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Figure 1: Examples of on-body, in-air, and on-wheelchair gestures performed by wheelchair users in our gesture elicitation

study (left) and the relationship between their gesture preferences and self-reported motor impairments (right). Note: the
ribbon widths from the right chart encode the strength of the relationships between gesture types and motor impairments, e.g.,

5.6% of the on-body gestures elicited in our study were proposed by users that reported low strength (St).

ABSTRACT

We present empirical results from a gesture elicitation study con-

ducted with eleven wheelchair users that proposed on-body, in-air ,
and on-wheelchair gestures to effect twenty-one referents repre-

senting common actions, types of digital content, and navigation

commands for interactive systems. We report a large preference

for on-body (47.6%) and in-air (40.7%) compared to on-wheelchair
(11.7%) gestures, mostly represented by touch input on different

parts of the body and hand poses performed in mid-air with one

hand. Following an agreement analysis that revealed low consen-

sus (≤5.5%) between users, although high perceived gesture ease,

goodness, and social acceptability within users, we examine our

participants’ gesture characteristics in relation to their self-reported

motor impairments, e.g., low strength, rapid fatigue, etc. We high-

light the need for personalized gesture sets, tailored to and reflective

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00

https://doi.org/10.1145/3544548.3580929

of both users’ preferences and specific motor abilities, an implica-

tion that we examine through the lenses of ability-based design.
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1 INTRODUCTION

Gesture input is widespread in interactive systems, from touch

and motion gestures prevalent on smartphones [32,72] and wear-

ables [35] to whole-body gestures used in video games [53] to

in-air gestures facilitating interaction in smart environments of
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diverse kinds [10,48,69,79]. Among their many features, gestures

are fast [51], reflective of user natural behavior [96], act as short-

cuts with cognitive benefits for users [5], leverage direct access to

digital content [74], and facilitate intuitive input for interacting

with remote systems via referential pointing [8].

However, gesture input relies on certain assumptions about users’

motor abilities to extend and bend fingers, form hand poses, rotate

wrists, move arms, aim and touch accurately, and coordinate differ-

ent parts of the body to produce meaningful movement for robust

detection and recognition by a computer. Assumptions such as

these create accessibility challenges for people with motor and/or

mobility impairments when using gesture interfaces designed for

the “average user” [94]. Prior work has documented such accessibil-

ity challenges for mobile devices [62,87], wearables [57,58,88], and

large displays [64,89]. However, this prior work has focused pri-

marily on touch input due to the prevalence of touchscreen devices,

while other types of gestures that can be performed from the space

of thewheelchair, such as in-air and on-body (see Figure 1, left), have
been examined to a much lesser extent. Nevertheless, in-air and on-
body gestures may prove more accessible to wheelchair users since

they leverage the motor abilities of large muscle groups, different

from the accurate aiming and tapping required for touchscreen

input [62,64,67,70] and, consequently, feasible under a variety of

motor impairments (see Figure 1, right). However, despite the large

scientific literature on in-air [43] and on-body [9] gestures, prior

work has primarily addressed users without motor impairments.

To address this gap in design knowledge for accessible gesture

input, we examine in this work wheelchair users’ preferences for

on-body, in-air , and on-wheelchair gestures.We focus onwheelchair

users since the wheelchair is one of the most common assistive

devices for personal mobility [97], employed by people with diverse

levels of functionality (paraplegia, hemiplegia, and tetraplegia) and

health conditions [99] and, thus, with diverse motor abilities to

use gesture input. Also, wheelchairs can be instrumented with sen-

sors and actuators toward “smart wheelchairs” [49] and enable

on-wheelchair input via “chairables” [13,14]. Moreover, beyond on-
wheelchair gestures, the embodiment of the wheelchair [73] as an

extension of the user’s peripersonal space [25] leverages unique

possibilities for in-air gesture input, while the seated position facili-

tates hands to reach the entire body, including the legs, towardmore

expressive [30] on-body input compared to standing up [29,31]. In

this context, we make the following contributions:

