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ABSTRACT
We introduce GearWheels, a software tool designed to support user studies and
experiments on topics about gesture input with wearables, including smartwatches,
smart rings, and smartglasses. GearWheels features an event-based asynchronous
software architecture design, implemented exclusively with web standards, commu-
nications protocols, data formats, and programming technology, which makes it
flexible and encompassing of many programmable wearable devices that support
HTTP and WebSocket communications via a Wi-Fi connection. GearWheels dif-
ferentiates from prior software tools for gesture acquisition, elicitation, recognition,
and analysis with its web-based, wearable-oriented, and experiment-centered soft-
ware architecture and user interface design. We demonstrate GearWheels by set-
ting up an experiment with a touchscreen device affixed to the users’ index finger,
wrist, and temple of a pair of glasses to illustrate touch stroke-gesture and motion-
gesture input acquisition in three experimental conditions involving a smart ring,
a smartwatch, and a pair of smartglasses, respectively. We also perform a technical
evaluation of GearWheels in the form of a simulation experiment, and report the
request-response time performance of the software components of GearWheels with
two low-end and high-end smartwatch devices, an Augmented Reality smartglasses,
and a smartphone used as the control condition. We release GearWheels as open
source software in the community to assist researchers and practitioners in imple-
menting user experiments and studies involving gesture input with wearable devices
and to foster new developments and discoveries about gesture input with wearables.

KEYWORDS
Gesture input; wearables; user experiments; user studies; software tool;
event-based software architecture.

1. Introduction

Gestures represent an expressive means of non-verbal communication to convey in-
tentions and meaning through movements performed with the fingers, hands, head,
and the whole body. Consequently, the expressiveness and versatility of gestures have
been extensively exploited for designing interactions with computer systems and de-
vices (Chen, Ma, Peng, Zhou, Yao, Ma, Wang, Gao and Shen, 2018; Gheran, Vander-
donckt and Vatavu, 2018; Leiva, Mart́ın-Albo, Plamondon and Vatavu, 2018; Malu,
Chundury and Findlater, 2018; Narayana, Beveridge and Draper, 2018; Ungurean,

CONTACT Radu-Daniel Vatavu. Email: vatavu@eed.usv.ro

The Version of Record of this manuscript has been published and is available 
in the International Journal of Human-Computer Interaction at 
https://dx.doi.org/10.1080/10447318.2022.2098907.



Pentiuc and Vatavu, 2009; Vatavu, 2012; Vuletic, Duffy, Hay, McTeague, Campbell
and Grealy, 2019; Yamada, Kakue, Shimobaba and Ito, 2018). Among these, gesture
input is particularly useful for interactions with wearable devices that are worn or
affixed to the body and, consequently, have a distinctive vantage point to capture ges-
ture input and provide corresponding feedback to the user. These devices can sense,
recognize, and respond to the movements of the body (Bailly, Müller, Rohs, Wigdor
and Kratz, 2012; Chen, 2015; Cioată and Vatavu, 2018; Esteves, Velloso, Bulling and
Gellersen, 2015; Gheran et al., 2018; Kim, Kwon, Han, Park and Jo, 2018) with a
diversity of form factors, functions, and built-in sensors, from computers that can be
worn, information appliances that can be worn, and computers integrated into cloth-
ing, respectively (Baber, 2001). Wearables also enable gesture-based interactions that
leverage the user’s body for both input and output, e.g., Pose-IO (Lopes, Ion, Mueller,
Hoffmann, Jonell and Baudisch, 2015) accepts user input via gestures performed with
the wrist and provides output via electrical muscle stimulation.

Designing effective gesture-based interactions for wearables subsumes a correspond-
ing body of scientific and design knowledge about users’ preferences for interactive
gestures (Dingler, Rzayev, Shirazi and Henze, 2018; Gheran et al., 2018; Zaiţi, Pentiuc
and Vatavu, 2015) and users’ abilities to perform gestures (Malu et al., 2018; Oh and
Findlater, 2014; Vatavu and Ungurean, 2019). This knowledge can be obtained by
employing models of gesture input and by conducting user experiments and studies to
collect and analyze new data. While theoretical models are useful to inform the design
of gesture sets for interactive computer systems, e.g., estimation of articulation speed
from the geometrical shape of the gesture (Leiva, Vatavu, Martin-Albo and Plamon-
don, 2020), their availability is limited. Moreover, such models (Cao and Zhai, 2007;
Leiva, Mart́ın-Albo and Plamondon, 2015; Leiva et al., 2018, 2020; Long, Landay, Rowe
and Michiels, 2000; Vatavu, Vogel, Casiez and Grisoni, 2011) haven’t been validated
for gesture input with wearables, and further examinations are needed to understand
their applicability outside the scope and context in which those models were intro-
duced. The alternative is conducting user studies and experiments, which represent an
important source of information for researchers and practitioners to understand users’
gesture articulation performance, preferences, and behavior during gesture input with
various types of wearable devices. However, this approach means having access to
specialized software to collect gestures from wearable devices that come with hetero-
geneous operating systems, hardware specifications, sensor types, sensor resolution,
and dependency on software libraries for specific platforms.

In this context, flexible software tools are needed to assist researchers and prac-
titioners with gesture collection during user studies and experiments. Overall, tools
are important in HCI to support design and implementation of user interface soft-
ware (Myers, 1995) and rapid prototyping (Beaudouin-Lafon and Mackay, 2002), and
to understand user behavior regarding interactive computer systems (Ali, Morris and
Wobbrock, 2019; Vanderdonckt, Zen and Vatavu, 2019; Vatavu and Wobbrock, 2015).
Tools, as a specific type of research contribution in HCI (Wobbrock and Kientz, 2016),
have been particularly welcomed at HCI venues, e.g., the User Experience and Usabil-
ity subcommittee of CHI encourages papers that extend the knowledge, practices,
methods, components, and tools that make technology more useful, usable, and de-
sirable; also see Terenti and Vatavu (2021) for an overview of the practices adopted
by HCI researchers to describe their software tools in academic publications. In this
context, several tools have been released in the scientific community of HCI to support
gesture collection, elicitation, recognition, and analysis (Bomsdorf, Blum and Künkel,
2017; Kazemitabaar, McPeak, Jiao, He, Outing and Froehlich, 2017; Kin, Hartmann,
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DeRose and Agrawala, 2012a; Kin et al., 2012a; Kin, Hartmann, DeRose and Agrawala,
2012b; Long Jr, Landay and Rowe, 1999; Lü, Fogarty and Li, 2014; Lü and Li, 2012;
Magrofuoco, Roselli, Vanderdonckt, Pérez-Medina and Vatavu, 2019; Nebeling, Teu-
nissen, Husmann and Norrie, 2014; Vatavu, 2019; Vatavu and Wobbrock, 2015). How-
ever, tools for wearable devices have been mostly focused on construction kits (Jones,
Nabil, McLeod and Girouard, 2020; Kazemitabaar et al., 2017), leaving researchers and
practitioners with little options other than implementing gesture data collection soft-
ware by themselves for their own gesture input collection studies and experiments. For
example, in a study about identifying consistent gestures across smartphones, watches,
and glasses, Dingler et al. (2018) “used Apache Cordova 3 to create a corresponding
Android app optimized for each device type, namely the Samsung Galaxy S5 smart-
phone (running Android version 5.0), the Samsung Galaxy Gear SM-V700 smartwatch
(running Android version 4.2.2), and Google Glass (running Android version 4.4.4)”
(p. 4). When conducting a study about on-body input for mobile users with visual
impairments, Oh and Findlater (2014) built a “computer vision module, which tracked
the color marker on the participant’s gesturing finger, [...] and custom software run-
ning on a laptop [...]. The custom touch-detection module ran on an Arduino Leonardo
board [...] to detect capacitive input” (p. 117). When describing a study about ges-
tures performed by people with motor impairments using smartphones and tablets,
Vatavu and Ungurean (2019) noted: “A custom Android application was developed to
implement the experiment design and to collect stroke-gestures” (p. 215:3) and, in a
follow-up (Vatavu and Ungurean, 2022) addressing similar gesture types for wearables:
“we developed a custom Tizen Web application to collect stroke-gestures with the in-
tegrated touchscreen [...] and motion-gestures with the built-in 3-axis accelerometer”
(p. 4). In an end-user gesture elicitation study involving mid-air gestures for televi-
sion, Zaiţi et al. (2015) described their apparatus as follows: “A 40-in. (102 cm) Sony
TV and a Leap Motion controller were connected to a computer running Microsoft
Windows 8.1 and our custom gesture acquisition software that implemented the ex-
periment design” (p. 823). Many other examples such as these can be encountered in
the scientific literature.

