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Figure 1: Examples of on-body, in-air, and on-wheelchair gestures performed by wheelchair users in our gesture elicitation
study (left) and the relationship between their gesture preferences and self-reported motor impairments (right). Note: the
ribbon widths from the right chart encode the strength of the relationships between gesture types and motor impairments, e.g.,
5.6% of the on-body gestures elicited in our study were proposed by users that reported low strength (St).

ABSTRACT

We present empirical results from a gesture elicitation study con-
ducted with eleven wheelchair users that proposed on-body, in-air,
and on-wheelchair gestures to effect twenty-one referents repre-
senting common actions, types of digital content, and navigation
commands for interactive systems. We report a large preference
for on-body (47.6%) and in-air (40.7%) compared to on-wheelchair
(11.7%) gestures, mostly represented by touch input on different
parts of the body and hand poses performed in mid-air with one
hand. Following an agreement analysis that revealed low consen-
sus (<5.5%) between users, although high perceived gesture ease,
goodness, and social acceptability within users, we examine our
participants’ gesture characteristics in relation to their self-reported
motor impairments, e.g., low strength, rapid fatigue, etc. We high-
light the need for personalized gesture sets, tailored to and reflective
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of both users’ preferences and specific motor abilities, an implica-
tion that we examine through the lenses of ability-based design.
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1 INTRODUCTION

Gesture input is widespread in interactive systems, from touch
and motion gestures prevalent on smartphones [32,72] and wear-
ables [35] to whole-body gestures used in video games [53] to
in-air gestures facilitating interaction in smart environments of
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diverse kinds [10,48,69,79]. Among their many features, gestures
are fast [51], reflective of user natural behavior [96], act as short-
cuts with cognitive benefits for users [5], leverage direct access to
digital content [74], and facilitate intuitive input for interacting
with remote systems via referential pointing [8].

However, gesture input relies on certain assumptions about users’
motor abilities to extend and bend fingers, form hand poses, rotate
wrists, move arms, aim and touch accurately, and coordinate differ-
ent parts of the body to produce meaningful movement for robust
detection and recognition by a computer. Assumptions such as
these create accessibility challenges for people with motor and/or
mobility impairments when using gesture interfaces designed for
the “average user” [94]. Prior work has documented such accessibil-
ity challenges for mobile devices [62,87], wearables [57,58,88], and
large displays [64,89]. However, this prior work has focused pri-
marily on touch input due to the prevalence of touchscreen devices,
while other types of gestures that can be performed from the space
of the wheelchair, such as in-air and on-body (see Figure 1, left), have
been examined to a much lesser extent. Nevertheless, in-air and on-
body gestures may prove more accessible to wheelchair users since
they leverage the motor abilities of large muscle groups, different
from the accurate aiming and tapping required for touchscreen
input [62,64,67,70] and, consequently, feasible under a variety of
motor impairments (see Figure 1, right). However, despite the large
scientific literature on in-air [43] and on-body [9] gestures, prior
work has primarily addressed users without motor impairments.

To address this gap in design knowledge for accessible gesture
input, we examine in this work wheelchair users’ preferences for
on-body, in-air, and on-wheelchair gestures. We focus on wheelchair
users since the wheelchair is one of the most common assistive
devices for personal mobility [97], employed by people with diverse
levels of functionality (paraplegia, hemiplegia, and tetraplegia) and
health conditions [99] and, thus, with diverse motor abilities to
use gesture input. Also, wheelchairs can be instrumented with sen-
sors and actuators toward “smart wheelchairs” [49] and enable
on-wheelchair input via “chairables” [13,14]. Moreover, beyond on-
wheelchair gestures, the embodiment of the wheelchair [73] as an
extension of the user’s peripersonal space [25] leverages unique
possibilities for in-air gesture input, while the seated position facili-
tates hands to reach the entire body, including the legs, toward more
expressive [30] on-body input compared to standing up [29,31]. In
this context, we make the following contributions:

(1) We present the results of a gesture elicitation study con-
ducted with 11 wheelchair users that proposed on-body, in-
air, and on-wheelchair gestures to effect 21 referents repre-
senting common actions, types of digital content, and navi-
gation commands for interactive systems, e.g., access email,
turn on the TV, etc. We report a large preference for on-body
(47.6%) and in-air (40.7%) vs. on-wheelchair (11.7%) gestures,
primarily performed with one hand (76.3%) as touch input
(34.2%) on the body and hand poses (22.5%) in mid-air.

(2) Following an agreement analysis that revealed low consen-
sus (AR¢ <5.5%) between participants’ gesture proposals, we
examine the characteristics of the elicited gestures in rela-
tion to our participants’ self-reported motor impairments,
e.g., low strength, rapid fatigue, etc. We highlight the need
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for personalized gesture sets, tailored to and reflective of
both users’ preferences and specific motor abilities.

(3) Based on our findings, we outline nine design implications
for on-body, in-air, and on-wheelchair gesture input per-
formed from the space of the wheelchair, which we discuss
through the lenses of ability-based design [94,95].

2 RELATED WORK

We relate to prior work on smart wheelchairs that leverage sensing
and communications for more accessible navigation in the physical
environment. We also overview the scientific literature on on-body
and in-air gesture input where, despite considerable work, the needs
and preferences of wheelchair users have been little examined.

2.1 Smart Wheelchairs and Chairables

A large body of work exists on extending the functionality offered
by conventional wheelchairs, from making them more comfortable
and ergonomic [18,19,63] to designs of smart wheelchairs [49] that
leverage sensors, actuators, and artificial intelligence to enable a
large palette of interactions from the space of the wheelchair [13,
14,46,76,81,83]. For example, Kutbi et al. [46] integrated a Kinect,
laptop, wireless router, and tablet device on a wheelchair and used
a head-worn video camera to enable navigation via head gestures;
Trivedi et al’s [81] smart wheelchair could be controlled with in-
put from either a keyboard, webcam, or microphone; and Singer
and Hartmann’s [76] See-Thru eye-tracking interface integrated
feedback with spatially-arranged LEDs on a wireframe mounted on
the wheelchair. Other work has focused on the sensory and motor
augmentation of wheelchair users. For example, ExtendedHand [6]
used video projections of a virtual hand in the environment, which
users could control via a touchpad from the wheelchair armrest.
Tsui et al. [82] developed Manus ARM, a robotic arm for pick-
ing up objects, mounted on the wheelchair and controlled via a
touchscreen and joystick mouse. The Vibrotactile Glove [83] was
designed to deliver vibrotactile feedback to wheelchair users with
visual impairments during the operation of the power wheelchair.

