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ABSTRACT

We introduce WearSkill, a web application that implements person-

alized and interchangeable input for wearable computing. We out-

line functional and quality requirements for WearSkill and present

the engineering details of its implementation using web technology.

We emphasize the interchangeability of input modalities with vari-

ous wearables, e.g., touch input on a smart ring vs. mid-air gestures

of the hand wearing a smartwatch vs. voice input detected by the

microphone from a pair of smartglasses, towards personalized input

for users with various motor abilities. Our findings, from a study

involving twenty-one people with motor impairments, show that

WearSkill can provide accurate recommendations for personalized

input modalities that match 85.3% with users’ own preferences.

CCS CONCEPTS

• Human-centered computing→ Accessibility technologies;

• Software and its engineering;
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1 INTRODUCTION

Wearable devices have become increasingly available in the context

of Ubicomp and IoT environments. With a global market of USD

40.65 billion in 2020 [3], wearables are becoming mainstream due to

their many valuable functions, e.g., health and fitness tracking, and

integration with other mainstream devices, such as smartphones.

As end users who are part of this market, people with motor im-

pairments experience challenges interacting with wearables [22]

that were not designed to be accessible in the first place. The type
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and severity of the motor condition determine the specificity of

such challenges [9,13,16,31] with impact on the feasibility of the

input modalities that can be effectively used to interact with off-

the-shelf devices, such as touch input [26], hand gestures [8], foot

gestures [6], or movements of the head [24]. For example, Mott et
al. [13] reported barriers regarding the physical accessibility of VR

devices, such as putting HMDs on and taking them off, adjusting

the head strap, or maintaining view of the controllers, and Malu et
al. [9] reported challenges regarding button, swipe, and tap-based

interactions for smartwatch input. A workaround is system design

that features alternative input modalities that best match individual

users’ abilities [33]. Personalization and interchangeability of input

modalities are also useful for interactions performed in conditions

characterized by situational impairments [1,5,20].

We are interested in this work in software architecture design for

wearables featuring personalization and interchangeability of input

modalities. Our contributions are as follows: (1) a set of software de-

sign requirements for input personalization and interchangeability

with wearables; (2) WearSkill, our web-based application that imple-

ments our set of requirements towards personalized, multi-device,

multi-modality input with wearables; and (3) a study with N=21

people with motor impairments showing 85.3% accuracy for pre-

dicting users’ preferences for wearable devices and input modalities

that best match their motor abilities.

2 RELATEDWORK

Prior work has documented challenges experienced by people with

motor impairments during interactions with computer systems

of many kinds. From mouse [32], keyboard [4], and remote con-

trol [25] input to interactions with mobile devices [12,27,30] to large

touchscreen displays [14] to wearables [9,10,31], a wide range of

devices and input modalities have been scrutinized for accessibility.

Among these, accessible interactions with wearables have been

addressed to a lesser extent: in their systematic literature review

of wearable interactions for users with motor impairments, Şiean

and Vatavu [22] reported that hand gestures have been dispropor-

tionately favored (41.6%) compared to other input modalities, e.g.,
head gestures (23.4%) or voice input (13.0%). Based on their find-

ings, Şiean and Vatavu proposed the WISE framework, a set of

recommendations to increase the accessibility of wearables: (W)

exploring diverse designs of wearables, (I) new input modalities and

techniques for accessible wearable interactions, (S) more user stud-

ies and evaluations, and (E) extending wearable interactions with

other devices. Due to its direct connection to our scope, we adopt

the WISE framework as the conceptual foundation for WearSkill.
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Several unique characteristics of wearables make them suitable

for personalized and interchangeable input: diverse form factors,

placement close to or in contact with the body, and varied sens-

ing options to detect user input, including taps and touch input,

movements of the fingers and hands, voice, eye gaze, and others;

see [21,22]. Also, multiple devices can be worn together, e.g., a
smartwatch and a smart ring, enabling the use of one or another ac-

cording to context. This flexibility, however, raises several technical

challenges for software architecture designs and for the algorithms

employed to recognize user action across multiple devices.

