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ABSTRACT

We introduce WearSkill, a web application that implements person-
alized and interchangeable input for wearable computing. We out-
line functional and quality requirements for WearSkill and present
the engineering details of its implementation using web technology.
We emphasize the interchangeability of input modalities with vari-
ous wearables, e.g., touch input on a smart ring vs. mid-air gestures
of the hand wearing a smartwatch vs. voice input detected by the
microphone from a pair of smartglasses, towards personalized input
for users with various motor abilities. Our findings, from a study
involving twenty-one people with motor impairments, show that
WearSkill can provide accurate recommendations for personalized
input modalities that match 85.3% with users’ own preferences.
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1 INTRODUCTION

Wearable devices have become increasingly available in the context
of Ubicomp and IoT environments. With a global market of USD
40.65 billion in 2020 [3], wearables are becoming mainstream due to
their many valuable functions, e.g., health and fitness tracking, and
integration with other mainstream devices, such as smartphones.
As end users who are part of this market, people with motor im-
pairments experience challenges interacting with wearables [22]
that were not designed to be accessible in the first place. The type
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and severity of the motor condition determine the specificity of
such challenges [9,13,16,31] with impact on the feasibility of the
input modalities that can be effectively used to interact with off-
the-shelf devices, such as touch input [26], hand gestures [8], foot
gestures [6], or movements of the head [24]. For example, Mott et
al. [13] reported barriers regarding the physical accessibility of VR
devices, such as putting HMDs on and taking them off, adjusting
the head strap, or maintaining view of the controllers, and Malu et
al. [9] reported challenges regarding button, swipe, and tap-based
interactions for smartwatch input. A workaround is system design
that features alternative input modalities that best match individual
users’ abilities [33]. Personalization and interchangeability of input
modalities are also useful for interactions performed in conditions
characterized by situational impairments [1,5,20].

We are interested in this work in software architecture design for
wearables featuring personalization and interchangeability of input
modalities. Our contributions are as follows: (1) a set of software de-
sign requirements for input personalization and interchangeability
with wearables; (2) WearSkill, our web-based application that imple-
ments our set of requirements towards personalized, multi-device,
multi-modality input with wearables; and (3) a study with N=21
people with motor impairments showing 85.3% accuracy for pre-
dicting users’ preferences for wearable devices and input modalities
that best match their motor abilities.

2 RELATED WORK

Prior work has documented challenges experienced by people with
motor impairments during interactions with computer systems
of many kinds. From mouse [32], keyboard [4], and remote con-
trol [25] input to interactions with mobile devices [12,27,30] to large
touchscreen displays [14] to wearables [9,10,31], a wide range of
devices and input modalities have been scrutinized for accessibility.
Among these, accessible interactions with wearables have been
addressed to a lesser extent: in their systematic literature review
of wearable interactions for users with motor impairments, Siean
and Vatavu [22] reported that hand gestures have been dispropor-
tionately favored (41.6%) compared to other input modalities, e.g.,
head gestures (23.4%) or voice input (13.0%). Based on their find-
ings, Siean and Vatavu proposed the WISE framework, a set of
recommendations to increase the accessibility of wearables: (W)
exploring diverse designs of wearables, (I) new input modalities and
techniques for accessible wearable interactions, (S) more user stud-
ies and evaluations, and (E) extending wearable interactions with
other devices. Due to its direct connection to our scope, we adopt
the WISE framework as the conceptual foundation for WearSkill.
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Several unique characteristics of wearables make them suitable
for personalized and interchangeable input: diverse form factors,
placement close to or in contact with the body, and varied sens-
ing options to detect user input, including taps and touch input,
movements of the fingers and hands, voice, eye gaze, and others;
see [21,22]. Also, multiple devices can be worn together, e.g., a
smartwatch and a smart ring, enabling the use of one or another ac-
cording to context. This flexibility, however, raises several technical
challenges for software architecture designs and for the algorithms
employed to recognize user action across multiple devices.

Various technical solutions have been proposed for input with
heterogeneous devices [18,19]. One example is Euphoria, a scalable,
event-driven software architecture for implementing interactions
across heterogeneous devices in smart environments. Euphoria con-
sists of five software layers: Producers, Emitters, Engine, Receivers,
and Consumers. The outermost components, represented by Pro-
ducers and Consumers, implement the specific details required by
different platforms, operating systems, and APIs. In the center of
the architecture, Emitters and Receivers abstract the strategy for
exchanging messages with all devices sharing the same interface
and communicating via the same protocol. The business logic for
the communications resides at the Engine level, where messages
are routed between devices. In this work, we reuse the open-source
Euphoria [18] as the middleware for implementing WearSkill.