Carrington et al. [14] coined the term “chairables” to denote
devices designed to fit with the form of the wheelchair and be
used from the wheelchair space, and explored possibilities for
their placement and form factors. A follow-up work [13] intro-
duced the “Gest-Rest family” of devices that can fit over standard
wheelchair armrests to enable gesture input in the form of presses,
flicks, squeezes, and punches on the armrest. The results revealed
favorable acceptance of Gest-Rest devices, positive appreciation
of their always-available nature due to the wheelchair-integrated
form factors, but also the need for customizing the device, modality,
and gesture set to the specific motor abilities of wheelchair users.
Unfortunately, no work followed to understand user performance
and preference with on-wheelchair input vs. other gesture types,
such as in-air [43] or on-body [9]. Next, we overview prior work on
on-body and in-air gesture input, which has primarily examined the
performance and preference of users without motor impairments.

2.2 On-Body Gesture Input

On-body interaction has the advantage of being always available,
supported by a large surface that can serve for both input and
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output, and augmented naturally by proprioceptive and tactile feed-
back. For example, Harrison et al. [29] introduced OmniTouch, a
shoulder-worn depth-sensing and video projection system enabling
multitouch interaction with everyday surfaces, including the user’s
hands, arms, and legs. Armura [31] tracks the location and gestural
state of the user’s arms and hands, on which a ceiling-mounted
projector renders coordinated graphical feedback, to enable a vari-
ety of single-handed and bimanual interactions. Besides computer
vision, other sensing technology has been used to detect on-body
input: Mujibiya et al. [65] used transdermal ultrasound propagation
for forearm gesture input, Matthies et al. [59] introduced Botential,
an extended on-body input space based on electrical signatures, Ye
et al. [102] explored near-field enabled clothing, and Xu et al. [101]
examined on-face interactions sensed with earbuds.

Direct input on the body has also been studied for users with
various disabilities. Oh and Findlater [68] conducted a study with
twelve participants with visual impairments and reported that the
least preferred locations were the face, neck, and forearm, while
the hands were considered discreet and natural surfaces for input.
A follow-up study [78] extended the results to fifteen locations on
the body: ear, shoulder, thigh, wrist, back of hand, five fingers, and
five locations on the palm. Malu and Findlater [58] proposed an ac-
cessible solution for people with upper-body motor impairments to
control head-mounted displays with switch-based input via touch-
pads positioned on the body or wheelchair. We did not find other
work on on-body input for users with motor impairments.

2.3 In-Air Gesture Input

In-air gesture input has been extensively studied in the scientific
literature for a diversity of applications, including in-vehicle inter-
action [10], AR [69], home entertainment [79], and mass-computer
interaction [48]; see Koutsabasis and Vogiatzidakis [43] for a sys-
tematic literature review. Gestures performed in air have also been
implemented for wheelchair control and navigation. For example,
Kim-Tien et al. [42] proposed a camera-based computer vision sys-
tem, and Kundu et al. [45] employed inertial measurement units
and myoelectric sensing to detect hand gestures for wheelchair
navigation. Unlike these applications that implemented researcher-
defined gestures, we are interested in wheelchair users’ preferences
for and performance with gestures matching their motor abilities.
In this area, Vatavu and Ungurean [88] reported results on stroke-
gestures and motion-gestures collected with a wearable device,
and showed that users with upper-body motor impairments took
twice as much time to produce stroke-gestures on wearable touch-
screens compared to users without impairments, but articulated
motion-gestures equally fast and with similar acceleration char-
acteristics. Ungurean and Vatavu [84] conducted interviews with
twenty-one people with motor impairments about their preferences
for accessible input modalities for various wearables—smartwatch,
fitness tracker, ring, smartglasses, smart earbuds,—and reported
equal preferences for in-air hand gestures and chairables [14].

2.4 Summary

A large body of work exists on in-air and on-body gesture input, but
addressing almost exclusively users without motor impairments.
The design knowledge available on accessible gesture input for
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users with motor and/or mobility impairments has been primarily
constituted for touchscreen devices and, in the case of wheelchair
users, for on-wheelchair gestures performed on the armrest. In
this context, more scientific investigation is needed to understand
wheelchair users’ preferences for other gesture types, including
on-body, in-air, and on-wheelchair, which leverage different motor
abilities than those required to implement touch input on mobile
devices. Next, we present a gesture elicitation study conducted to
understand preferences for such gesture types, which we charac-
terize with a diversified set of measures.

3 EXPERIMENT

We conducted an experiment to understand wheelchair users’ pref-
erences and perceptions of on-body, in-air, and on-wheelchair ges-
tures to control interactive systems, for which we employed the
end-user elicitation method [90,93,96]. The experiment was ap-
proved by the Ethics Committee of the University of Suceava.

3.1 Participants

Eleven people (5 male and 6 female), aged between 44 and 66 years
old (M=51.5, SD=6.4), participated in our study. Our inclusion crite-
rion was people who were wheelchair users, which we recruited
via convenience sampling from a non-profit association providing
technical support to people with disabilities. Our participants re-
ported a diversity of health conditions, functionality, and motor
impairments, reflected by a wide range of WHODAS 2.0 [98] health
and disability scores, between 12.5 and 45.8 (M=33.9, SD=10.7).1
The most frequently reported motor impairments [23] included
difficulty holding (9 of 11 participants), rapid fatigue (7/11), low
strength (7/11), slow movements (6/11), poor coordination (6/11),
and difficulty gripping (6/11); see Table 1 for details. The number
of years since our participants had been living with their motor
impairments varied between 8 and 49 (M=26.0, SD=17.5). We had
a balanced distribution of wheelchair type in our sample with six
participants using manual and five using power wheelchairs.

3.2 Procedure

We elicited participants for on-body, in-air, and on-wheelchair ges-
tures to invoke specific referents for interactive systems, e.g., an-
swer a phone call or access email. To cover a wide range of system
functions and types of digital content, we selected 21 frequently
used referents from prior work, including from the top-10 most
influential gesture elicitation studies [91, p. 860], elicitation stud-
ies conducted with people with motor impairments [22,57,104], a
study focused on content type [74], content categories used during
interviews with wheelchair users for inclusive design [14], and
gesture elicitation involving wearables [26,40]. Also, following the
design of prior studies [15,41,57,69,72], we grouped our referents
in three generic categories: Actions, Content, and Navigation; see
Table 2. For each category of referents, participants received the
following instructions: “Here is a list of referents. Think about suit-
able gestures to execute these referents. The gestures should be
easy to perform, easy to recall at a later time, and a good fit to

! According to the normative data report of Andrews et al. [2] based on 8,841 respon-
dents, individuals scoring between 20 and 100 on the WHODAS scale are in the top
10% of the population distribution likely to have clinically significant disabilities.
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Table 1: Demographics of our study participants, their self-reported motor impairments described using the eleven categories
from Findlater et al. [23], and the WHODAS 2.0 [98] health and disability scores.