Various technical solutions have been proposed for input with

heterogeneous devices [18,19]. One example is Euphoria, a scalable,

event-driven software architecture for implementing interactions

across heterogeneous devices in smart environments. Euphoria con-

sists of five software layers: Producers, Emitters, Engine, Receivers,

and Consumers. The outermost components, represented by Pro-

ducers and Consumers, implement the specific details required by

different platforms, operating systems, and APIs. In the center of

the architecture, Emitters and Receivers abstract the strategy for

exchanging messages with all devices sharing the same interface

and communicating via the same protocol. The business logic for

the communications resides at the Engine level, where messages

are routed between devices. In this work, we reuse the open-source

Euphoria [18] as the middleware for implementing WearSkill.

3 WEARSKILL

We introduceWearSkill, our web-based application that implements

personalized and interchangeable input with wearables. We start

by presenting functional requirements for WearSkill in accordance

with the WISE framework [22]. We then leverage the SQuaRE [7]

model to select six quality requirements, which we implement with

three technological and three design patterns approaches.

3.1 Design Requirements

Based on the directions set by the WISE framework [22], we for-

mulate four functional requirements (F1 to F4) for WearSkill:

F1. Wearables.WearSkill must be flexible to integrate a variety of

wearables and their integration must require only minimal

software changes at the outer layer of the software architec-

ture. We consider wearable devices that have built-in Wi-Fi

connection and support communication protocols for the

web, such as WebSocket.
1

F2. Interactions.WearSkill facilitates execution of system func-

tions on various output devices, e.g., a PC or a TV set, with

input performed with wearables. To this end, users perform

a command with the wearable they prefer in a given context.

WearSkill stores associations between commands performed

with wearables and system functions of output devices, e.g.,
a wave of the hand wearing a smartwatch turns on the TV.

F3. Studies. WearSkill offers out-of-the-box support for logging

input data to enable more studies to learn about how users

employ wearables and how they personalize input.

F4. Extension. The main goal of WearSkill is to enable personal-

ized and interchangeable input with wearables as the mid-

dleware for a distributed user interface [28].

1
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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Figure 1: Design requirements for WearSkill (left) and an

overview of its software components (right) for personaliza-

tion and interchangeability of input with wearables.

We choose six quality requirements from the ISO/IEC 25010:2011

SQuaRE [7] model (Systems and Software Quality Requirements

and Evaluation) that are directly relevant to wearables [17] and to

the scope of the WearSkill application, respectively:

Q1. Modularity refers to splitting the software system into dis-

crete units that interact with each other through interfaces.

This requirement acknowledges the heterogeneity of wear-

ables (F1) and keeps the adapter layer as thin as possible.

Q2. Reusability indicates the degree to which a specific asset

can be reused in another configuration of the system. Since

WearSkill enables input with heterogeneous devices (F1),

developers that build on WearSkill can reuse existing func-

tionality to accommodate new wearables and output devices.

Q3. Interoperability is the ability of two or more modules to

communicate with each other based on a common stan-

dard. WearSkill integrates different types of wearables (F1)

by means of dedicated modules that employ standard com-

munication protocols to enable a variety of interactions (F2).

Q4. Replaceability refers to the possibility to replace a compo-

nent with another, equivalent one. The interchangeability of

wearables enables the use of different input devices (F1, F4)

to execute a given system function on an output device.

Q5. Appropriateness indicates the degree to which the software

system meets end-user needs in a personalized way. This

property connects to the functional requirements F3 and F4.

Q6. Learnability specifies the capacity of the system to help the

user transition from novice to expert mode. Also, better

understanding end-user needs for wearable interactions (F3)

can lead to better future versions of WearSkill (F4).

The first two quality requirements, Q1 and Q2, set the condition

for low-level software modules, requirements 𝑄3 and Q4 refer to

high-level software components, and Q5 and Q6 specify the charac-

teristics of the interaction between users and WearSkill. To imple-

ment these quality requirements, we adopt three technological (T1

to T3) and three design patterns (D1 to D3) approaches; see Figure 1,

left. Due to the high portability of web applications, we choose web

technology (T1) for the development of the WearSkill user interface.