3 WEARSKILL

We introduce WearSkill, our web-based application that implements
personalized and interchangeable input with wearables. We start
by presenting functional requirements for WearSkill in accordance
with the WISE framework [22]. We then leverage the SQuaRE [7]
model to select six quality requirements, which we implement with
three technological and three design patterns approaches.

3.1 Design Requirements

Based on the directions set by the WISE framework [22], we for-
mulate four functional requirements (F; to F4) for WearSkill:

F1. Wearables. WearSkill must be flexible to integrate a variety of
wearables and their integration must require only minimal
software changes at the outer layer of the software architec-
ture. We consider wearable devices that have built-in Wi-Fi
connection and support communication protocols for the
web, such as WebSocket.!

Fy. Interactions. WearSkill facilitates execution of system func-
tions on various output devices, e.g., a PC or a TV set, with
input performed with wearables. To this end, users perform
a command with the wearable they prefer in a given context.
WearSkill stores associations between commands performed
with wearables and system functions of output devices, e.g.,
a wave of the hand wearing a smartwatch turns on the TV.

F3. Studies. WearSkill offers out-of-the-box support for logging
input data to enable more studies to learn about how users
employ wearables and how they personalize input.

F4. Extension. The main goal of WearSkill is to enable personal-
ized and interchangeable input with wearables as the mid-
dleware for a distributed user interface [28].

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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Figure 1: Design requirements for WEARSKILL (left) and an
overview of its software components (right) for personaliza-
tion and interchangeability of input with wearables.

We choose six quality requirements from the ISO/IEC 25010:2011
SQuaRE [7] model (Systems and Software Quality Requirements
and Evaluation) that are directly relevant to wearables [17] and to
the scope of the WearSkill application, respectively:

Q1. Modularity refers to splitting the software system into dis-
crete units that interact with each other through interfaces.
This requirement acknowledges the heterogeneity of wear-
ables (F1) and keeps the adapter layer as thin as possible.

Q2. Reusability indicates the degree to which a specific asset
can be reused in another configuration of the system. Since
WearSkill enables input with heterogeneous devices (Fy),
developers that build on WearSkill can reuse existing func-
tionality to accommodate new wearables and output devices.

Qs. Interoperability is the ability of two or more modules to
communicate with each other based on a common stan-
dard. WearSkill integrates different types of wearables (F;)
by means of dedicated modules that employ standard com-
munication protocols to enable a variety of interactions (Fy).

Q4. Replaceability refers to the possibility to replace a compo-
nent with another, equivalent one. The interchangeability of
wearables enables the use of different input devices (F1, Fs)
to execute a given system function on an output device.

Qs. Appropriateness indicates the degree to which the software
system meets end-user needs in a personalized way. This
property connects to the functional requirements F3 and Fy.

Qs. Learnability specifies the capacity of the system to help the
user transition from novice to expert mode. Also, better
understanding end-user needs for wearable interactions (F3)
can lead to better future versions of WearSkill (Fy4).

The first two quality requirements, Q1 and Q, set the condition
for low-level software modules, requirements Q3 and Q4 refer to
high-level software components, and Qs and Qg specify the charac-
teristics of the interaction between users and WearSkill. To imple-
ment these quality requirements, we adopt three technological (T;
to T3) and three design patterns (D; to D3) approaches; see Figure 1,
left. Due to the high portability of web applications, we choose web
technology (T1) for the development of the WearSkill user interface.
We also choose JavaScript as our programming language of choice
(T2) since it runs on a variety of platforms, either in a web browser
or a runtime environment. Communications between the software
components are implemented with Euphoria [18] and, thus, employ
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HTTP and WebSocket protocols (T3). In terms of design patterns,
we establish WearSkill on the SOLID principles [11]. We use depen-
dency injection, i.e., injecting of dependencies rather than creating
them inside the object, to obtain a strong separation between ob-
ject creation and utilization (design pattern Dj). Also, WearSkill is
divided into several layers (models, views, view models, presenters,
controllers, repositories, and gateways) that communicate through
interfaces (D2). To simulate usage scenarios (D3), we employ high
coverage end-to-end testing. To implement the functional require-
ments F to F4, we designed six software components for WearSkill
(C1 to C¢ in Figure 1), presented in the next subsection.