. Years If. di . B WHO- Wheel
Participant Health condition* Functionality with Self-reported impairments DAS chair
(age, gender) imp. Mo Sp St Tr Co Fa Gr Ho Se Dir Dis #  score type
Py (45, M) Traumatic Brain Injury Tetraplegia 25 v - - - vV vV - - - - / 4 45.8 power
Py (58, M) Spinal Cord Injury (T7) Paraplegia 8 - - - - - VvV - Vv - - - 2 41.7  manual
P3 (48, F) Spina Bifida Paraplegia 48 - - v - - Vv - vV - - - 3 39.6  manual
P4 (49, M) Osteogenesis Imperfecta Tetraplegia 49 - - - - - Vv - vV - - - 2 33.3 power
P5 (50, M) Multiple Sclerosis Tetraplegia 22 v - v - v - vV vV - -/ 6 39.6  manual
Pe (66, M) Spinal Cord Injury (C4,C5) Tetraplegia 10 v v v - v v v v Vv vV vV 10 375 power
Py (54, F) Parkinson’s Tetraplegia 13 - v v v v Vv vV VvV - vV - 38 37.5 power
Pg (44, F) Friedreich’s Ataxia Tetraplegia 8 v - v - vV - vV - - - - 4 14.6  manual
Py (48, F) Cerebral Palsy Tetraplegia 48 v v v - - Vv v vV - vV vV 8 37.5  manual
P10 (47, F) Cerebral Palsy Tetraplegia 47 - v v - Vv - v Vv - Vv vV 7 33.3 power
P11 (58, F) Parkinson’s Tetraplegia 8 v v - v - v - vV - 5 12.5 manual

Summary 26 6 5 7 2 6 7 6 9 1 5 5 54 339

TThe code in the parentheses denotes the affected vertebra(e), e.g., “Spinal Cord Injury (C4)” refers to a traumatic injury at the 4th cervical vertebra.
*From [23]: Mo = Slow movements; Sp = Spasm; St = Low strength; Tr = Tremor; Co = Poor coordination; Fa = Rapid fatigue; Gr = Difficulty gripping; Ho = Difficulty holding; Se =
Lack of sensation; Dir = Difficulty controlling direction; Dis = Difficulty controlling distance; # = number of impairments.

the referents. The gestures can be performed however you want:
on your body, including clothes, in air around the body, or on the
wheelchair. You are not constrained to use the same type of gestures
(on the body, in air, or on the wheelchair) for all of the referents;
rather, you should choose the type of gesture you believe is the
most appropriate to execute each referent. You can use any hand
to perform the gestures” Then, each referent was presented with
a short sentence on a computer screen, e.g., “Propose a gesture to
answer an incoming phone call;” see the second column of Table 2.
The orders of the categories and referents in each category were
randomized per participant. The sessions were video recorded.

3.3 Design

Our study was a within-subjects design with one main indepen-
dent variable, REFERENT, nominal with twenty-one conditions; see
Table 2. We also used the grouping of referents into categories, speci-
fied with the REFERENT-CATEGORY nominal variable with three con-
ditions: Actions, Content, and Navigation. The dependent variables
are represented by the measures collected from our participants
and measures extracted from the videos; see next for details.

3.4 Measures

We characterize our participants’ preferences for and articulations
of on-body, in-air, and on-wheelchair gestures with a set of ten
measures representing the dependent variables in our experiment.

3.4.1 Measures of gesture articulation. We used the video record-
ings of the study to extract the following information:

o GESTURE-LoCALE with three categories: on-body, in-air, and
on-wheelchair gestures.

o GESTURE-LOCALE-DETAIL represents specific details about
each condition of GESTURE-LocaLE. For on-body and on-
wheelchair gestures, we retained the body part (e.g., left
ear) and wheelchair part (e.g., right armrest) in relation to
which the gestures were performed. For in-air gestures, we

extracted their location in a system of reference centered on
the body with six regions: front, back, left, right, up, down.
o GESTURE-EXTENT was measured in McNeill’s [61, p. 378]
“gesture space,” a division of concentric squares of the space
around a person performing gestures while seated (see Fig-
ure 2, right) with three main regions—center, periphery, and
extreme periphery,’—and seventeen subregions.? From the
center to the extreme periphery, gesture articulation requires
more space and, implicitly, more physical effort.
GESTURE-TYPE. We classified the input type implemented by
the on-body and on-wheelchair gestures into five categories:
pointing (the hand points to a specific body part or a part of
the wheelchair, without touching it), tap (a quick touch on
the body or the wheelchair, usually performed in less than
one second), touch (a touch longer than a tap), grasp (the
hand firmly grasps a body part or a part of the wheelchair),
and stroke (the hand swipes on a surface, draws a symbol,
mimics controlling a continuous slider, etc.). The last four
categories were inspired by Bergstrom and Hornbeek’s [9, p.
77:3] taxonomy of on-skin input, to which we added point-
ing due to the ubiquity of deictic gestures. This set of five
categories is convenient to position a variety of on-body
and on-wheelchair gestures on a continuum ranging from
non-contact (pointing) to contact-based gestures, where the
latter are differentiated by the duration and type of contact.
For in-air gestures, we used three categories: pointing and
stroke, defined as above, and hand pose (i.e., the hand adopts
a symbolic pose, such as “thumbs-up”).
e HANDEDNESs, adopted from McNeill [61], specifies the hand(s)
involved in gesture articulation: left hand (LH), right hand
(RH), two same hands (2SH), and two different hands (2DH).*

2For reasons of coding simplicity, we considered McNeill’s [61] “center-center” in-
cluded in the “center” region.

3Center and eight subregions for periphery and extreme periphery; see Figure 2, right.
4Terminology and abbreviations used by McNeill [61, p. 379] for gesture coding, which
we adopt for consistency purposes.
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Table 2: The list of referents used in our end-user gesture elicitation study.

Referent

Description provided to the participants

References’

1. Place call Open the phone application to place a call [72]

2. Answer call Answer an incoming phone call [26,40,72]

3. Send text Open the messaging application to send a text message [14,37]

4. Send email Open the email application to send an email [66]

5. Turn on/off lights Turn on/off the lights (lights turn on if they are off and vice versa) [26,41]

6. Turn on/off the TV Turn on/off the TV (the TV turns on if it is off and vice versa) [22,26,41]

7. Emergency call Call the emergency contact from the phone application [40]
Content

8. Photo/video Get direct access to photos/videos; the first photo is displayed on a screen [14,41,74]

9. Music Get direct access to music; the first file starts playing [14,74]

10. Email Get direct access to email; the most recent email is displayed on a screen [14,41,74]

11. Contacts Get direct access to phone contacts, which are displayed on a screen [72]

12. E-book Get direct access to e-books; the last accessed book is displayed on a screen [14,74]

13. Agenda/calendar Get direct access to the agenda/calendar, displayed on a screen [74]

14. Social media Get direct access to the most recent social media notifications, displayed on a screen [14,22,57,74]

Navigation
15. Next horizontal

16. Previous horizontal Go to the previous element in a list

17. Next vertical . . . .
audio volume, light intensity, etc.

18. Previous vertical

19. Undo

20. Menu

21. Home screen

Go to the next element in a list, e.g., show the next photo or go to the next TV channel

Move up in hierarchy, e.g., go to the top-level menu, or increase the value of a parameter, e.g.,

Move down in hierarchy or decrease the value of a parameter
Cancel or reverse the effect of the most recently executed command
Open the menu of the current application, e.g., show the TV menu
Go to the home screen of the current application

[22,26,37,40,41,50,57,69,
72,96,104]

same as for ref. 15
[26,37,40,41,57,66,72,
104]

same as for ref. 17
[37,40,69,96]
[37,40,66,69,96]
[50,57,66,72]

TPapers from the scientific literature on gesture elicitation, from which we selected our referents, included: the top-10 most influential gesture elicitation studies, according to [91, p.