We also choose JavaScript as our programming language of choice

(T2) since it runs on a variety of platforms, either in a web browser

or a runtime environment. Communications between the software

components are implemented with Euphoria [18] and, thus, employ

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API


WearSkill: Personalized and Interchangeable Input with Wearables for Users with Motor Impairments W4A’22, April 25–26, 2022, Lyon, France

HTTP and WebSocket protocols (T3). In terms of design patterns,

we establish WearSkill on the SOLID principles [11]. We use depen-

dency injection, i.e., injecting of dependencies rather than creating

them inside the object, to obtain a strong separation between ob-

ject creation and utilization (design pattern D1). Also, WearSkill is

divided into several layers (models, views, view models, presenters,

controllers, repositories, and gateways) that communicate through

interfaces (D2). To simulate usage scenarios (D3), we employ high

coverage end-to-end testing. To implement the functional require-

ments F1 to F4, we designed six software components for WearSkill

(C1 to C6 in Figure 1), presented in the next subsection.

3.2 Implementation

The software components of WearSkill play specific roles in achiev-

ing input personalization and interchangeability. Figure 1, right

illustrates the interaction flow, from the specification of the user

profile to runtime monitoring of the system, as follows:

C1. Profile enables users to enter personal data (in accordance

with the functional requirement F2) represented by their

motor symptoms, e.g., slow movements, low strength, etc.,

which we adopted from [2]; see Figure 2, left.

C2. Preferences employs recommendations generated by a

machine learning model that uses information from Pro-

file to suggest wearables and input modalities (according

to functional requirements F1 and F2). In the current ver-

sion, we implemented support for three types of wearables

(smartwatches, smartglasses, and smart rings) and four in-

put modalities (touch input, hand motion, head motion, and

voice input), but extensions can be further integrated.

C3. Registration of input and output devices is performed under

the Devices section (requirements F1 and F4). Each device is

identified by its MAC address and associated with one of the

following categories: smartwatch, smartglasses, smart ring,

or a generic output device, on which system functions will

execute following input with the first three types of devices.

C4. The Input component is in charge of detecting and recogniz-

ing touch, motion, and voice input (functional requirements

F1 and F2) that users can particularize by providing training

samples; see Figure 2, right. Voice input consists in word

commands recognized using the Google Speech-to-Text API.

Touch stroke-gesture and motion input are implemented

with the $P point-cloud gesture recognizer [29].

C5. Input and output devices are associated in the Commands

section (requirement F4). Commands run on output devices,

e.g., turn on the TV. The same command can be entered with

different input modalities to implement interchangeability.

C6. Users can supervise the entire process from the Runtime

Monitor component (functional requirement F3). For exam-

ple, if input from a given device is not recognized or system

functions are not executed on the output device, warnings

help the user in identifying the cause.

We developed the user interface on top of Vue.js,
2
a progressive

JavaScript framework that enables clear separation between views

and view-models. Back-end models run on the Node.js
3
platform

2
https://vuejs.org

3
https://nodejs.org/en

and communicate with the front-end and the input and output

devices via HTTP and WebSocket protocols. For end-to-end testing,

we employed Cypress,
4
and specified more than 200 tests covering

usual scenarios. To test WearSkill, we developed client web appli-

cations for three wearables: Samsung Galaxy Watch 3, Gear Fit 2

(which we mounted on a custom 3D printed support to be used as

a smart ring), and the Vuzix Blade smartglasses. Next, we focus on

the recommender implemented under the Preferences component

to match wearables and input modalities to users’ motor abilities.

3.3 Personalized Recommendations for Input

Modalities with WearSkill

The Preferences software component integrates a machine learn-

ing model that employs eleven self-reported motor symptoms, en-

tered by the user as yes/no responses when setting their WearSkill

profile (Figure 2, left), to suggest recommendations for wearables

and input modalities that best match users’ motor abilities. The

symptoms are: slow movements, spasm, low strength, tremor, poor

coordination, rapid fatigue, difficulty gripping, difficulty holding,

lack of sensation, difficulty controlling direction, and difficulty con-

trolling distance, which we adopted from [2]. We conducted a user

study to collect the data needed to train this software component.

3.3.1 Participants. A number of N=21 people with motor impair-

ments (spinal cord injury located at various vertebrae, spina bifida,

traumatic brain injury), aged between 28 and 59 years old (M=43.3,

SD=8.2 years), were recruited via a non-profit organization provid-

ing technical assistance to people with disabilities.