In this context, we introduce GearWheels (Gesture Experiments ARchitecture for
Wearables with HEterogeneous ELementS), a tool with a dedicated software archi-
tecture designed to assist researchers and practitioners in their user studies and ex-
periments involving gesture input with wearable devices. Just like the gearwheels of
a machine composed of multiple elements and interconnected parts, we designed the
multiple components of the GearWheels software architecture to provide flexible func-
tionality for a variety of wearable devices that support gesture input. GearWheels is
flexible and encompassing of many types of wearables, and can be employed in user
experiments to collect touch input, multitouch gestures, stroke-gestures, and motion-
gestures from programmable wearable devices that support HTTP and WebSocket
communications via a Wi-Fi connection. Our practical contributions are as follows:

(1) GearWheels, an event-based asynchronous software architecture design and a
corresponding software tool for implementing gesture input experiments with
programmable wearables that connect to Wi-Fi and support HTTP and Web-
Socket communicates. The design of GearWheels was informed by nine quality
properties (e.g., modularity, reusability, replaceability, interoperability, etc.) for-
mulated as requirements and implemented via nine software development strate-
gies (e.g., asynchronous processing, web-based communication, inversion of con-
trol and dependency injection, etc.). We present the technical details of Gear-
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Wheels and a characterization of its software architecture based on the Systems
and Software Quality Requirements and Evaluation ISO/IEC standard. Also, we
show how GearWheels differentiates from prior work with its unique combination
of web-based, wearable-oriented, and experiment-centered functionality.

(2) We demonstrate the practical usage of GearWheels by describing the steps of an
experiment involving a small touchscreen device affixed to various parts of the
body—on the hand in the form of a ring device, on the wrist as a smartwatch,
and at head level, attached to the temple of a pair of glasses—to exemplify
stroke-gesture and motion-gesture collection with GearWheels.

(3) We perform a technical evaluation of the GearWheels software architecture in
terms of the request-response time of its software components. We conduct the
evaluation in the form of a within-subjects simulation experiment involving two
smartwatch devices, a pair of smartglasses, and a smartphone used as the control
condition.

We release GearWheels as an open-source tool in the community to assist researchers
and practitioners in implementing their own user studies and experiments involving
gesture input with wearable devices. In doing so, we hope to foster new discoveries
and regarding users’ gesture articulation performance and gesture preferences during
interactions with wearables.

2. Related Work

We discuss in this section systems and tools developed within the HCI community
to support implementation of user experiments and studies about gesture input, and
tools to assist with gesture data collection and analysis. We focus on the body of
research addressing gesture input and, where available, gesture input with wearable
devices. We also relate to aspects of software architecture design and, specifically, to
asynchronous software architectures due to their capability to handle heterogeneous
input and output devices (Schipor, Vatavu and Vanderdonckt, 2019a; Schipor, Vatavu
and Wu, 2019b) and, thus, their relevance to our scope.

2.1. Software Architecture and Tools in HCI

We understand by software architecture the abstract, yet implementable, structural
and functional description of a software system (Bass, Clements and Kazman, 2003;
Clements, Garlan, Little, Nord and Stafford, 2003) that impacts the five stages of
a system’s life cycle, from requirements specification to development, testing, de-
ployment, and influence on maintenance strategies (Breivold, Crnkovic and Larsson,
2012). Among the many approaches to software architecture design (Aleti, Buhnova,
Grunske, Koziolek and Meedeniya, 2012; Banijamali, Pakanen, Kuvaja and Oivo, 2020;
Kruchten, Obbink and Stafford, 2006), asynchronous design focuses on units of work
that generate and process events that are temporally independent from the main flow
of the system (Hauck, 1995; Schmidt, Stal, Rohnert and Buschmann, 2013). Asyn-
chronous processing is especially important in large and complex interactive computer
systems, such as smart environments (Schipor et al., 2019a,b; Schipor, Wu, Tsai and
Vatavu, 2017), where multiple devices and sensors—from the environment, but also
handheld, worn, and operated by users—stream data simultaneously.

One popular strategy to implement asynchronous software applications is event-

4



driven programming, where the processing flow is dictated by the occurrence of ex-
ternal events, e.g., data from sensors (Schipor et al., 2019b), messages delivered by
third-party applications and services, and user input for interactive systems (Schipor
et al., 2019b). Event-driven programming enables low coupling among the multiple in-
tercommunicating components of a system. Events are encapsulated in the form of mes-
sages, which implement notifications that travel in the software architecture (Chandy,
2006). During the inter-component communications, some of the software components
act as producers and generate events, while others as consumers that receive mes-
sages and process the corresponding events (Moxey, Edwards, Etzion, Ibrahim, Iyer,
Lalanne, Monze, Peters, Rabinovich, Sharon et al., 2010). Since events reflect changes
in the state of the producers, they are strongly coupled with their source. Event-
driven software architectures for implementing interactions with computer systems,
such as Euphoria (Schipor et al., 2019a) for interactions in smart environments, and
SAPIENS (Schipor et al., 2019b) for peripheral interaction, specifically require the
implementation of producer and consumer software components according to their
operation logic and data flows.

Of specific interest to the scope of our work are systems, tools, platforms, and
software architecture designs that accept input from users (i.e., the participants of
an experiment or study) and, thus, place users at core of the informational ecosys-
tem (Garćıa-Holgado and Garćıa-Peñalvo, 2016). From this perspective, the intersec-
tion between software engineering and HCI in the scope of our work encompasses “the
design, evaluation, and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them” (Hewett, Baecker,
Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank, 1992). In this regard,
Cruz-Benito et al. (Cruz-Benito, Garcia-Penalvo and Theron, 2019) identified four
types of architectural solutions for HCI applications: layered, module and component
based, web services, and agent based. Jones, Milic-frayling, Rodden and Blackwell
(2007) proposed a contextual method for improving software products based on the
discovery and evaluation of new features for standard web clients. Also, the data trav-
eling through the software architecture can take many forms according to the available
input modalities, from mid-air gestures (Vatavu, 2017c) to voice input (Aiordăchioae,
Schipor and Vatavu, 2020), touch-based interactions (Vatavu, Gheran and Schipor,
2018), eye gaze input (Gherman, Schipor and Gheran, 2018), electroencephalogra-
phy signals (Schipor, Pentiuc and Schipor, 2012), and other physiological measure-
ments (Schipor, Pentiuc and Schipor, 2011). Therefore, a strong relationship can be
identified between the software architecture of an interactive computer system and its
interaction capabilities, which can be characterized with quality design requirements.
These include support for multimodal interaction (Gherman et al., 2018), context
awareness (Roda, Navarro, Zdun, López-Jaquero and Simhandl, 2018; Schipor et al.,
2019b), enhanced usability (Aiordăchioae et al., 2020; Vatavu et al., 2018), support
for collaborative work (Tănase, Vatavu, Pentiuc and Graur, 2008), reusability and re-
placeability (Schipor, Bilius and Vatavu, 2022), and others. The software architecture
of GearWheels, the tool that we introduce in this work for gesture input experiments
with wearable devices, was informed by nine quality requirements; see Subsection 3.1.

