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ABSTRACT
We address gesture input for TV control, for which we examine
mid-air free-hand interactions that can be detected via radar sens-
ing. We adopt a scenario-based design approach to explore possible
locations from the living room where to integrate radar sensors,
e.g., in the TV set, the couch armrest, or the user’s smartphone, and
we contribute a four-level taxonomy of locations relative to the TV
set, the user, personal robot assistants, and the living room envi-
ronment, respectively. We also present preliminary results about
an interactive system using a 15-antenna ultra-wideband 3D radar,
for which we implemented a dictionary of six directional swipe
gestures for the control of dichotomous TV system functions.

CCS CONCEPTS
• Human-centered computing → Gestural input; Interface
design prototyping; Scenario-based design.
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1 INTRODUCTION
Smart TVs offer a wide range of functionality to enhance home
entertainment experiences in the living room, from access to online
content [20,30] to augmented and mixed reality television [33,48]
to cross-device input and second-screen TV watching [14] to em-
ploying the interactive TV as a medium for applications of vari-
ous kinds [13,21,47]. Beyond the conventional TV remote control,
technical solutions for interacting with the TV set have included
smartphones [25], video game controllers [42], augmented remote
controls [6], and gesture input using a wide range of sensing tech-
nology [17,38,43,46,53]. Among these input modalities and devices,
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we focus on gesture input due to its many advantages, such as intu-
itiveness, flexibility, versatility, and shared control over the TV for
multi-user interaction. Specifically, we focus on free-hand gestures
that can be detected by radars, for which a growing interest has
been manifested in the HCI community [52].

Radar sensors provide many opportunities to detect gestures for
interactive applications. Radars are available for mobile devices [22,
27], integration with work surfaces [4], and clothes [26], among
others. It is worthwhile thus to systematically examine possible
locations for placing and integrating radar sensing in the living
room in the context of TV watching and control. To this end, we
adopt the scenario-based design [12,34] approach, and propose a
four-level taxonomy of locations from the living room where radar
sensors can be placed, dissimulated, affixed, or integrated to enable
mid-air gesture interaction with the TV; see Figure 1 on the next
page for an overview. This taxonomy can be used to inform the
design of interactive applications for the living room centered on
the TV that employ radar sensing to implement user input. We
also present preliminary results regarding a system implemented
using a 15-antenna ultra-wideband 3D radar and a dictionary of
six mid-air directional swipe gestures that can be used to control a
variety of dichotomous TV system functions.

2 RELATEDWORK
We relate to prior work on gesture-based TV control and radar-
based gesture sensing and recognition, respectively.

2.1 Gesture-based TV Control
Gesture input for TV control has been largely examined in the
context where usability and accessibility problems have been fre-
quently reported for conventional TV remote controls. Specifically,
TV remote controls require visual attention, replacing batteries, can
get lost, and may be in the possession of other users; see [8,9,16,51]
for such examples. Also, their form factors, tiny buttons, and many
buttons represent accessibility challenges for users with disabili-
ties, such as people with motor impairments [40]. In this context,
technical solutions for gesture input to control the TV have been
proposed and evaluated. An early prototype of Freeman and Weiss-
man [17] employed a video camera to detect the location and pose
of the viewer’s hand for click-like input for the TV. Vatavu and Pen-
tiuc [46] introduced an interaction technique where hand gestures
were recognized above a coffee table. Vatavu [43] conducted the first
end-user gesture elicitation study to document users’ preferences
for free-hand gesture control of the TV, which was followed by
other elicitation studies, e.g., gestures to control a movable TV [38],
gestures preferred by people who are blind [15], users’ preferences
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Figure 1: Illustration of various locations for placing, dissimulating, and integrating radar sensing in the living room, struc-
tured along four dimensions: locations relative to the TV set, the user, robot assistants, and the living room environment,
respectively. For example, location 2b specifies integration of radar sensing into a wearable device, such as a smartwatch, and
location 3c specifies integration of radar sensing in the couch armrest.

for bimanual gestures [49], and gestures that allows moderators to
control content in Augmented Reality TV [35]. Other prototypes
have employed mobile and wearable devices, such as Popovici et
al. [33], who linked smart pockets to the smart TV with pointing
gestures detected by a smart armband with an integrated IMU.
These examples demonstrate a variety of sensing technology and
corresponding interaction techniques for gesture-based TV control.
Next, we focus on gestures detected using radars, which represents
one key application of radar sensing in HCI [52].

2.2 Radar-based Gesture Recognition
Radars are convenient for human sensing because they function
in environments with high light intensity, low light and darkness,
when occluded by a surface or other objects [4,31], or under various
weather conditions [52]. Prior work has introduced and evaluated
several recognition techniques for radar gestures. For example,
mHomeGes [28] is a system that detects gestures with 95.3% accu-
racy for smart home interactions; Soli [27] is a miniature gesture
sensing technology based on millimeter-wave radar that tracks

gestures with sub-millimeter accuracy at over 10,000 frames per
second; RadarNet [22] is an efficient recognition technique for
radar gestures that employs a Convolutional Neural Network and
runs efficiently on battery-powered, computationally constrained
processors; and Pantomime [31] is a a deep learning architecture
delivering 95% accuracy for gestures performed in mid-air. For more
examples, we refer to Ahmed et al. [2] for a review of hand gesture
recognition with radar sensors.