860], elicitation studies with people with motor impairments [22,57,104], an elicitation study focused on content type [74], content categories used during the chairables study [14],

and gesture elicitation studies for wearables [26,40].

The last two categories specify bimanual gestures, where the
hands may adopt the same or different poses and movements.

These measures were extracted independently by two researchers,
who confronted their results. The average Gwet’s [28] AC1 coeffi-
cient® was .816 (SD=.107) with a cumulative membership probability
of 100%, indicating a substantial level of consensus according to
the Landoch-Koch benchmarking scale. Differences were discussed
and, when consensus could not be reached (2.6% of the cases), were
settled by majority vote with the intervention of a third researcher.

3.4.2 Agreement between elicited gestures. We evaluated the agree-
ment between participants’ gestures with AR, a measure computed
automatically from the gesture descriptions following the “com-
puter” model of agreement analysis [90]:

Sy Sgsp [6(p) < €]
N(N-1)
where N is the number of gesture proposals elicited for referent
R, § is the dissimilarity function used to compare gestures p and g,
€ is a positive value representing the tolerance at or below which
two gesture descriptions are sufficiently similar to be considered
equivalent, and [-] is Kronecker’s function that evaluates to 1 when
the inner expression is true and 0 when false. With this definition,
AR, takes values between 0% (no agreement) and 100% (all the
gestures are equivalent). To evaluate the dissimilarity § between

AR¢(R) =

-100% (1)

5AC1 is a more stable coefficient of agreement than Cohen’s k; see [28]. We used the
irrCAC R package to compute AC1.

two gestures p and g, we used their descriptions with the five mea-
sures of gesture articulation, GESTURE-LOCALE, GESTURE-LOCALE-
DETAIL, GESTURE-EXTENT, GESTURE-TYPE, and HANDEDNESS, de-
scribed in Subsection 3.4.1. Thus, any gesture p was represented
as p=(p1, p2, P3, P4, p5), where p1 specifies the gesture locale and
ps the hands configuration, e.g., p may be (on-body, left ear, upper
periphery, touch, RH). Since these variables are categorical, we im-
plemented § with the probabilistic information theoretic approach
proposed by Lin [52], one of the best performing distances for
categorical data [11], also employed by Vatavu and Wobbrock [90]:

~

5
5(p.q) =1- > weS(pi- qi) 2
k=1
where Sk (pr. q) is the per-attribute similarity between any two
values of the k-th categorical attribute, and wy is the weight as-
signed to the k-th attribute, as follows:

_ | 2log (mr(p)) Pk = 9k
Sk(pk’ qk) - ZIog(ﬂk(Pk) + ”k(qk)) otherwise (3)
! @)

Wi = P
2oy log(mi(pi)) + log(mic (qk))
7 (x) is the sample probability of the k-th attribute to take value x,
which we estimated from our collected data, e.g., 71 (on-body)=.476,
72 (left ear)=.026, m3(upper periphery)=.216, m4(touch)=.342, and
75(2DH)=.078 for the previous example; see Section 4 that presents
these results for the corresponding measures. According to Eq. 3,


https://cran.r-project.org/web/packages/irrCAC

CHI 23, April 23-28, 2023, Hamburg, Germany

Lin’s [52] measure assigns higher weights to matches on frequent
values and lower weights to mismatches on infrequent values [11].

3.4.3 Gesture ratings. We evaluated participants’ perceptions about
their own gestures using 7-point Likert scales:

o GESTURE-EASE, adapted from Wobbrock et al. [96], measures
the perceived ease of gesture articulation with a rating from
1 (“very difficult”) to 7 (“very easy”).

o GESTURE-GOODNESS, adapted from Wobbrock et al. [96], mea-
sures the goodness of fit between the proposed gesture and
the corresponding referent with a rating from 1 (“not fit at
all”) to 7 (“very good fit”).

e RecALL-EASE, adapted from Zaiti et al. [103], measures user
perception of the recall likeliness of the proposed gesture
with a rating from 1 (“very difficult”) to 7 (“very easy”).

® SOCIAL-ACCEPTABILITY, adapted from Rico and Brewster [71],
measures participants’ willingness to perform the proposed
gestures in public with a rating from 1 (“unwilling at all”) to
7 (“very willing”).

3.5 Statistical Analysis

We employ non-parametric Friedman and Wilcoxon signed-ranked
tests to analyze the effect of REFERENT and REFERENT-CATEGORY
on participants’ gesture ratings. We aggregate the repeated mea-
surements extracted from the videos and use Wilcoxon tests to
compare observed percentages against expected ones (e.g., 33.3%
chances to observe an on-body, in-air, or on-wheelchair gesture).
To examine the effect of REFERENT and REFERENT-CATEGORY on
the repeated measurements collected for the categorical variables,
such as GESTURE-EXTENT and GESTURE-TYPE, we fit generalized
linear mixed-effects models with the Poisson distribution and Pow-
ell’s BOBYQA optimizer [7]. Finally, we use growth rates r and
dissimilarity-consensus logistic modeling [85] to analyze the rela-
tionship between AR, and e.

4 RESULTS

We report results about our participants’ preferences and percep-
tions of on-body, in-air, and on-wheelchair input from an analysis
of 231 gestures elicited in response to 21 referents.