(1) We present the results of a gesture elicitation study con-

ducted with 11 wheelchair users that proposed on-body, in-
air , and on-wheelchair gestures to effect 21 referents repre-

senting common actions, types of digital content, and navi-

gation commands for interactive systems, e.g., access email,

turn on the TV, etc. We report a large preference for on-body
(47.6%) and in-air (40.7%) vs. on-wheelchair (11.7%) gestures,
primarily performed with one hand (76.3%) as touch input

(34.2%) on the body and hand poses (22.5%) in mid-air.

(2) Following an agreement analysis that revealed low consen-

sus (AR𝜖≤5.5%) between participants’ gesture proposals, we

examine the characteristics of the elicited gestures in rela-

tion to our participants’ self-reported motor impairments,

e.g., low strength, rapid fatigue, etc. We highlight the need

for personalized gesture sets, tailored to and reflective of

both users’ preferences and specific motor abilities.

(3) Based on our findings, we outline nine design implications

for on-body, in-air , and on-wheelchair gesture input per-

formed from the space of the wheelchair, which we discuss

through the lenses of ability-based design [94,95].

2 RELATEDWORK

We relate to prior work on smart wheelchairs that leverage sensing

and communications for more accessible navigation in the physical

environment. We also overview the scientific literature on on-body
and in-air gesture input where, despite considerable work, the needs
and preferences of wheelchair users have been little examined.

2.1 Smart Wheelchairs and Chairables

A large body of work exists on extending the functionality offered

by conventional wheelchairs, from making them more comfortable

and ergonomic [18,19,63] to designs of smart wheelchairs [49] that

leverage sensors, actuators, and artificial intelligence to enable a

large palette of interactions from the space of the wheelchair [13,

14,46,76,81,83]. For example, Kutbi et al. [46] integrated a Kinect,

laptop, wireless router, and tablet device on a wheelchair and used

a head-worn video camera to enable navigation via head gestures;

Trivedi et al.’s [81] smart wheelchair could be controlled with in-

put from either a keyboard, webcam, or microphone; and Singer

and Hartmann’s [76] See-Thru eye-tracking interface integrated

feedback with spatially-arranged LEDs on a wireframe mounted on

the wheelchair. Other work has focused on the sensory and motor

augmentation of wheelchair users. For example, ExtendedHand [6]

used video projections of a virtual hand in the environment, which

users could control via a touchpad from the wheelchair armrest.

Tsui et al. [82] developed Manus ARM, a robotic arm for pick-

ing up objects, mounted on the wheelchair and controlled via a

touchscreen and joystick mouse. The Vibrotactile Glove [83] was

designed to deliver vibrotactile feedback to wheelchair users with

visual impairments during the operation of the power wheelchair.

Carrington et al. [14] coined the term “chairables” to denote

devices designed to fit with the form of the wheelchair and be

used from the wheelchair space, and explored possibilities for

their placement and form factors. A follow-up work [13] intro-

duced the “Gest-Rest family” of devices that can fit over standard

wheelchair armrests to enable gesture input in the form of presses,

flicks, squeezes, and punches on the armrest. The results revealed

favorable acceptance of Gest-Rest devices, positive appreciation

of their always-available nature due to the wheelchair-integrated

form factors, but also the need for customizing the device, modality,

and gesture set to the specific motor abilities of wheelchair users.

Unfortunately, no work followed to understand user performance

and preference with on-wheelchair input vs. other gesture types,
such as in-air [43] or on-body [9]. Next, we overview prior work on

on-body and in-air gesture input, which has primarily examined the

performance and preference of users without motor impairments.