3 A TAXONOMY OF LOCATIONS FROM THE
LIVING ROOM FOR RADAR SENSING

We introduce a taxonomy of locations from the living room where
a radar sensor can be integrated, dissimulated, affixed to, or simply
placed in plain sight to pick up mid-air gestures for TV remote
control. To this end, we employ scenario-based design [11], an
approach that capitalizes on the flexibility of using scenarios to
manage the fluidity of possible design situations, multiple views of
the interaction, and flexible amount of detailing [12], respectively.
In our case, the scenarios are represented by possible integration



Scenario-based Exploration of Integrating Radar Sensing into Everyday Objects for Free-Hand Television Control IMX ’22, June 22–24, 2022, Aveiro, JB, Portugal

of radar sensing in the living room (which acts as the setting for
our scenarios) to enable gesture-based input (i.e., our input modal-
ity of choice) to control the TV (i.e., our task). A scenario-based
approach is convenient at this stage because it puts the focus on
how the system can be used to accomplish the task (e.g., What
kind of interactions are possible when the radar is integrated in
the TV vs. the coffee table vs. the user’s smartwatch?), rather than
on functional specifications of the system (e.g., What recognition
techniques are best suited for radar gestures?). To describe such
possible design situations and corresponding scenarios, we consider
a design space centered on the TV set, the user’s body, the living
room environment, and objects and devices that transcend the liv-
ing room, such as autonomous robot companions. By positioning
scenarios in this space, we arrive at several possible design solutions
for the placement of radar sensors (see Figure 1 for illustrations).

3.1 Radar Placement Relative to the TV Set
In this scenario, the radar is part of the TV set, as follows:

(1a) The radar is integrated in the TV or is connected to the TV,
e.g., via one of the available USB ports, as a hardware add-on
that extends the built-in functionality of the TV set. The
perspective and field of view leveraged by such a placement
enable a variety of gesture types performed with the hand
and arm in front of the TV set, from hand poses [17] to
pointing at the TV screen [42] and the space around it [45]
to mid-air gestures [35,53] to arm and whole-body gesture
input [38,43]. Such a design solution also enables multi-user
interaction, e.g., gestures performed by multiple viewers that
share the control of the TV [32].

(1b) The radar is integrated in the TV remote control, which
results in new designs of TV remote controls, complementary
to prior solutions [6,42], that can sense gesture input. The
field of view of the radar sensor does not need to be as wide
as in scenario 1a, since the TV remote control is close to the
user. Moreover, this design scenario of an augmented TV
remote control enables mixed input in the form of buttons
and gestures [44], respectively.

3.2 Radar Placement Relative to the User’s
Personal Computer Devices

In this scenario, the radar sensor is located near the user or inte-
grated in the user’s personal computer devices. We identify several
design possibilities, as follows:

(2a) The radar is integrated in the smartphone, a prevalent per-
sonal device, for which technical solutions are already possi-
ble for the integration; see [22,27].

(2b) The radar is integrated in a wearable, such as a smartwatch,
smart ring, etc. Unlike design scenario 2a that involves a
reasonably large device and corresponding battery power,
this option regards devices with various form factors that
may impose technical constraints on the size of the radar
and the resources it may require for operation. Although
we could not find examples in the scientific literature for
integrating radars in wearable devices, small radar chips,
such as Soli [27], afford such an integration.

(2c) The radar sensor is integrated in the user’s clothes, for ex-
ample in the sleeve, pocket, or in clothing accessories. For
example, Leiva et al. [26] evaluated radar gesture sensing
throughwool, cotton, and leather fabrics to support technical
implementation of wearable radars.

3.3 Radar Placement Relative to the Living
Room Environment

In this scenario, radars are placed in various locations from the
living room, including everyday non-digital objects, which turn
into remote controls for the TV set. Examples of possible design
options at this level of the taxonomy include:
(3a) The radar is located on, under, or is integrated in the coffee

table from the living room. This scenario enables mid-air
gestures performed with the hand, which mimic use case sce-
narios demonstrated for TV control [46], but also extension
to use feet gestures in the active area of the sensor.

(3b) The radar is integrated in a decorative object from the coffee
table. The same types of gestures as in design 3a are possible,
except that the object is mobile and, thus, enables flexible
placement, orientation, and use. Such a design relates to TV
control scenarios involving everyday objects from the living
room, such as tangible cubes [10,39] or even plush toys [24].

(3c) The radar is integrated in the couch, e.g., in the armrest,
enabling a physical space for gesture articulation that is
comfortable for the user [41].

(3d) The radar is integrated in a physical object located in the
proximity of the couch, such as the floor lamp illustrated in
Figure 1. Depending on the location of the user with respect
to the sensor, mid-air gestures of the hand and whole-body
gestures may be supported with sensing from that location.