2.2. Software Tools for Gesture Experiments and Studies

Several tools exist to assist researchers and practitioners interested in conducting ex-
periments and studies about gesture input and to analyze data from such studies. To
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identify prior work, we used surveys of the literature on gesture-based input (Magro-
fuoco, Roselli and Vanderdonckt, 2021; Siean and Vatavu, 2021; Villarreal-Narvaez,
Vanderdonckt, Vatavu and Wobbrock, 2020; Vuletic et al., 2019), and performed fo-
cused literature searches1 using the ACM DL and IEEE Xplore electronic databases.
We found tools and systems designed for gesture acquisition (Acharya, Matovu, Ser-
wadda and Griswold-Steiner, 2019; Magrofuoco et al., 2019), gesture processing (Boms-
dorf et al., 2017; Kazemitabaar et al., 2017; Nebeling et al., 2014), sharing gesture sets
via online repositories (Magrofuoco et al., 2019; Magrofuoco and Vanderdonckt, 2019;
Solis, Pakbin, Akbari, Mortazavi and Jafari, 2019), and gesture analysis (Kin et al.,
2012a,b; Lü et al., 2014; Vatavu, 2017a, 2019; Vatavu and Wobbrock, 2015), respec-
tively. The gesture types addressed in this prior work can be collected from a variety
of input devices, from touchscreens (Kin et al., 2012a; Long Jr et al., 1999; Lü and
Li, 2012) to video cameras and depth sensors (Ashbrook and Starner, 2010; Buruk
and Özcan, 2017; Magrofuoco et al., 2019; Nebeling, Ott and Norrie, 2015; Nebeling
et al., 2014), motion sensors (Tang and Igarashi, 2013), IoT devices (Solis et al., 2019),
mobile devices (Acharya et al., 2019; Kohlsdorf, Starner and Ashbrook, 2011; Magro-
fuoco and Vanderdonckt, 2019), dual-screen mobile devices (Wu and Yang, 2020),
and wearables (Jones et al., 2020; Kazemitabaar et al., 2017; Roggen, 2020). Some of
these systems implement distributed software architectures, e.g., on the web and in
the cloud, to enable remote access to the tool, data, and resources (Ali et al., 2019;
Buruk and Özcan, 2017; Magrofuoco and Vanderdonckt, 2019; Schipor et al., 2019a;
Solis et al., 2019). We found that wearable-oriented tools leveraged a variety of sensors
to offer insights about users’ everyday activity, but also to provide feedback. Some of
the systems specifically designed for wearables are 360QS (Singh, Fernandez-Luque
and Srivastava, 2017), a toolkit for research on sleep and physical activities, SenseG-
raph (Alpers and Benţa, 2021), an application for the assessment of affective states,
Compressables (Endow, Moradi, Srivastava, Noya and Torres, 2021), a prototyping
toolkit for compression-based haptic feedback, and WDK (Haladjian, 2019), a devel-
opment kit for applications that employ activity recognition.

By surveying the scientific literature, we identified four types of tools designed for
gesture input: (1) tools for gesture set design represented by software applications that
enable users to manage gesture sets for interactive systems (Ashbrook and Starner,
2010; Kin et al., 2012b; Kohlsdorf et al., 2011; Long Jr et al., 1999; Solis et al., 2019;
Tang and Igarashi, 2013), (2) gesture acquisition tools represented by software appli-
cations that collect and store gestures (Acharya et al., 2019; Magrofuoco et al., 2019;
Magrofuoco and Vanderdonckt, 2019), (3) gesture recognition tools with services and
features for gesture processing and classification (Kin et al., 2012a,b; Lü et al., 2014; Lü
and Li, 2012), and (4) experiment-centered tools represented by software applications
designed to assist researchers and practitioners in conducting user studies and experi-
ments about gesture input (Ali et al., 2019; Buruk and Özcan, 2017; Magrofuoco and
Vanderdonckt, 2019; Nebeling et al., 2015). For example, CUBOD (Tang and Igarashi,
2013) enables definition of custom body gestures and MAGIC (Ashbrook and Starner,
2010; Kohlsdorf et al., 2011) assists designers in creating gesture sets that minimize
false positives for specific gesture recognition approaches. GestMan (Magrofuoco et al.,
2019) is a cloud-based tool for the management of gesture sets that enables researchers
and practitioners to remotely collect gestures from end users via HTML web appli-

1We ran the query https://dl.acm.org/action/doSearch?fillQuickSearch=false&target=advanced&

expand=dl&AllField=Title%3A%28wearable*+AND+tool*%29 in the ACM DL and https://ieeexplore.

ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&newsearch=true&queryText=

(%22Document%20Title%22:wearable*%20AND%20%22Document%20Title%22:tool*) in IEEE Xplore.
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Table 1. Comparison of prior work using a set of criteria representing features relevant to GearWheels.

Wearable
orientation

Web
based

Open
source

Experiment
centered

360QS (Singh et al., 2017)

Compressables (Endow et al., 2021)

Crowdlicit (Ali et al., 2019)

Cubod (Tang and Igarashi, 2013)

Gelicit (Magrofuoco and Vanderdonckt, 2019)

GestAnalytics (Buruk and Özcan, 2017)
GestMan (Magrofuoco et al., 2019)

GestureCoder (Lü and Li, 2012)

GestureScript (Lü et al., 2014)

GestureAnalyzer (Jang, Elmqvist and Ramani, 2014)

KinectAnalysis (Nebeling et al., 2015)

Magic (Ashbrook and Starner, 2010)

Magic 2.0 (Kohlsdorf et al., 2011)

Proton (Kin et al., 2012b)

Proton++ (Kin et al., 2012a)

SenseGraph (Alpers and Benţa, 2021)

WDK (Haladjian, 2019)

XDKinect (Nebeling et al., 2014)

Overall

cations. Gesture Script (Lü et al., 2014) and Gesture Coder (Lü and Li, 2012) were
designed to assist developers in creating gesture classifiers with example-based learn-
ing, while multitouch gestures are represented as regular expressions in Proton (Kin
et al., 2012a,b). Kinect Analysis (Nebeling et al., 2015), designed for whole-body ges-
tures, features recording, playing, and analysis of gestures, and can be accessed from
remote devices via the web. Crowdlicit (Ali et al., 2019) and Gelicit (Magrofuoco
and Vanderdonckt, 2019) enable researchers to conduct elicitation studies (Vatavu
and Wobbrock, 2015; Wobbrock, Morris and Wilson, 2009) outside the lab and via
the web to increase accessibility and replicability (Gheran, Villarreal-Narvaez, Vatavu
and Vanderdonckt, 2022) and save resources (Reinecke and Gajos, 2015).