4.1 Gesture Locale and Extent

We found that about one in two gestures (47.6%) was performed on
or with reference to the body, 40.7% were in air, and 11.7% on or with
reference to the wheelchair. The observed percentages of on-body
and on-wheelchair gestures were significantly different from chance
(V=48.5, p=.036 and V=3.0, p=.011) with on-body gestures being
significantly more common (p=.007, Bonferroni corrections applied
at @=.05/3=.0167); see Figure 2, top left. A GLMM analysis revealed
a statistically significant effect of REFERENT-CATEGORY on GESTURE-
LocALE ()((22)=6.069, p=.048), but not of REFERENT ()(520)=15.823,
p=.728, n.s.). We found more on-body gestures (62.3%) for accessing
Content, e.g., 72.7% of the gestures elicited for “social media,” and
more in-air gestures (61.0%) for Navigation, e.g., 81.8% of the ges-
tures elicited for “next vertical” and “previous vertical”; see Figure 2,
top right. The percentages of on-wheelchair gestures were roughly
similar, between 10.4% and 13.0%, across REFERENT-CATEGORY.
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The specific locations where the gestures were performed are il-
lustrated in Figure 2, bottom left. On-body gestures were performed
mostly with reference to the head (16.0%), followed by arms (12.2%),
legs (10.4%), and torso (4.7%), and 4.3% involved multiple body parts,
e.g., touching both the left and right thighs. In-air gestures were
performed in front of the body (29.4%), and only very few on the
left (2.2%) and right (1.3%) sides. The most common on-wheelchair
gestures involved touching the armrests (6.1%). Furthermore, Fig-
ure 2, bottom right shows the distribution of the GESTURE-EXTENT
categories in McNeill’s [61] gesture space. A percentage of 27.7%
of the gestures were performed in the center and only 11.2% in the
extreme periphery, while the upper part of the periphery region
contained 21.6% of the elicited gestures due to their reference to the
head. Combined, gestures performed in the center and the upper
subregions of the periphery and extreme periphery around the head
represented more than half (56.2%) of the elicited gestures.

4.2 Gesture Type

We found a larger preference for touch (34.2%) and hand pose (22.5%)
compared to tap (14.3%), stroke (14.3%), pointing (12.1%), and grasp
(2.6%) gestures; see Figure 3, top. A GLMM analysis revealed a signif-
icant effect of REFERENT-CATEGORY on GESTURE-TYPE ( sz) =8.887,

p=.01), but not of REFERENT ()(?20):20.865, p=.405, n.s.). Referents

from the Navigation category that had spatial connotations received
pointing and stroke gestures in response, e.g., 54.5% of the gestures
elicited for “next vertical,” 45.5% for “previous vertical,” and 45.5%
for “undo”” Touch gestures were predominant for the referents of the
Content category, e.g., 63.6% of the gestures elicited for “agenda/-
calendar” “contacts,” “music,” and “social media” The distribution
of gesture types was mainly split between touch and hand pose for
the Actions referents, e.g., 63.6% hand pose gestures to “place a call”
and 36.4% touch gestures to “send a text message,” respectively.

4.3 Handedness

The large majority (78.3%) of the elicited gestures involved one
hand, and were significantly more common (Z= — 2.497, p=.013)
than two-hand gestures (18.6%); see Figure 3, bottom. On rare oc-
casions (3.0%), a few participants proposed head gestures,® which
we exceptionally allowed since they were considered the best fit to
the corresponding referents. Although gestures performed with the
right hand were more common than those performed with the left
(46.3% and 32.0%), the percentages were not significantly different
from expected chance (p>.05) with no significant difference either
between the two categories (Z= — .801, p=.423, n.s.). Of the biman-
ual gestures, 11.3% were symmetric (2SH, V=6.0, p=.017) and 7.4%
involved different movements and poses (2DH, V=1.0, p=.004).

4.4 Agreement Rates

We computed agreement rates AR, for each REFERENT using the
procedure described in Subsection 3.4.2. We used the tolerance
level =0 to specify that two gestures are equivalent if and only if
they have the same GESTURE-LOCALE, GESTURE-LOCALE-DETAIL,
GESTURE-EXTENT, GESTURE-TYPE, and HANDEDNESS attributes. Out

®The seven head gestures (7/231=3.0%) observed in our study included turning the
head left (P19), up (a gesture that Pg proposed for two referents), down (Pg), and back
(Pg), eyes wide open (Py), and taking a deep breath (P), respectively.
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Figure 5: Participants’ ratings of the gestures they proposed to effect various referents (higher values denote better ratings).

of the total number of (11-10)/2=55 pairs of gestures for each REFER-
ENT, we found between 0 and 3 pairs in agreement (Mdn=0, M=0.71,
SD=0.95) and, correspondingly, very low agreement rates, between
0.0% and 5.5% (M=1.3%, SD=1.7%); see Figure 4, left.

According to these results, no consensus gesture set can be estab-
lished for any of the referents because of our participants’ different
preferences for gestures or, perhaps, our too restrictive gesture
equivalence criteria. To rule out the latter, we recomputed the agree-
ment rates AR, without considering the influence of some of the
gesture attributes, but the consensus did not increase significantly:
M=2.0% (SD=2.1%) without HANDEDNESS (i.e., we considered two
gestures equivalent regardless of the hand used to perform them),
M=3.6% (SD=2.7%) without HANDEDNESS and GESTURE-LOCALE-
DETAIL (i.e., we considered two gestures equivalent regardless of
the hand used to perform them and the specific details of their ar-
ticulation on the body, wheelchair, or in air), and M=4.7% (SD=4.6%)
without HANDEDNESS and GESTURE-EXTENT (i.e., we considered
two gestures equivalent regardless of the hand used to perform them
and the region in space where they were performed). This analysis
revealed that the lack of consensus was determined by participants’
different preferences for gestures. To further confirm this finding,
and also to learn more about agreement formation for the elicited

gestures, we employed the dissimilarity-consensus method [85],
an approach to agreement analysis designed to be agnostic to the
criterion €. Following this method, we performed logistic modeling
of the growth curves of AR, function of €. The estimated values for
the Cp and Cw coefficients of the logistic models were close to zero
(M=0.75, SD=0.60) and 100 (M=100.3, SD=1.93), respectively, and
the growth rates r were statistically significant (p<.001), indicating
a good fit of the logistic models for our data; see [85, p. 8] for good-
ness of fit criteria in dissimilarity-consensus analysis. Figure 4, right
shows growth rates r that vary little (M=14.7, SD=3.3, IQR=15.3-
12.2=3.1) between the referents. The similar speeds at which the
agreement rates computed for different referents increase with in-
creasingly larger tolerance values € indicate similar processes of
agreement formation for those referents. Thus, the diversity ob-
served in the elicited gestures must have another cause than the
mere difference between the conditions of the REFERENT variable,
an aspect that we examine in detail in Subsection 4.6 in relation to
our participants’ self-reported motor impairments.

4.5 User Perception of the Elicited Gestures

Figure 5 shows the mean ratings of GESTURE-EASE, RECALL-EASE,
GESTURE-GOODNESS, and SOCIAL-ACCEPTABILITY for the gestures
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proposed by our participants. We found statistically significant ef-
fects of REFERENT-CATEGORY on RECALL-EASE ( )(?2)=8.512, p=.014)

and GESTURE-GOODNESS ( )(?2):7.818, p=.020), complemented by
significant effects of REFERENT (szo)=50~240 and X520)=56.961,

p<.001), but not on GESTURE-EASE and SOCIAL-ACCEPTABILITY
(p>.05, n.s.). Post-hoc Wilcoxon signed-rank tests (Benjamini &
Hochber FDR corrections applied) revealed statistically significant
differences between the Content and Navigation categories for
RecALL-EASE (p=.043), and between Content and Actions (p=.035)
and Content and Navigation (p=.035) for GESTURE-GOODNEss. Over-
all, our participants evaluated their own gestures easy to articulate
(M=6.83/7), easy to recall (M=5.48/7), a good fit to the referents
(M=5.16/7), and socially acceptable (M=6.42/7). Despite the little
agreement between users’ gesture proposals (see Subsection 4.4),
we found high gesture ratings within users, which suggests a design
approach based on personalized gesture sets.