3.2 Implementation

The software components of WearSkill play specific roles in achiev-
ing input personalization and interchangeability. Figure 1, right
illustrates the interaction flow, from the specification of the user
profile to runtime monitoring of the system, as follows:

C;. PROFILE enables users to enter personal data (in accordance
with the functional requirement F) represented by their
motor symptoms, e.g., slow movements, low strength, etc.,
which we adopted from [2]; see Figure 2, left.

Cy. PREFERENCES employs recommendations generated by a
machine learning model that uses information from Pro-
FILE to suggest wearables and input modalities (according
to functional requirements F; and F3). In the current ver-
sion, we implemented support for three types of wearables
(smartwatches, smartglasses, and smart rings) and four in-
put modalities (touch input, hand motion, head motion, and
voice input), but extensions can be further integrated.

Cs. Registration of input and output devices is performed under
the DEVICES section (requirements F; and F4). Each device is
identified by its MAC address and associated with one of the
following categories: smartwatch, smartglasses, smart ring,
or a generic output device, on which system functions will
execute following input with the first three types of devices.

C4. The INPUT component is in charge of detecting and recogniz-
ing touch, motion, and voice input (functional requirements
F; and Fy) that users can particularize by providing training
samples; see Figure 2, right. Voice input consists in word
commands recognized using the Google Speech-to-Text API.
Touch stroke-gesture and motion input are implemented
with the $P point-cloud gesture recognizer [29].

Cs. Input and output devices are associated in the CoMmMANDS
section (requirement F4). Commands run on output devices,
e.g., turn on the TV. The same command can be entered with
different input modalities to implement interchangeability.

C¢. Users can supervise the entire process from the RUNTIME
Moni1ToR component (functional requirement F3). For exam-
ple, if input from a given device is not recognized or system
functions are not executed on the output device, warnings
help the user in identifying the cause.

We developed the user interface on top of Vue.js,? a progressive
JavaScript framework that enables clear separation between views
and view-models. Back-end models run on the Node.js* platform

Zhttps://vuejs.org
3https://nodejs.org/en
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and communicate with the front-end and the input and output
devices via HTTP and WebSocket protocols. For end-to-end testing,
we employed Cypress,* and specified more than 200 tests covering
usual scenarios. To test WearSKkill, we developed client web appli-
cations for three wearables: Samsung Galaxy Watch 3, Gear Fit 2
(which we mounted on a custom 3D printed support to be used as
a smart ring), and the Vuzix Blade smartglasses. Next, we focus on
the recommender implemented under the PREFERENCES component
to match wearables and input modalities to users’ motor abilities.

3.3 Personalized Recommendations for Input
Modalities with WearSkill

The PREFERENCES software component integrates a machine learn-
ing model that employs eleven self-reported motor symptoms, en-
tered by the user as yes/no responses when setting their WearSkill
profile (Figure 2, left), to suggest recommendations for wearables
and input modalities that best match users’ motor abilities. The
symptoms are: slow movements, spasm, low strength, tremor, poor
coordination, rapid fatigue, difficulty gripping, difficulty holding,
lack of sensation, difficulty controlling direction, and difficulty con-
trolling distance, which we adopted from [2]. We conducted a user
study to collect the data needed to train this software component.

3.3.1 Participants. A number of N=21 people with motor impair-
ments (spinal cord injury located at various vertebrae, spina bifida,
traumatic brain injury), aged between 28 and 59 years old (M=43.3,
SD=8.2 years), were recruited via a non-profit organization provid-
ing technical assistance to people with disabilities.

3.3.2 Method. We used an online questionnaire to elicit preference
ratings for various combinations of wearables and input modalities
using 5-point Likert scales with items ranging from 1 (not suitable
for me) to 5 (very suitable). Our experiment was a within-subjects
design with two independent variables: input modality (nominal
variable with four conditions—touch input, hand motion, head
motion, and voice input) and wearable (nominal variable with three
conditions—smartwatch, smartglasses, and smart ring).

3.3.3 Dataset. We collected a total number of 21 (participants) X
11 (symptoms) = 231 records representing predictors and 21 (par-
ticipants) X 3 (wearables) X 4 (input modalities) = 252 preferences
representing recommendations for the PREFERENCES component.