2.3. Summary

The HCI community has put special emphasis on empowering researchers and practi-
tioners with tools to support the design and implementation of user experiments and
studies, and our literature review identified several such tools for gesture acquisition,
elicitation, recognition, storage and management, and analysis. These tools have been
implemented using a variety of software architecture styles and design principles, from
desktop-based to SaaS and PaaS. Among these approaches, we highlight the advan-
tages of event-based, asynchronous processing software and of applications that are
readily available over the web that use web standards and data formats. However,
wearable devices, such as smartwatches and smartglasses, have been little addressed
by such tools. There is thus the need to complete the landscape of gesture toolkits,
platforms, frameworks, and analysis software with tools that specifically address wear-
ables and solutions that handle appropriately their heterogeneous characteristics. To
this end, we present in Section 3 GearWheels, our software tool for studies and ex-
periments involving gesture input with wearable devices. In Table 1, we provide an
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overview of the prior work surveyed in this section, characterized according to four fea-
tures representative of GearWheels: wearable orientation, web-based and open source
development, and experiment-centered design, respectively.

3. GearWheels

We present the software architecture details of GearWheels in relation to a set of
nine design requirements that we outlined for the application context of providing
support for gesture input studies and experiments with wearable devices. Just like
the gearwheels that work together to provide the functionality of a complex machine,
GearWheels consists of several intercommunicating and interoperating software com-
ponents that are composed of software modules dedicated to specific tasks in the
architecture. The components are those parts of the software that run independently,
although they cooperate and exchange information, while the modules are implement-
ing specific tasks, services, and functionality. We start our description of GearWheels
with a presentation of its design requirements.

3.1. Design Requirements for GearWheels

Designing software architecture is a process that often starts with the identification of
the quality attributes that the final system must meet (Evesti, 2007). Some approaches
consider quality attributes subsumed to concrete usage scenarios (Folmer, van Gurp
and Bosch, 2003), such as the Software Architecture Analysis Method (Kazman, Bass,
Abowd and Webb, 1994), or to external constraints, such as the Architecture-Based
Component composition/Decision-oriented Design (Cui, Sun, Xiao and Mei, 2009). In
this work, we employ the Software Product Quality Model from SQuaRE, the Systems
and Software Quality Requirements and Evaluation ISO/IEC standard (International
Organization for Standarization, 2005), from which we select nine quality properties
directly relevant for GearWheels; see Figure 1 for a visual illustration. In the following,
we group these properties into three categories according to the interactions that they
enable among software modules, components, and between users and GearWheels.

The first category of quality properties regards the interaction among the software
modules located within the same component, as follows:

R1. Modularity represents the degree in which a software component can be de-
composed into low-coupled software modules so that any modification within the
individual modules propagates little or no changes in the other modules. This
property is key for software tools designed to support and conduct user exper-
iments, because such tools need to accommodate various experiment designs,
including designs that were not envisaged or available when the software com-
ponents and modules were originally developed and integrated to form the tool.
Consequently, the software architecture of GearWheels needs to isolate potential
changes within the various software modules and components.

R2. Reusability measures the ability of a software module to integrate more than
one software component without modification. This requirement is useful when
specifying user experiments in order to easily activate and deactivate various
functionalities of the tool.

R3. Testability refers to the degree in which a software module can be independently
tested without the need to recreate its entire software ecosystem. This property
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implies the existence of rigorously defined and strongly separated responsibilities
for each software module. For the success of user experiments conducted with
GearWheels, failures should not occur with the software modules, components
and, overall, the tool while running the experiment. For instance, automatic
testing is a desirable feature to ensure that data represented by user input is
recorded and stored correctly by the tool.

Our second category of requirements refers to the interaction between the software
components of the GearWheels architecture. Since components have a higher level of
independence compared to modules, they should interact in ways that are more loosely
coupled. Our design requirements for software modules apply to software components
as well, but the latter also need to comply with additional requirements, as follows:

R4. Co-existence represents the degree to which a software component shares the
same software ecosystem with other components without producing any harmful
influence on their functionality and/or efficiency. For instance, it is common in
user experiments with interactive computer systems for participants to interact
with multiple devices, e.g., in the context of cross-device input (Brudy, Holz,
Rädle, Wu, Houben, Klokmose and Marquardt, 2019) or for applications running
in smart environments (Schipor et al., 2019a,b).

R5. Interoperability is the ability of two or more software components to exchange
data via a common standard and to use that data during their operation. This
property is relevant to GearWheels since heterogeneous devices are often con-
sidered in user experiments to collect diverse information about participants’
input behavior, e.g., an eye-tracking device, touchscreen, and EEG headset were
used in conjunction by Gherman et al. (2018) to understand how users with
motor impairments interact via touch input, and Dingler et al. (2018) examined
consistent gestures across smartphones, watches, and glasses.

R6. Replaceability refers to the degree in which a software component can be
replaced by another without generating a significant impact on the overall func-
tioning of the architecture. Moreover, the replacement must remain transparent
for the users of the tool implementing the architecture, given that the function-
ality of the software architecture is preserved. This property plays an important
role when implementing multiple experimental conditions in a user study, e.g., by
considering different mobile devices during an experiment designed to evaluate
children’s performance with touch input (Vatavu, Cramariuc and Schipor, 2015),
or when conducting the study in multiple locations (Vatavu and Ungurean, 2019)
or using participants’ own devices (Buzzi, Buzzi, Leporini and Trujillo, 2017).

We also identified three design requirements that regard the quality of the interac-
tion between GearWheels and its users, either the experimenter that sets up the study
or the participants that follow the instructions provided by GearWheels:

R7. Appropriateness represents the degree in which the functionality of Gear-
Wheels is in line with the expected tasks and goals of the experiment. This
requirement can be extended to system completeness, a quality property that
indicates whether the existing functionality covers all of the objectives that were
specified for the system.

R8. Operability denotes how easy it is for users to configure, control, and operate
GearWheels. For this requirement, we identify two user roles: the experimenter
that sets up the study and runs it and the participants of the study that receive
instructions from GearWheels during the experiment.

R9. Learnability specifies the degree in which GearWheels helps its users to operate
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Figure 1. Visual overview of the nine quality properties, represented using requirements (left) and strategies
(right), for the software architecture design of GearWheels. Relationships between requirements and strategies

are highlighted, i.e., each requirement is met via several strategies, and each strategy is involved in addressing

several requirements.

it effectively during the experiment. Although the study participants can ask
the experimenter for assistance, high learnability is always preferable to prevent
unnecessary delays caused by misunderstandings or repetitions of trials.

3.2. Strategies for Implementing the Design Requirements of GearWheels

We elaborated nine strategies, grouped into three categories—technology-related, de-
sign patterns, and contextual—to implement the design requirements set for Gear-
Wheels; see Figure 1 for a visual illustration. Our first category of strategies addresses
technology to implement the GearWheels software architecture and tool. We rely on
software technology for the web since it is supported by many wearable devices with
a web browser and Wi-Fi connection, and is mature enough for our purposes to en-
able access to device resources through standardized APIs, such as the accelerometer
from a smartwatch, touch events for touchscreen displays, retrieving frames from the
built-in video camera and microphone of a smartglasses device, etc.

S1. Web interface refers to the use of HTML elements in the presentation layer of
GearWheels. This strategy implements the modularity and reusability require-
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ments (R1 and R2 in Figure 1) since several HTML elements can form web com-
ponents as atomic, easily reusable pieces of software; see Ast and Gaedke (2017).
Also, web applications should be familiar to the study participants and, thus,
previously acquired interaction experience with computing systems is reused to-
ward effective interaction with GearWheels (requirements R7 to R9).