4.6 Relationship Between Motor Impairments
and Gesture Characteristics

We computed visualizations of the relationship between the articu-
lation characteristics of the elicited gestures and participants’ self-
reported motor impairments; see Figure 6. In this figure, each partic-
ipant is represented on one row and the columns correspond to the
measures of gesture articulation from Subsection 3.4.1—GESTURE-
LocALE, GESTURE-LOCALE-DETAIL, GESTURE-TYPE, HANDEDNESS,
and GESTURE-EXTENT,—which we have used consistently through-
out our analysis, including for computing agreement rates. In total,
seven circular layout charts are presented for each participant to
show the correspondence between the participant’s motor impair-
ments and the characteristics of their gesture articulations.

For example, P; reported slow movements (Mo), poor coordi-
nation (Co), fatigue (Fa), and difficulty controlling distance (Dis);
see the first row of Table 1 and the first row of Figure 6, respec-
tively. During gesture elicitation, P; proposed on-body (76.2%) and
in-air (23.8%), but not on-wheelchair (0.0%) gestures. The first circu-
lar chart puts into correspondence P;’s preferences for GESTURE-
LocALE (shown at the bottom part of the layout) with their self-
reported motor impairments (at the top of the layout) using ribbons
with a color coding matching that used to represent GESTURE-
LocatLk in Figure 2. The next three circular charts show Py’s pref-
erences for locations, according to the GESTURE-LOCALE-DETAIL
categories, where Py performed on-body, in-air, and on-wheelchair
gestures. (Since P; did not propose on-wheelchair gestures, the cor-
responding chart is empty for this category.) The rest of the charts
have the same structure (motor impairments at the top and gesture
characteristics at the bottom) and follow the color codings used
for GESTURE-TYPE (yellow and orange, correspondence with Fig-
ure 3, top), HANDEDNESS (cyan hues, correspondence with Figure 3,
bottom), and GESTURE-EXTENT (magenta, correspondence with Fig-
ure 2, bottom right). Thicker ribbons denote a higher percentage
of a given gesture characteristic, e.g., P1 performed 76.2% on-body
gestures (first chart), 47.6% touch gestures (fifth chart), and 61.9%
of the gestures in the periphery region (last chart).

Several interesting observations are revealed by the correspon-
dences illustrated in Figure 6, for which we found support in the
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magnitudes of Kendall’s 7;, coefficients” computed between the
gesture articulation measures, e.g., GESTURE-LOCALE or HANDED-
NEss, and the eleven categories of self-reported motor impairments
listed in Table 1, e.g., low strength (St), which we treated as binary
variables in this analysis (1 indicates the presence and 0 the absence
of a specific motor impairment for a given participant). Figure 6,
bottom right shows an overview of Kendall’s 7;, coefficients for
the correspondences that we identified between the characteristics
of the elicited gestures and our participants’ motor impairments.
These correspondences are discussed in detail next.

4.6.1 Gesture locale. On-wheelchair gestures were proposed by
four participants only (P4, P, P7, and Py), all of which reporting the
combination of rapid fatigue (Fa, 75 (11)=.519) and difficulty holding
(Ho, 7p(11)=-323). We also found medium associations between the
observed percentage of on-wheelchair gestures and the difficulty
to control the direction of movement (Dir, 73(11)=.313) and spasm
(Sp, 7p(11)=-313), two motor symptoms shared by P¢, P7, and Py.
These three participants also reported the largest numbers of motor
impairments (10, 8, and 8, respectively, see Table 1) and preferred
gestures supported by the wheelchair armrests. On-body gestures
were proposed by all the participants but in different percentages,
from 14.3% (P11) to 76.2% (P1). They were generally favored by the
absence of spasm (Sp, 7p(11)=—.348), difficulty controlling direction
(Dir, 7p(11)= — .348), and difficulty holding (Ho, 7 (11)= —.449), and
were preferred to other gesture types when poor coordination (Co,
Tp(11)=-422) was present. Finally, in-air gestures were not proposed
at all by P4 and P7, who both reported rapid fatigue (Fa), a symp-
tom negatively associated (rp(11)= — .441) with the percentage of
observed in-air gestures. In the case of P4, fatigue was accompa-
nied by uneven development of the arms caused by Osteogenesis
Imperfecta, a health condition in which bones fracture easily. Fig-
ure 1, right from Section 1 shows an overview of all participants’
preferences of GESTURE-LOCALE.

4.6.2 Gesture extent. All of the participants proposed gestures in
the center (27.7%) and periphery (57.6%) regions. Gestures in the
extreme periphery were rare (14.7%), and three participants (Pg, P10,
and P11) did not use them at all; see Figure 6, last column. These
participants shared a combination of three motor symptoms, for
which we found medium and strong negative associations with the
percentage of extreme periphery gestures: spasm (Sp, 75 (11)=—.614),
difficulty holding (Ho, 73,(11)=—.297), and difficulty controlling the
direction of movement (Dir, 73,(11)= — .614), respectively.

4.6.3 Gesture type. All of the participants proposed touch gestures
to a fairly large extent and most participants (8/11) also used taps,
the longer version of a touch, according to our GESTURE-TYPE cate-
gories. Also, almost all of the participants used pointing, except for
P4 and Py (Figure 6, fifth column), who reported rapid fatigue (Fa)
and difficulty holding (Ho), two motor symptoms that associated
negatively with the percentage of pointing gestures (tp(11)= — .394
and 7p(11)= — .281). These two participants were also the only ones

7Kendall’s 7 [38] measures the ordinal association between two quantities and is prefer-
able to other measures based on concordant and discordant pairs; see [1, p. 191]. The 7,
variant [39] is adjusted for ties. According to https://www.spss-tutorials.com/kendalls-
tau/#kendalls-tau-interpretation, a value of .21 indicates a “medium” association and
.35 a “strong” one. We report only 7}, coefficients that are above the “medium” threshold.
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Figure 6: Relationship between participants’ self-reported motor impairments and their gesture articulation characteristics; see
also Table 1 and Figures 2 and 3. The bottom right table summarizes Kendall’s 7;, coefficients for the trends discussed in the text.
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that did not propose hand poses, for which we found a negative asso-
ciation with rapid fatigue (Fa, 75 (11)=—.314). The four participants
that used grasps (P3, Ps, P7, and Py) shared the low strength (St,
Tp(11)=-543) and difficulty holding (Ho, 7}(11)=.339) motor symp-
toms. Stroke gestures were also popular, being proposed by more
than half of the participants (7/11), of which Ps stood out with 52.4%
of the gestures he proposed to invoke the referents from our study.