3.3.4  Results. We employed Scikit-learn [15] to evaluate various
classifiers on our dataset using hyperparameter tuning with grid
search optimization [23] and leave-one-out cross-validation. Our
choice of algorithms included linear models and discriminant analy-
sis, Nearest Neighbor classifiers, decision trees, ensemble methods,
semi-supervised models, neural networks, and Support Vector Ma-
chines models. During training, we grouped participants’ ratings
obtained with the 5-point Likert-scales in two classes: do not rec-
ommend (corresponding to the Likert scale items 1 and 2) and
recommend (items 3, 4, and 5), respectively. Hyperparameter tuning
enabled us to cover a wide range of configurations for the classifiers
consider in our evaluation, such as regarding the number of neigh-
bors to use for the K Nearest Neighbors classifier or the best solver

4https://www.cypress.io
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Table 1: Accuracy rates for predicting users’ preferences for wearables and input modalities from their motor symptoms.

Smartwatch Smartglasses Smart ring Mean
Classifier Touch Hand Head Voice Touch Hand Head Voice Touch Hand Head Voice accu-
input motion motion input input motion motion input input motion motion input racy
Decision Tree [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100%  95.2% 100% 57.1% 85.3%
Gradient Boosting [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100%  95.2% 100% 57.1% 85.3%
Ada Boost" [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100% 95.2% 100% 57.1% 85.3%
KNeighbors [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100%  95.2% 100%  57.1% 84.9%
Label Propagation [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100% 95.2% 100% 57.1% 84.9%
Radius Neighbors [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100%  95.2% 100%  52.4% 84.5%
Logistic Regression [ref.] 85.7% 90.5% 76.2% 81.0% 90.5% 47.6% 90.5%  95.2% 100% 95.2% 100% 61.9% 84.5%
Multinomial Naive Bayes [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100%  95.2% 100%  47.6% 84.1%
Label Spreading [ref.] 714% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100%  95.2% 100%  47.6% 83.3%
TThe base estimator was a Random Forest [ref.] classifier.
Profile Preferences Devices Motion Touch Voice Commands Runtime Prefile Preferences Devices Motion Touch Voice Commands Runtime
input input input monitor input input input monitor

In this section, you can specify your profile, which will be used for generating
personalized recommendations regarding suitable input modalities for
smartwatches, smartglasses, and smart ring devices. This is an optional, but

v useful feature regarding customization and persenalization in GearWheels.
Name Email Birth year Gender
Description John john@server.cc | | 2001 v

Which of the following situations apply to you?

Slow movements
Spasms

Low strength
Tremor

Poor coordination
Rapid fatigue
Difficulty gripping
Difficulty holding
Lack of sensation

Difficulty controlling direction

L]

Difficulty controlling distance

In this section, you can specify touch gestures, e.g. a swipe to the left or letter
"$" on the touchscreen of your smartwatch. For this, you need to enter a name
for the gesture and perform the gesture on your connected device. Then, you
can associate the gesture to a specific system function available on an cutput
devices under the Commands tab, e.g., turn off the TV,

f'&G

Description swipe-right

Al. e p
swipe-left
swipe-right

tap

Delete

In this region you can add new training instances for any of the touch input you entered above.

Select motion input swipe-right v
Current training examples for “swipe-right” 3
Select device to perform touch input watch-3 v

A new training example has been detected for "swipe-right”.

m

Do you want to store it?

Figure 2: Snapshots of the WearSkill application. On the left, symptoms of the motor condition enable generation of personalized
recommendations of input modalities for wearables. On the right, a personalized gesture is provided for touch input.

for the logistic regression. An example of applying this technique,
expressed with the formalism of Skikit-learn [15], is:

GradientBoostingClassifier (subsample = 1, valida-
tion_fraction = 0.7, random_state = 0, criterion = ‘mae’,
n_estimators = 19, min_samples_split = 2, min_samples_leaf
=11, max_leaf_nodes = 3, max_features = ‘auto’, max_depth
= 3, loss = ‘exponential’, learning_rate = 1.84).

Table 1 presents the results obtained with leave-one-out cross-
validation, which show good performance achieved by all of the
classifiers evaluated in our study. The maximum accuracy for pre-
dicting users’ preferences regarding personalized input modalities
with wearables was 85.3% when averaged across all of the wearable
and input modality conditions (last column from Table 1).

4 CONCLUSION AND FUTURE WORK

We presented WearSkill, a web-based application that implements
input personalization and interchangeability for wearables. In this
paper, we focused on the engineering details of WearSkill, but
future work is envisaged to evaluate its usability. We also plan
to continue the development of WearSkill (http://www.eed.usv.ro/
mintviz/projects/WearSkill) towards an open-source solution on
the web that integrates with IoT devices.
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