S2. Web languages are represented by HTML, CSS, and JavaScript used for the
specification of the structure, presentation, and behavior layers of GearWheels.
This strategy enables portability since the majority of smart devices feature
web browsers or can be programmed using languages for the web.2 Moreover,
JavaScript can also be used as a server-side language on various platforms, pow-
ered for instance by the node.js runtime environment.3

S3. The web communication strategy specifies that all the communications be-
tween the software components of GearWheels are implemented via web proto-
cols, such as HTTP for half-duplex client-server communications and WebSocket
for full-duplex communications. This strategy offers standardized interaction be-
tween all the software components of GearWheels (requirements R4 to R6).

Our second category of strategies encompasses three software design patterns that
describe how software objects are created, organized, and instantiated, as follows:

S4. IoC-DI refers to the inversion of control (IoC) through dependency injection
(DI). In this approach, dependencies are injected into the object rather than
created inside the object. This pattern assures a clear separation between the
creation of a software object and its use as well as the decoupling between high
and low level classes and, thus, assures optimized interaction among the software
modules of the same component (design requirements R1 to R3).

S5. MVVM-C is an approach derived from the Model, View, and Controller (MVC)
approach to software design (Arcos-Medina, Menéndez and Vallejo, 2018) that
groups the software objects within a module in four categories: models that
embed domain data along the business logic, views for the user interface, view-
models that abstract views, and the coordinator for handling multiple view-
models. The main benefits of this structural design pattern are the decoupling
of objects (design requirement R1) and simple testing (design requirement R3).

S6. Asynchronous flow specifies that GearWheels handles asynchronous inter-
actions among its software components (design requirements R4 to R6). This
aspect is important since multiple input devices may be used at the same time
during an experiment (requirement R8). GearWheels must handle unpredictable
time-response behaviors and integrate them accordingly in the general flow of
the experiment. This approach relies on JavaScript that offers mechanisms to
handle asynchronicity, such as callbacks, promises, and async/await code execu-
tion patterns; see Schipor et al. (2019a,b) for examples of event-based software
architectures implemented using JavaScript exclusively.

Our last category of strategies to implement the design requirements of GearWheels
groups three contextual strategies with potential impact on the community of re-
searchers and practitioners that wish to conduct user experiments and studies involv-
ing gesture input. By adopting these strategies, GearWheels is free to use, but also
open to be extended and, thus, to meet other requirements as needed in the future.

S7. Open source indicates our reliance on open-source technologies, but also that

2See, for example, Tizen Web Application development, consisting of HTML, JavaScript, and CSS combined
in a package that can be installed on a Tizen device, https://docs.tizen.org/application/web/index
3https://nodejs.org/en/
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Figure 2. Overview of the GearWheels software architecture highlighting components (top), layers (left), and

supporting technologies (center) to implement them.

GearWheels is freely available under an open-source license. Our choice to use
open-source technology has a positive impact on both the interaction among
software modules (requirements R2 and R3) and software components (R4 to
R6), because third parties can reuse and test parts of GearWheels as needed.

S8. Cross-platform refers to the possibility to run GearWheels on platforms with
various hardware and software configurations. This property is important be-
cause of the variety of heterogeneous input devices that may be employed during
user experiments with gesture input; see our corresponding discussion from the
requirements specification section. Cross-platform compatibility is achieved via
web technologies, such as web data formats and communications protocols.

S9. Test automation specifies that GearWheels supports testing via simulated data
(design requirement R3). The testing files specify system behavior in various
conditions (requirement R7) and facilitate the refactoring of the software (R6)
since the tests can be automated.

3.3. Software Architecture

We implemented the software architecture of GearWheels starting from our nine de-
sign requirements and using the proposed strategies to address those requirements.
GearWheels consists of three software components, InputDevice, Hub, and Link,
illustrated in Figure 2:

• The InputDevice software component is designed to run on a wearable device,
such as smartwatch, smartglasses, etc., and receives direct input from the user,
e.g., a tap on the touchpad embedded in the temple of the smartglasses. To
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maximize portability (according to design requirements R4 to R6), we imple-
mented the InputDevice component using web technologies only (strategies S2

to S3). Although JavaScript offers mature support to handle a variety of user
and system events, such as touch input and video camera data, adapter mod-
ules are necessary when external sensors, such as eye trackers, are used and that
are interfaced via dedicated SDKs (strategy S8), e.g., for eye gesture input with
smartwatches (Esteves et al., 2015). In its current implementation, GearWheels
offers support for the acquisition of touchscreen stroke-gestures and accelerom-
eter and gyroscope motion-gestures implemented with JavaScript code that can
be readily used as is or adapted to implement specific gesture acquisition sce-
narios for custom user studies and experiments. A touchscreen stroke-gesture is
represented as a series of 2D points with timestamp and stroke ID associated
information. A motion-gesture is represented as a series of 6D points represent-
ing linear acceleration and orientation data captured on three axes of move-
ment. These two types of gestures are among the most commonly encountered
for wearable input and, thus, are supported by GearWheels out of the box with
JavaScript API. In Section 4, we present examples of these gesture types collected
in various experimental conditions, JSON data formats used in GearWheels to
represent gestures, and the JavaScript code available from GearWheels to collect
stroke-gestures and motion-gestures.

• The Hub implements the workflow of the user experiment and runs the user
interface. It enables the experimenter to navigate through the experiment trials
and enter notes during the experiment, e.g., whether a specific input was in-
correct (requirements R7 to R9). The Hub is logically connected with as many
InputDevice components as necessary to implement the experiment design (re-
quirements R4 to R6). However, these connections are not point to point, but
mediated by the Link component, described next (strategies S6 and S8). The
Hub is implemented as a responsive web application (strategies S1 to S3) to
maximize its capacity to run on many platforms. For GearWheels to function as
an integrated system (requirements R1 to R3), the Hub and the InputDevice
software components communicate via the Link; see Figure 2.

• The Link software component is a node.js application (strategies S2 and S3) that
mediates the asynchronous communications between all of the other components
(S3 and S6). It establishes full-duplex WebSocket connections and dispatches
messages between the Hub and various instances of InputDevice corresponding
to each of the wearables used in the gesture input experiment. Link also hosts a
HTTP server that runs the Hub web application and user interface. By adopting
this design approach, the Hub can save the data collected during the experiment
from the various instances of InputDevice directly to the file system of the
server. Although the data flow includes the Link, the business logic is mainly
located within the Hub (requirements R1 to R3).

GearWheels implements a layered architecture to optimize the interactions among
its software modules and components and between users and the tool (requirements R1

to R9), e.g., the UI layer handles the interaction among GearWheels, the experimenter,
and the participants of the study. The Hub controls the flow of the experiment and
presents the details of the current trial to the participant. Each InputDevice hosts
the interaction logic, such as the knowledge of how to process the multiple strokes of
a gesture produced on the touchscreen display of a smartwatch, or how to react to
fixations during eye tracking gesture input. The Link dispatches the messages trans-
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mitted between the Hub and the various InputDevice components with an ad hoc
addressing system that uses the IDs of those components, e.g., MAC addresses for the
wearable devices. The communication layer is built entirely on top of HTTP and Web-
Socket standards. Each InputDevice component enables access to the native features
layer when user input cannot be collected using just conventional software technology
for the web. This layer is highly specialized for the use case scenario addressed by the
experiment and the host operating system available on the wearable device, and may
reference specific SDKs and libraries. Thus, it is recommended to keep this layer as
thin as possible. All the data produced during the experiment are saved by means of
the Link through the repository interface.