3.3.2 Method. We used an online questionnaire to elicit preference

ratings for various combinations of wearables and input modalities

using 5-point Likert scales with items ranging from 1 (not suitable

for me) to 5 (very suitable). Our experiment was a within-subjects

design with two independent variables: input modality (nominal

variable with four conditions—touch input, hand motion, head

motion, and voice input) and wearable (nominal variable with three

conditions—smartwatch, smartglasses, and smart ring).

3.3.3 Dataset. We collected a total number of 21 (participants) ×
11 (symptoms) = 231 records representing predictors and 21 (par-

ticipants) × 3 (wearables) × 4 (input modalities) = 252 preferences

representing recommendations for the Preferences component.

3.3.4 Results. We employed Scikit-learn [15] to evaluate various

classifiers on our dataset using hyperparameter tuning with grid

search optimization [23] and leave-one-out cross-validation. Our

choice of algorithms included linear models and discriminant analy-

sis, Nearest Neighbor classifiers, decision trees, ensemble methods,

semi-supervised models, neural networks, and Support Vector Ma-

chines models. During training, we grouped participants’ ratings

obtained with the 5-point Likert-scales in two classes: do not rec-
ommend (corresponding to the Likert scale items 1 and 2) and

recommend (items 3, 4, and 5), respectively. Hyperparameter tuning

enabled us to cover a wide range of configurations for the classifiers

consider in our evaluation, such as regarding the number of neigh-

bors to use for the K Nearest Neighbors classifier or the best solver

4
https://www.cypress.io
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Table 1: Accuracy rates for predicting users’ preferences for wearables and input modalities from their motor symptoms.

Classifier

Smartwatch Smartglasses Smart ring Mean

Touch

input

Hand

motion

Head

motion

Voice

input

Touch

input

Hand

motion

Head

motion

Voice

input

Touch

input

Hand

motion

Head

motion

Voice

input

accu-

racy

Decision Tree [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100% 95.2% 100% 57.1% 85.3%

Gradient Boosting [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100% 95.2% 100% 57.1% 85.3%

Ada Boost
†
[ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100% 95.2% 100% 57.1% 85.3%

KNeighbors [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100% 95.2% 100% 57.1% 84.9%

Label Propagation [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100% 95.2% 100% 57.1% 84.9%

Radius Neighbors [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100% 95.2% 100% 52.4% 84.5%

Logistic Regression [ref.] 85.7% 90.5% 76.2% 81.0% 90.5% 47.6% 90.5% 95.2% 100% 95.2% 100% 61.9% 84.5%

Multinomial Naïve Bayes [ref.] 85.7% 90.5% 81.0% 81.0% 90.5% 52.4% 90.5% 95.2% 100% 95.2% 100% 47.6% 84.1%

Label Spreading [ref.] 71.4% 90.5% 81.0% 81.0% 90.5% 57.1% 90.5% 95.2% 100% 95.2% 100% 47.6% 83.3%

†
The base estimator was a Random Forest [ref.] classifier.

Figure 2: Snapshots of theWearSkill application. On the left, symptoms of themotor condition enable generation of personalized

recommendations of input modalities for wearables. On the right, a personalized gesture is provided for touch input.

for the logistic regression. An example of applying this technique,

expressed with the formalism of Skikit-learn [15], is:

GradientBoostingClassifier (subsample = 1, valida-

tion_fraction = 0.7, random_state = 0, criterion = ‘mae’,

n_estimators = 19 ,min_samples_split = 2, min_samples_leaf

= 11, max_leaf_nodes = 3,max_features = ‘auto’, max_depth

= 3, loss = ‘exponential’, learning_rate = 1.84).

Table 1 presents the results obtained with leave-one-out cross-

validation, which show good performance achieved by all of the

classifiers evaluated in our study. The maximum accuracy for pre-

dicting users’ preferences regarding personalized input modalities

with wearables was 85.3% when averaged across all of the wearable

and input modality conditions (last column from Table 1).

4 CONCLUSION AND FUTUREWORK

We presented WearSkill, a web-based application that implements

input personalization and interchangeability for wearables. In this

paper, we focused on the engineering details of WearSkill, but

future work is envisaged to evaluate its usability. We also plan

to continue the development of WearSkill (http://www.eed.usv.ro/

mintviz/projects/WearSkill) towards an open-source solution on

the web that integrates with IoT devices.
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