4.6.4 Handedness. Unimanual gestures (78.4%) were more com-
mon than bimanual gestures (18.6%). All of the participants pro-
posed unimanual gestures, and the use of either the left or right
hand was determined by their specific motor conditions. For exam-
ple, P7’s right hand was almost paralyzed, so she performed most
of the gestures with the left hand (71.4%), while the rest (28.6%)
were bimanual. Py, P4, and P11 performed gestures with the right
hand exclusively because of the left hand being paralyzed (P;), less
developed than the right hand (P4), or affected more by Parkinson’s
symptoms (P11). For most of the participants (7/11), the percentage
of their bimanual gestures was well below 10% (M=3.4%), but three
participants (P3, Ps, and Pg) stood out with a high preference for
bimanual gestures (57.1%, 57.1%, and 38.1%, respectively). Figure 6,
sixth column shows that these participants shared a distinct combi-
nation of motor symptoms, for which we detected medium to strong
associations with the percentage of observed bimanual gestures:
absence of the difficulty to control the direction of movement (Dir,
Tp(11)= — -362 for 25H and 73(11)= — .292 for 2DH) and symptoms
of low strength (St, 75 (11)=.288 for 2SH and 7 (11)=.393 for 2DH).
Head gestures, proposed by Pg, Ps, Pg, and Pj9, who considered
them more appropriate to effect specific referents compared to
gestures of the hand (see Figure 6, sixth column) and, thus, were
exceptionally accepted in our study (3.0%), associated positively
with the presence of low strength (St, 7;(;1)=.543) and difficulty
gripping (Gr, 74(11)=-656) motor symptoms, respectively.

4.6.5 Summary. Our analysis revealed that the gestures proposed
by different participants were different in terms of the combi-
nation of GESTURE-LOCALE, GESTURE-LOCALE-DETAIL, GESTURE-
EXTENT, GESTURE-TYPE, and HANDEDNESs characteristics. Instead
of a consensus gesture set that would be representative for a large
group of users—a common end result for gesture elicitation stud-
ies [90,96]—we found highly individualized gesture preferences.
Since this result could not be attributed solely to differences be-
tween referents (see our dissimilarity-consensus analysis from Sub-
section 4.4), we analyzed it in the context of our participants’ spe-
cific motor impairments and identified several correspondences.
Next, we adopt the lenses of ability-based design [94,95]—an ap-
proach to designing interactive systems where designers focus on
users’ abilities, not disabilities, and systems change to match and
adapt to those abilities—to propose implications for accessible on-
body, in-air, and on-wheelchair gesture input for wheelchair users.

5 ABILITY-BASED DESIGN OF ACCESSIBLE
ON-BODY, IN-AIR, AND ON-WHEELCHAIR
GESTURE INPUT

Our results revealed that both user preference and motor impair-
ments influence the characteristics of gesture articulations. Next, we
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capitalize on GESTURE-LOCALE, GESTURE-LOCALE-DETAIL, GESTURE-
TyPE, GESTURE-EXTENT, and HANDEDNESS to outline practical im-
plications for accessible gesture input for wheelchair users with the
seven principles of ability-based design [94,95]: ability, accountabil-
ity, availability, adaptability, transparency, performance, and context.

According to the ability principle [94], designers should focus
on users’ abilities, not disabilities. We suggest:

O Design gesture sets that are customizable in terms of
gesture locale, i.e., on-body, in-air, on-wheelchair, ac-
cording to the motor ability of the user to raise the arms,
rotate the wrists, and form specific hand poses for in-air
gestures, reach to specific body parts for on-body gestures,
and extend and bend fingers to touch the armrest for on-
wheelchair gestures, respectively. Example: P7 proposed on-
body and on-wheelchair touch, tap, and grasp gestures (see
Figure 6), which involved a stable physical target to support
the hand and finger, but not in-air gestures because of her
Parkinson’s condition causing spasm and tremor.

@ For a given locale, design gestures that are customiz-
able in terms of how the locale is implemented. Example:
not all of the participants proposed in-air gestures and, from
those who did (9/11), only less than half could raise their arm
to the head or above the head, two regions for which they
assigned specific meanings; see the conditions A2 and A4 of
the in-air gesture locale in Figure 6, third column. However,
all of the participants performed gestures in front of the body
(A5 in Figure 6). Example: because of his specific condition of
Osteogenesis Imperfecta, P4 has small legs and short stature.
However, unlike all of the other participants, who performed
on-body gestures no lower than the thigh level, he was able
to touch his legs and feet without any difficulty.

The accountability principle [94] states that designers change
systems, not users to foster usability. We propose:

© Use gesture recognizers that are invariant to the body
part articulating the gesture. Example: participant P7’s
right hand was almost paralyzed, so she performed the large
majority of the gestures with her left hand. Unlike conven-
tional touchscreens that are agnostic to the finger, hand, or
body part implementing touch input, an aspect that favors
diverse coping strategies for people with upper-body motor
impairments to use mobile devices effectively [3,34], detect-
ing in-air gestures may require computer vision approaches,
e.g., using a video camera placed above the wheelchair arm-
rest [42], on the user’s head [46], or in the environment [100].
Since such systems can easily distinguish various body parts
[75], their flexibility should not diminish, but foster usabil-
ity, e.g., designers should not expect a gesture to always be
performed with the left hand or always be unimanual.

According to the availability principle [94], designers use afford-
able and available software and hardware. As wheelchairs become
smart devices [49] with embedded sensors, actuators, and commu-
nications (see Subsection 2.1), these resources can be exploited to
detect and recognize a diversity of gesture input. Moreover, the
sensors integrated in users’ mobile and wearable devices could be
employed for the same purpose. Our practical implication is:
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O Reuse embedded sensors from smart wheelchairs, mo-
bile devices, and wearables to detect a variety of on-
body, in-air, and on-wheelchair gestures. Example: in-
air and on-body gestures can be detected with conventional
video cameras from smartphones, tablets, and smartwatches
[54,77]. Example: accelerometers and gyroscopes, common in
off-the-shelf wearables, such as smartwatches, fitness track-
ers, and armbands, can detect gestures performed in-air, on-
body, and with objects; see [17,47,88]. Example: NFC/RFID
technology has been used for body-centric interactions [102]
and interactions with objects, including the wheelchair [56].