4. Use Case Example for GearWheels

We describe in this section the practical aspects of using GearWheels during an actual
experiment involving gesture input with wearable devices. Specifically, we set up an
experiment in which participants were asked to perform stroke-gestures and motion-
gestures using a small touchscreen4 with a built-in accelerometer and gyroscope worn
in the form of a ring, as a watch, and attached to the temple of a pair of glasses, respec-
tively; see Figure 3, bottom. Two steps must be performed by the experimenter: (1) a
JavaScript application is implemented for each wearable device to collect touch, mul-
titouch, stroke-gesture, or motion-gesture input. Our tool already provides JavaScript
code to capture such gesture types, which can be readily reused either in the form of a
web application (e.g., for Tizen devices) or directly in a web page (for devices featuring
a web browser); (2) each wearable to be used during the experiment is connected to
the Link component and assigned to an experimental condition by employing the user
interface rendered by the Hub software component of GearWheels.

The Hub renders the user interface that assists both the experimenter during setup
and the participants during the actual experiment implemented with GearWheels.
First, the Hub requires a full-duplex connection with the Link. Then, each wearable
device is connected to the Hub and encoded as a distinct condition of the experiment;
see Figure 3, top for a screenshot. Each InputDevice component must be connected
to the Link in order to be discovered and integrated by the Hub. Once the experiment
starts, randomized trials are presented via the user interface to guide the participant
during the experiment; see Figure 4. Practical information, such as the number of
strokes of a stroke-gesture or the acceleration data of a motion-gesture, can be dis-
played in the user interface for the experimenter to monitor the experiment trials. The
Hub user interface also informs about the status of the other software components,
such as the connectivity with the various instances of InputDevice and the Link.

The Link component mediates the communication among the other software com-
ponents and offers access to the gesture data repository. In our scenario, Link records
stroke-gestures as time-ordered series of 2D points representing the actual touch points
of the user’s finger on the touchscreen display, and motion-gestures as series of 6D
points representing acceleration and rotation data measured along three axes each.
Figure 5 shows two JSON-formatted objects representing the data captured for these
two gesture types. Besides the actual gesture data, e.g., the acceleration points for the
motion-gesture, each JSON object stores information about the device, trial, experi-

4The display of a Samsung Gear Fit 2 smartwatch (https://www.samsung.com/us/mobile/wearables/
smart-fitness-bands/galaxy-fit2-black-sm-r220nzkaxar/#specs), which we detached from its strap to im-
plement the finger and glasses conditions. The 1.1-inch display has a 126×294 pixel resolution.
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Figure 3. The user interface of the Hub software component specifies the configuration of the experiment
with the touchscreen device positioned on the finger (the “ring” experimental condition), on the wrist (the

“watch” condition), and attached to the temple of a pair of glasses (the “glasses” condition in this figure).

ment, and the user performing the trial. Figure 6 presents an excerpt of the JavaScript
code available in GearWheels to be reused for various InputDevice components. This
code captures stroke-gesture input represented as a series of 2D points by implementing
standardized touch up, touch down, and touch move events in HTML and JavaScript.
Next, we present three variations of our experiment design, and we illustrate the ges-
ture data collected from several participants.

4.1. Swipe Input on Ring vs. Glasses

In this variation of our experiment, we focused on swipe input represented by direc-
tional strokes to the left and right, for which we considered two conditions for wearable
devices: (a) swipe input with the thumb performed on a small touchscreen affixed to
the index finger and (b) swipe input with the index finger on the temple of a pair of
glasses; see Figure 3, bottom-left and bottom-right illustrations. Swipe gestures repre-
sent a popular input technique to interact with content on touch displays and devices,
from smartphones to smartwatches (Kubo, Shizuki and Tanaka, 2016), rings (Boldu,
Dancu, Matthies, Cascón, Ransir and Nanayakkara, 2018), smartglasses (Grossman,
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Figure 4. Two trials displayed in GearWheels during the experiment. The first trial (top screenshot) asks the
participant to perform a stroke-gesture in the finger-augmentation/ring condition, while the second (bottom

screenshot) specifies a gesture performed with rotational movements of the head.

Chen and Fitzmaurice, 2015), and touch-sensitive fabrics (Heller, Ivanov, Wachara-
manotham and Borchers, 2014). We used GearWheels to set up the two conditions
(ring vs. glasses) with randomized trials and a number of eight repetitions required
for each directional swipe. Figure 7 presents the results for each experimental condi-
tion and all the participants. At a first glance, there seems to be more variability in
the articulation of swipe gestures performed on glasses than on the ring, which could
be further verified using relative measures of gesture accuracy (Vatavu, Anthony and
Wobbrock, 2013) to draw implications for gesture user interfaces for these devices.
However, it is not the goal of this paper to continue with the investigation of users’
articulation characteristics of swipe gestures, but interesting questions to examine at
this point could be: Are swipes performed with the thumb on a ring worn on the index
finger faster and easier to articulate (Vatavu et al., 2011) than swipes performed on
the glasses temple? Do users exhibit the same level of articulation accuracy from the
straight line of a directional swipe (Vatavu et al., 2013) when performing swipes on
the finger compared to the glasses temple? Do users prefer to interact with content
displayed on see-through smartglasses using the touchpad embedded in the temple or
rather via thumb swipes on the index finger? For which categories of users (Malu and
Findlater, 2015) are swipe gestures more convenient to be performed on a touchscreen
affixed to the finger than on the glasses?
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Figure 5. Examples of JSON data for a motion-gesture (left) and a stroke-gesture (right) collected during
our test experiment.

4.2. Stroke-Gesture Input on Watches vs. Glasses

In another variation of our experiment, we focused on stroke-gesture input represented
by letters, for which we considered two experimental conditions: (a) stroke-gestures
articulated on a watch and (b) on the temple of a pair of glasses; see the two conditions
illustrated in Figure 3, bottom middle and right, respectively.

Stroke-gestures are convenient as shortcuts (Poppinga, Sahami Shirazi, Henze,
Heuten and Boll, 2014), outperform keyboard shortcuts in terms of learning and re-
call (Appert and Zhai, 2009) and, combined with marking menus (Roy, Malacria,
Guiard, Lecolinet and Eagan, 2013), render large sets of commands feasible and easily
discoverable on touchscreen user interfaces. We used GearWheels to set up the two ex-
perimental conditions (watch vs. glasses) with randomized trials and eight repetitions
required for each of the following letters: “X,” “M,” and “A.” (These letters were ran-
domly selected just for demonstration purposes, but they could be associated to actual
system functions in a practical application, such as “close,” “open menu,” and “add
new,” for instance; see the Augmented Letters technique of Roy et al. (2013) for an
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Figure 6. Example of JavaScript code for recording stroke-gestures with the InputDevice implementation

from our experiment involving a touchscreen device.

example.) Figure 8 presents the results for each experimental condition and all the par-
ticipants. Stroke-gestures performed on the watch visually present higher articulation
consistency compared to those performed in the eyes-free context on the glasses, an
observation that would be interesting to examine further. However, just like in the case
of the previous experiment, it is not the goal of this work to analyze user gesture input,
but rather to demonstrate the usage and usefulness of our tool. Investigation options
at this point could be: consistency analysis (Anthony, Vatavu and Wobbrock, 2013),
comparing stroke-gesture articulations to canonical templates (Vatavu et al., 2013),
and evaluating the classification accuracy of popular recognition techniques (Vatavu,
Anthony and Wobbrock, 2012a; Wobbrock, Wilson and Li, 2007) for stroke-gestures
performed on watches and glasses. These analyzes will reveal useful information about
user and system performance regarding letter stroke-gestures articulated on wearables.

