relied on explicit decision strategies.
Implicit learning was measured with the difference between
participants’ accuracy in the test phase and the chance level in
the trials where they relied on implicit decision strategies.

IV. RESULTS

A. Evidence of Learning

A one-way, repeated measures ANOVA revealed a
significant effect of practice on the number of on-target trials,
Fos7=1.97, p=.041, n%=.03, indicating that participants
improved their ability to control the avatar’s emotional state as
the task progressed.

B.  Evidence Regarding Implicit and Explicit Learning

Following the practice from the scientific literature [6],
[16], [17], we collapsed the test phase responses attributed to
Guess and Intuition to create implicit attribution scores.
Similarly, we collapsed responses attributed to Rules and
Memory to create explicit attribution scores. Conforming to the
general pattern of results from the literature, more than half of
the responses were attributed to implicit response bases:
57.75% implicit vs. 41.56% explicit response attributions. To
analyze the type of learning induced by our task, we calculated
the chance level to 0.142 (participants had seven response
options of which only one was correct). A one-sample #-test
indicated that responses attributed to conscious response bases
(i.e., Rule and Memory) were significantly above chance,
t55=5.57, p<.001, d=-0.744. This result indicates that
participants acquired a significant amount of explicit
knowledge from the task. However, a second #-test indicated
that responses attributed to unconscious structural bases (i.e.,

Guess and Intuition), were not significantly above chance,
t(56):—1.95, p=97, d=0.258, Bh((),‘ozg):().l6, showing that
unconscious knowledge was not acquired.

V. DISCUSSION

Different from our expectations, the task generated only
explicit and not implicit social knowledge. While explicit
knowledge does play a determinant role in our social
functioning, the current version of the task did not capture the
entire complexity of knowledge acquisition within social
interactions [6]. We believe there are two causes behind the
exclusively explicit character of learning observed in our task.
First, we presented participants with a complex regularity,
which could have overloaded the conscious processing
capacity and favored IL. In a future experiment, the complex
regularity could be broken down in simpler micro-regularities
(e.g., if the avatar’s expression is ”X,” then response ”Z”
brings it to the target state). Second, as opposed to how
realistic social situations unfold, the mapping between the
avatar’s expression and the participants’ response was
completely arbitrary, which could have made the task feel
disfluent or unnatural. A sense of disfluency has been shown
to prompt participants to fully mobilize their conscious
processing resources (e.g., attention, working memory [18]).

VI. CONCLUSION

We implemented a custom version of the MRA4ISL
application for HoloLens to evaluate implicit and explicit
social learning in a MR environment. While our experimental
task successfully induced learning, learning was exclusively
explicit in nature. Future work will address variations of our
experimental task and corresponding customizations of the
MRA4ISL software application to investigate the phenomenon
of implicit learning in simulated social contexts instantiated by
various socioemotional components. Also, future versions of
MRAISL [4] and XR4ISL [13] will consider design aspects of
the user experience [19] delivered to the study participants
during their immersion in the mixed/extended reality ISL
environments.
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