The adaptability principle [94] states that interfaces provide the
best possible match to users’ abilities. We propose:

© Design gesture sets of on-body, in-air, and on-wheelchair

gestures that can be used interchangeably in the per-
sonal and peripersonal space. Example: a directional swipe
gesture can equally be performed in mid-air [69], drawn on
the palm [29], or sketched on the wheelchair armrest [13]. Ex-
ample: some motor abilities are invariably lost as the result of
health conditions increasing in severity, e.g., Parkinson’s is a
neurodegenerative brain disorder with symptoms that begin
gradually and worsen over time. Participant P; (Parkinson’s
diagnostic for 13 years) proposed on-body and on-wheelchair
touch, tap, and grasp gestures (see Figure 6, fifth column)
involving a stable physical target to support the hands, but
not in-air gestures because of her condition causing spasm
and tremor. However, P1; (Parkinson’s diagnostic for 8 years)
proposed in-air gestures in front of the body.

Interfaces that implement the transparency principle [94] give
users awareness of their adaptive behavior. Our practical imple-
mentation of this principle is as follows:

O Accompany gesture articulation with feedback match-
ing gesture locale. While on-body and on-wheelchair ges-
tures are naturally accompanied by the haptic sensation of
feeling touching the intended target, e.g., the palm of the
other hand or the wheelchair armrest, in-air gestures are not,
which makes non-contact gestures more challenging to pro-
duce by users [24] and recognize by computers [80]. Example:
when in-air gestures are implemented with wearables [88],
vibrotactile feedback impacts positively user experience [44].
Example: lack of sensation in a body part involved in the
articulation of an on-body gesture, e.g., on the supporting
palm, could be compensated with an accessible feedback
modality to confirm reaching the target. P¢ reported lack of
sensation below the upper arms, caused by spinal cord injury
at vertebrae C4-C5, yet he proposed on-body gestures on the
head, chin, mouth, shoulder, elbow, and right hand. Inde-
pendent of gesture locale, providing feedback about gesture
sensing and recognition [36] or feedforward during gesture
articulation [20] can increase usability and provide users
with the means to inspect, discard, or revert, if needed, the
outcome of a command.

The performance principle [94] states that systems employ data
collected about their users to provide the best possible match to
the users’ abilities. We propose the following implication:

Bilius et al.

® Model the user’s gesture preferences. Example: predilec-
tion for specific gesture locales (e.g., on-body, on-wheelchair
instead of in-air for P7), specific gesture types (e.g., touch
and tap, but not pointing, grasp, or stroke for P4), handedness
(e.g., exclusive use of the right hand by Py, P4, and P11 for uni-
manual gestures), but also body parts (e.g., P¢ proposed head
instead of hand gestures, when they believed that head ges-
tures were better suited to a specific referent) are examples
of information that an adaptive gesture recognizer [12,92]
could use to tune its training set and/or parameters.

According to the context principle [94], systems use context to
anticipate and accommodate effects on users’ abilities:

O Complement and enrich smartphone-based interac-
tion with on-body, in-air, and on-wheelchair gestures.
Example: some wheelchair users prefer keeping their smart-
phones always available, e.g., on the wheelchair armrest or
their lap and thigh [67,87]. This context favors conjunct use
of the smartphone and gesture input performed in the vicin-
ity of the smartphone in the personal and peripersonal space
of the user. The result is higher flexibility for users to select
the gesture modality best suited to their abilities in context:
gross movements of the large muscle groups for on-body and
in-air gestures vs. fine-precision aiming and tapping abilities
for touch input on the smartphone and on-wheelchair arm-
rest, respectively. Another opportunity is new interaction
techniques for the wheelchair space, e.g., a combined gesture
that starts with the user touching the smartphone and contin-
ues with pointing to the TV to transfer content in the style of
AirLink [16] interactions. Conjoint use of smartphone-based
input and gestures performed in the personal and periper-
sonal space of the wheelchair user for various interactive
contexts and systems, e.g., public interactive displays [89],
is an interesting direction to explore in future work.

© Enable easy switching between gesture locales and
types. Example: infer the context, e.g., indoor, outdoor, pri-
vate, public, interlocutors, type of audience, etc., to enable
switching to gesture locales and gesture types socially ac-
ceptable in that context, e.g., from potentially attention seek-
ing [30] or conspicuous [71] on-body and in-air gestures to
more subtle and discreet on-wheelchair gestures performed
on the joystick or armrest.

6 LIMITATIONS AND FUTURE WORK

There are several limitations to our experiment, which we present
in this section together with ways to address them in future work.

Our sample of participants was of N=11 wheelchair users only,
which is just over half the size of the most common choice (N=20)
for the number of participants in gesture elicitation studies, accord-
ing to statistical findings from Villarreal et al. [91]. In this general
context, our sample size falls in the [10,20) interval alongside 38%
of more than two hundred published gesture elicitation studies,
but is larger than the sample size from other 11% studies that used
less than ten participants; see [91, p. 859]. However, in the specific
context of elicitation studies involving people with motor impair-
ments, our sample size is identical to that of Malu et al. [57], who
elicited accessible smartwatch interactions. In the same context
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of accessibility research, our sample size is also representative of
those from studies traditionally published at CHI and ASSETS, ac-
cording to Mack et al.’s [55, p. 8] findings that revealed a median
number of N=10 participants with motor or physical disabilities.
Nevertheless, a larger sample size can offer more opportunities for
gesture analysis, e.g., by relating participants’ preferences for on-
body, in-air, and on-wheelchair gestures to other motor and physical
disabilities not present in our sample, such as arthritis or lost limbs.
Also, a larger, multicultural sample of participants would enable
understanding potential interactions between motor symptoms and
cultural factors given that gestures develop culturally, a fact that
has implications for the design of gesture user interfaces [21,60].
Thus, we recommend more investigations in future work with a
larger sample of participants to examine aspects such as these and,
potentially, reveal more practical implications for accessible com-
puting. To foster such future work, including replications [33] of
our findings as well as extension and repurposing [27] of the data
collected in our experiment toward new discoveries, we release
our gesture dataset and results obtained with our gesture articula-
tion measures freely available to download from the web address
http://www.eed.usv.ro/~vatavu.

Another limitation of our experiment is that we did not record
participants’ gestures in a computational form, which would have
enabled further insights on their gesture articulations with special-
ized measures and tools, e.g., [4,86], or evaluating gesture recogniz-
ers. We recommend such examinations in future work to increase
our understanding of both user and system performance with ges-
tures of various types performed from the wheelchair space.

7 CONCLUSION

We examined the articulation characteristics of on-body, in-air, and
on-wheelchair gestures proposed by wheelchair users for common
actions, types of digital content, and navigation commands in inter-
active systems, for which we employed a diversified set of measures
of gesture articulation, user perception, and agreement analysis.
Our results revealed a high preference for on-body and in-air com-
pared to on-wheelchair gestures, having specific articulation char-
acteristics according to the users’ specific motor abilities. Based on
our findings, we proposed practical implications, structured using
the principles of ability-based design, for gesture input performed
from the wheelchair in the user’s personal and peripersonal space.
We look forward to more examinations of on-body, in-air, and on-
wheelchair gesture input, reflective of both users’ preferences and
motor abilities, toward more accessible gesture-based interactions
performed from the space of the wheelchair.
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