4.3. Head Gesture Input for Glasses

In the last variation of our experiment, we addressed gestures performed with move-
ments of the head, for which we considered one condition represented by our touch-
screen device attached to the temple of a pair of glasses to measure the linear accel-
eration of the user’s head movements. Head gestures are useful to interact with con-
tent displayed on mobile (Hueber, Cherek, Wacker, Borchers and Voelker, 2020) and
HMDs (Yan, Yu, Yi and Shi, 2018), to perform target selection in VR and AR (Yan,
Shi, Yu and Shi, 2020), and to play video games (Ungurean et al., 2009). We used
GearWheels to set up an experiment with one wearable device (the glasses condition
shown in Figure 3, top) and three head gestures that we selected from Yan et al. (2018):
double tap (nod “Yes” twice), home (head leans toward the right shoulder), and zoom
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Figure 7. Swipe gestures articulated repeatedly by five participants on a touchscreen worn on the index

finger (top) and attached to the temple of a pair of glasses (bottom). Note: gesture articulations are shown
superimposed (N=5 participants × 8 repetitions = 40 gesture samples per experimental condition).
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Figure 8. Stroke-gestures articulated repeatedly by six participants on a watch (top) and a touchscreen

attached to the temple of a pair of glasses (right). Note: gesture articulations are shown superimposed (N=6
participants × 8 repetitions = 48 gesture samples per experimental condition).

in (head leans in front). Figure 9 illustrates the gestures collected repeatedly from
five participants, represented as acceleration signals. The figure reveals that zoom-in
gestures are both shorter and have less amplitude compared to the “double tap” and
“home” gestures. Further investigations at this point could address questions such as:
Which head gestures are both fast and accurate? (Hueber et al., 2020), Which head
gestures are users willing to perform in public places? (Koelle, Ananthanarayan and
Boll, 2020; Rico and Brewster, 2010), and How effective are these gestures for users
with upper-body motor impairments? (Cicek, Dave, Feng, Huang, Haines and Nichols,
2020), for example.
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Figure 9. Head gestures performed repeatedly by five participants, illustrated as acceleration signals captured

by a device with a built-in three-axis accelerometer attached to the glasses temple. Note: gesture articulations

are shown superimposed (N=5 participants × 8 repetitions = 40 samples per gesture type).

5. Technical Evaluation of GearWheels

We conducted a controlled simulation experiment to evaluate the technical perfor-
mance of GearWheels in terms of the efficiency to create events within the software
architecture and to transmit corresponding messages with gesture input collected from
various types of wearable devices. To this end, we specified another user experiment
in GearWheels involving two smartwatches, one smartglasses device, and one smart-
phone, and we implemented the corresponding InputDevice software components for
touch, stroke-gesture, and motion-gesture input, respectively; see the previous section
for details regarding these steps.

5.1. Experiment Design

We implemented a repeated-measure, within-subjects design for our technical evalua-
tion experiment with two independent variables:

(1) Message-Size, interval variable representing the size of the messages gener-
ated, transmitted, and processed in the GearWheels architecture. We chose six
conditions for this variable representing various message sizes arranged in an
arithmetic progression with ratio 20 with the following values: 1 KB (i.e., an
approximation of the size of the JSON message with metadata only), 21 KB (a
one-second long motion gesture or a four-second long stroke-gesture), 41 KB (a
two-second motion-gesture or an eight-second stroke-gesture), 61 KB (a three-
second motion-gesture), 81 KB (a four-second motion-gesture), and 101 KB (a
five-second motion-gesture). These sizes were informed by practical considera-
tions regarding touch, stroke-gesture, and motion-gesture input represented as
series of points. For example, the size of our JSON message with metadata only
(e.g., information regarding the user, device, test, trial, etc.; see Figure 5) has an
upper limit of 1 KB; touch input requires two coordinates, x and y, representing
the location of the user’s finger on the screen; stroke-gesture input is represented
as a series of 2D points with an upper margin of about 5KB for each second of
recording;5 and motion-gestures are represented as series of 9-axis IMU points

5An approximation computed with a maximum of 50 bytes per point (e.g., the bytes corresponding to encoding
the JSON-formatted string {“X”:163, “Y”: 422, “ID”:0, “T”:1325474716230} corresponding to a single touch

point (produced by the finger with ID 0) at the screen location (163,422) and the timestamp 1325474716230),
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Figure 10. Devices used in our experiment, representative of low-end, mid-range, and high-end wearables.

with an upper message size of 20KB of data per second.6 For example, the upper
limits of the messages employed in the experiments described in Section 4 were
61 KB for stroke-gestures and 101 KB for motion-gestures, respectively.

(2) Input-Device, ordinal variable with four conditions: a low-end wearable (smart-
watch), a mid-range wearable (smartglasses), a high-end wearable (smartwatch),
and a smartphone (representing our control condition). The characteristics of
these devices are presented in detail in Subsection 5.2.

These variables generate a total number of 6 × 4 = 24 conditions to measure our
dependent variable, Request-Response-Time, representing the time in milliseconds
needed by a message to travel from the InputDevice to the Hub via the Link. For
each combination of the independent variables, we performed 1,000 repeated measure-
ments denoted as trials in our experiment. To prevent biases caused by data caching
in the Wi-Fi network, we randomized the trial order and the content of the messages.

5.2. Apparatus

We ran the Link and Hub software components on a Windows 10 computer (Dell
Inspiron 15) featuring an Intel Core i7-7500U 2.7 GHz CPU with 16 GB RAM. We
used two smartwatches: Samsung Gear Fit 2 (Tizen 2 operating system, dual-core CPU
Exynos 3250, 4 GB internal memory, 512 MB RAM, and a 54 Mbps Wi-Fi connection)
representing the low-end condition in our experiment, and Samsung Galaxy Watch 3
(Tizen 5 operating system, dual-core CPU Exynos 9110, 8 GB internal memory, 1 MB
RAM, and 54 Mbps Wi-Fi) for the high-end condition. As the mid-range wearable,
we used the Vuzix Blade smartglasses (Android 6 operating system, ARM Cortex-
A53 CPU, and 2 GB internal memory); see Figure 10. Our control condition was
represented by a Huawei P30 Pro smartphone (Android 10 operating system, octa-
core CPU Kirin 980, 128 GB internal memory, and 6 GB RAM). The same JavaScript

and 100 points per second result in a total of 5,000 bytes per second.
6An approximation computed with a maximum of 200 bytes per point (see footnote 5 for a calculation example

for a 2D point) and 100 points per second resulting in a total of 20KB of data per second.
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Figure 11. The effect of Message-Size and Input-Device on the Request-Response-Time to transfer

messages of size ranging from 1 KB to 101 KB (a five-second long motion-gesture) using the GearWheels

system. Note: error bars show 95% CIs.

code (see Figure 6 for an excerpt) ran on each device, despite their different operating
systems and hardware specifications. The Wi-Fi network was built around the ASUS
RT-AC87U wireless router featuring up to 600 Mbps@2.4GHz.