(3e) The radar is integrated in the floor, which offers a distinct
perspective on the user’s gestures and, correspondingly, the
opportunity to employ specific gesture types [5].

(3f) The radar is integrated in the ceiling or in objects close to
the ceiling, which offer a complementary perspective and
gesture types [18] to the design solution 3e.

3.4 Radar Placement Relative to a Robot
Assistant

In this scenario, the radar sensor is placed in an object or device that
is not bound to the physical space of the living room environment,
e.g., personal robot assistants are relevant examples. We identify
the following design options:
(4a) The radar is integrated into a voice assistant, which repre-

sents a category of devices that have become widespread for
smart homes [3].

(4b) The radar is integrated into a moving robot assistant. Unlike
design 4a, the robot assistant automatically follows the user,
e.g., the “follow me” functionality implemented by personal
drones that respond to gesture input [1].

More examples are enumerated at the bottom of Figure 1. Our
taxonomy is useful to identify locations for integrating radar sens-
ing for practical applications in the living room. Next, we present a
preliminary system prototype built with a commercial radar.
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Figure 2: By combining directional left-right swipes and the distance from the sensor at which the swipes are performed, a set
of six mid-air gestures results for effecting dichotomous yes-no, up-down, and next-previous functions common for TV.

4 PRELIMINARY PROTOTYPE, FINDINGS,
AND FUTUREWORK

To understand the technical feasibility of the various locations from
our taxonomy, we implemented a prototype using the 15-antenna
Walabot Creator device and the Walabot API.1 We acquired the
3D trajectory of the hand detected above the radar, and used it
to recognize two directional swipe gestures—swipe left and swipe
right—on the y axis. Also, we leveraged the distance from the sen-
sor on the z axis at which these two gestures are performed to
specify three active zones—near, close, and far—above the radar; see
Figure 2. A set of six gestures results from the combination of two
directions and three zones, which can be mapped to three types of
dichotomous functions for TV control: yes-no to confirm and reject
selections, up-down to manipulate the value of a control, such as
volume, brightness, etc., and next-previous to implement navigation
in a list, e.g., the list of TV channels. The radar was placed on a
table (Figure 2), which corresponds to the coffee table (3a), deco-
rative object (3b), and the couch armrest (3c) scenarios illustrated
in Figure 1. Other locations may need adaptations of our simple
gesture recognition pipeline, including special preprocessing of the
raw signal and recognition techniques [37].

Figure 3 presents θ−R images obtained from the Walabot radar
when placed in various locations corresponding to the scenarios
from Figure 1 and various types of occlusion. For example, the
radar was occluded in Figures 3b-3e when placed under a table,

1https://api.walabot.com/sample.html

in a box, under the TV remote control, and in the trousers right
front pocket, respectively. Figures 3f-3h illustrate scenarios where
the user is at a distance of several meters from the radar. These
images suggest that high discriminability is expected from such
locations, for which we leave the technical evaluation for future
work. Also, other types of radars will result in different types of
data. Thus, it is useful to examine as part of future work other
characteristics of radar sensors, such as resolution or field of view,
needed to implement the various design solutions identified in our
taxonomy. For instance, depending on the modulation technique,
various types of information can be obtained from a radar, e.g., 1D,
continuous-wavemodulation separates objects by their velocity, but
3D, frequency-modulated continuous wave multiple input/multiple
output modulation separates objects by velocity, distance, and angle.
We leave such examinations of radar technology for future work.

Another interesting direction for future work is connecting the
locations of our taxonomywith interaction concepts and techniques
for smart environments, such as interactions based on proxim-
ity [19] or peripheral interactions [7], and to corresponding tools
designed to support such interactions [29,36]. Also, placing the
radar at the various locations from our taxonomy determines differ-
ent possibilities for sensing gesture types, from low-scale gestures
above the smartphone or the TV remote control to large-scale arm-
level gestures performed in front of the TV screen. Thus, connecting
our taxonomy of locations to gesture taxonomies and design spaces
for gesture input [23,50,53] represents interesting future work.

https://api.walabot.com/_sample.html
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(a) (b) (c) (d) 
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Figure 3: θ−R images acquired under various placements of the radar sensor: (a) radar uncovered, placed on a table, (b) radar
under the table, (c) in a box, (d) under the TV remote control, (e) in the pocket, (f) next to the TV set facing the user, (g) on the
floor, (h) two meters above the ground simulating placement on a drone. Each image shows the open hand pose.

5 CONCLUSION
We presented in this paper an exploration of possible design solu-
tions for integrating radar sensing in the living room with the goal
of implementing gesture-based TV remote control. We capitalized
in our taxonomy on the versatility of radar sensing under various
conditions, e.g., low light or occlusion, and the variety of gesture
types that can be detected with radars. Our preliminary systemwith
a commercial radar sensor showed the feasibility of several such
locations, while other technical examinations are left for future
work. Also, although we centered our discussion on the TV, our
taxonomy of locations for radar sensing is useful to be extended to
interactions with other types of digital devices and home appliances
from the living room in the context of smart home environments.
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