5.3. Results

Figure 11 illustrates the effect of the Message-Size and Device independent vari-
ables on Request-Response-Time (average values computed from 1,000 trials). The
smallest response time (8 ms) was obtained for messages of 1 KB transferred from the
smartphone to the Hub (our control condition). The same device delivered the largest
messages of 101 KB with an average response time of 46 ms. Our highest perform-
ing wearable, the Samsung Galaxy Watch 3, needed approximately 10 ms more for
the same task (55 ms), while the mid-range and low-end devices needed a request-
response time that was double (97 ms) and triple (132 ms) in terms of duration,
respectively. A regression analysis revealed a statistically significant linear relation-
ship (R2>.99, p<.001) between Request-Response-Time (denoted with “T” in the
equations shown in Figure 11) and Message-Size (denoted with “MS”) for all the
conditions of Input-Device. These results (and, especially, a maximum of 132 ms
measured for the Gear Fit 2 and the largest message corresponding to a five-second
motion gesture) show that the GearWheels software architecture is efficient even for
low-end wearables and large message sizes covering gesture input of several seconds.
To put these results into the practical perspective of running an experiment with sev-
eral wearable devices, we refer to the experiments described in Section 4 involving a
low-end wearable worn on the finger, at the wrist, and affixed to the temple of a pair of
glasses. Our simulation results indicate that it takes up to 132 ms for a motion-gesture
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and 87 ms for a stroke-gesture data message to travel in the GearWheels software
architecture from the low-end wearable device to the Hub.

6. Limitations and Future Work

GearWheels can be used to support user studies and experiments involving stroke-
gestures and motion-gestures performed with wearable devices featuring a web browser
or that can natively run JavaScript code. Section 4 showed the versatility of Gear-
Wheels for supporting experiments involving various conditions, while Section 5
showed that event and message processing in GearWheels is fast even for low-end
wearable devices. Nevertheless, we note several limitations for the current version
of GearWheels. Although GearWheels implements support for multi-device scenarios
(i.e., multiple devices can be connected at the same time to the Hub component), the
current implementation does not allow multiple users to participate simultaneously
in the experiment. However, this feature would be useful for studies and experiments
where different participants perform gestures in parallel, for example to collaborate
during a task. Another limitation refers to the types of gestures that are currently
supported by GearWheels, which are represented by touchscreen stroke-gestures and
accelerometer/gyroscope motion-gestures only. Other types of gestures, such as whole-
body movement, eye gaze gesture input, and others need extensions of GearWheels.
Finally, another limitation is that GearWheels does not implement gesture recogni-
tion, although such a feature would enable the experimenter to have better control
over the gesture data collected during the study, e.g., to recollect gestures that are
introduced incorrectly.

There are several opportunities to address these limitations in future work rep-
resented by future developments of the GearWheels software. For example, the first
limitation requires an updated version of the Hub component so that multiple in-
stances could run at the same time to address gestures produced collaboratively by
different participants, i.e., a multi-threaded processing layer added to our software
architecture. For GearWheels to accept other types of gestures, other InputDevice
components must be implemented, just like we already provide implementations for
touchscreen stroke-gesture and accelerometer/gyroscope motion-gesture acquisition.
In addition, the Hub must also be updated to handle accordingly the new gesture
types. While the former means writing new software modules, the latter is straight-
forward since the Hub already operates with generic objects. Examples of other ges-
ture types that could be sensed with wearables are on-body, body-referenced, and
whole-body gestures for which specific measures of analysis (Vatavu, 2017a) may be
interesting for practitioners, eye gaze gestures (Meyer, Schlebusch, Spruit, Hellmig
and Kasneci, 2021) detected by smartglasses, or face gestures (Chen, Li, Tao, Lim,
Sakashita, Zhang, Guimbretiere and Zhang, 2021) sensed by neck-mounted wearables,
to name a few examples. Another useful extension for GearWheels is represented by
the incorporation of gesture recognizers, such as open-source approaches (Taranta II,
Samiei, Maghoumi, Khaloo, Pittman and LaViola Jr., 2017; Vatavu, 2017b; Vatavu,
Anthony and Wobbrock, 2012b; Wobbrock et al., 2007) for feedback to the exper-
imenter during the gesture acquisition phase of the user study or controlled ex-
periment; see also Magrofuoco et al. (2021) for a review of stroke-gesture recogni-
tion approaches. Gesture recognizers tailored to the gesture input articulation char-
acteristics of specific user groups, such as users with visual impairments (Vatavu,
2017b) or motor impairments (Vatavu and Ungurean, 2019), may prove useful for
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studies and experiments implemented with GearWheels that address topics in ges-
ture input performed with wearables by specific user categories. To enable such de-
velopments, we release GearWheels with an open-source license at the web address
http://www.eed.usv.ro/mintviz/resources/GearWheels.

7. Conclusion

We introduced in this work a software tool with a dedicated event-based architecture
designed to assist researchers and practitioners in their user experiments and studies
involving gesture input with wearable devices. Future work will consider an implemen-
tation of GearWheels in the form of SaaS/PaaS, but also an extension to accommodate
communications with devices via other channels, e.g., Bluetooth, for wearables that
do not support Wi-Fi. To the best of our knowledge, GearWheels is the only available
tool to support gesture input experiments with wearables, and we look forward to see
its utilization in practice towards new developments and scientific discoveries about
gesture input with wearable devices.
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Buruk, O.T., Özcan, O., 2017. Gestanalytics: Experiment and analysis tool for gesture-

elicitation studies, in: Proceedings of the 2017 ACM Conference Companion Publication
on Designing Interactive Systems, pp. 34–38. URL: https://doi.org/10.1145/3064857.
3079114, doi:.

Buzzi, M.C., Buzzi, M., Leporini, B., Trujillo, A., 2017. Analyzing visually impaired people’s
touch gestures on smartphones. Multimedia Tools Appl. 76, 5141–5169. URL: https:

//doi.org/10.1007/s11042-016-3594-9.
Cao, X., Zhai, S., 2007. Modeling human performance of pen stroke gestures, in: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY,
USA. p. 1495–1504. URL: https://doi.org/10.1145/1240624.1240850.

Chandy, K.M., 2006. Event-driven applications: Costs, benefits and design approaches. Gartner
Application Integration and Web Services Summit 2006. URL: https://doi.org/10.1007/
978-0-387-39940-9_570, doi:.

Chen, T., Li, Y., Tao, S., Lim, H., Sakashita, M., Zhang, R., Guimbretiere, F., Zhang, C.,
2021. Neckface: Continuously tracking full facial expressions on neck-mounted wearables.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5. URL: https://doi.org/10.
1145/3463511, doi:.

Chen, W.H., 2015. Blowatch: Blowable and hands-free interaction for smartwatches, in:
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Fac-
tors in Computing Systems, ACM, New York, NY, USA. pp. 103–108. URL: http:

//doi.acm.org/10.1145/2702613.2726961, doi:.
Chen, Z., Ma, X., Peng, Z., Zhou, Y., Yao, M., Ma, Z., Wang, C., Gao, Z., Shen, M., 2018.

User-defined gestures for gestural interaction: Extending from hands to other body parts.
International Journal of Human–Computer Interaction 34, 238–250. URL: https://doi.
org/10.1080/10447318.2017.1342943, doi:.

Cicek, M., Dave, A., Feng, W., Huang, M.X., Haines, J.K., Nichols, J., 2020. Designing and
evaluating head-based pointing on smartphones for people with motor impairments, in:
Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and
Accessibility, Association for Computing Machinery, New York, NY, USA. pp. 14:1–14:12.
URL: https://doi.org/10.1145/3373625.3416994.
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