2.2 On-Body Gesture Input

On-body interaction has the advantage of being always available,

supported by a large surface that can serve for both input and
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output, and augmented naturally by proprioceptive and tactile feed-

back. For example, Harrison et al. [29] introduced OmniTouch, a

shoulder-worn depth-sensing and video projection system enabling

multitouch interaction with everyday surfaces, including the user’s

hands, arms, and legs. Armura [31] tracks the location and gestural

state of the user’s arms and hands, on which a ceiling-mounted

projector renders coordinated graphical feedback, to enable a vari-

ety of single-handed and bimanual interactions. Besides computer

vision, other sensing technology has been used to detect on-body

input: Mujibiya et al. [65] used transdermal ultrasound propagation

for forearm gesture input, Matthies et al. [59] introduced Botential,

an extended on-body input space based on electrical signatures, Ye

et al. [102] explored near-field enabled clothing, and Xu et al. [101]
examined on-face interactions sensed with earbuds.

Direct input on the body has also been studied for users with

various disabilities. Oh and Findlater [68] conducted a study with

twelve participants with visual impairments and reported that the

least preferred locations were the face, neck, and forearm, while

the hands were considered discreet and natural surfaces for input.

A follow-up study [78] extended the results to fifteen locations on

the body: ear, shoulder, thigh, wrist, back of hand, five fingers, and

five locations on the palm. Malu and Findlater [58] proposed an ac-

cessible solution for people with upper-body motor impairments to

control head-mounted displays with switch-based input via touch-

pads positioned on the body or wheelchair. We did not find other

work on on-body input for users with motor impairments.

2.3 In-Air Gesture Input

In-air gesture input has been extensively studied in the scientific

literature for a diversity of applications, including in-vehicle inter-

action [10], AR [69], home entertainment [79], and mass-computer

interaction [48]; see Koutsabasis and Vogiatzidakis [43] for a sys-

tematic literature review. Gestures performed in air have also been

implemented for wheelchair control and navigation. For example,

Kim-Tien et al. [42] proposed a camera-based computer vision sys-

tem, and Kundu et al. [45] employed inertial measurement units

and myoelectric sensing to detect hand gestures for wheelchair

navigation. Unlike these applications that implemented researcher-

defined gestures, we are interested in wheelchair users’ preferences

for and performance with gestures matching their motor abilities.

In this area, Vatavu and Ungurean [88] reported results on stroke-

gestures and motion-gestures collected with a wearable device,

and showed that users with upper-body motor impairments took

twice as much time to produce stroke-gestures on wearable touch-

screens compared to users without impairments, but articulated

motion-gestures equally fast and with similar acceleration char-

acteristics. Ungurean and Vatavu [84] conducted interviews with

twenty-one people with motor impairments about their preferences

for accessible input modalities for various wearables—smartwatch,

fitness tracker, ring, smartglasses, smart earbuds,—and reported

equal preferences for in-air hand gestures and chairables [14].

2.4 Summary

A large body of work exists on in-air and on-body gesture input, but

addressing almost exclusively users without motor impairments.

The design knowledge available on accessible gesture input for

users with motor and/or mobility impairments has been primarily

constituted for touchscreen devices and, in the case of wheelchair

users, for on-wheelchair gestures performed on the armrest. In

this context, more scientific investigation is needed to understand

wheelchair users’ preferences for other gesture types, including

on-body, in-air , and on-wheelchair , which leverage different motor

abilities than those required to implement touch input on mobile

devices. Next, we present a gesture elicitation study conducted to

understand preferences for such gesture types, which we charac-

terize with a diversified set of measures.

3 EXPERIMENT

We conducted an experiment to understand wheelchair users’ pref-

erences and perceptions of on-body, in-air , and on-wheelchair ges-
tures to control interactive systems, for which we employed the

end-user elicitation method [90,93,96]. The experiment was ap-

proved by the Ethics Committee of the University of Suceava.

3.1 Participants

Eleven people (5 male and 6 female), aged between 44 and 66 years

old (M=51.5, SD=6.4), participated in our study. Our inclusion crite-

rion was people who were wheelchair users, which we recruited

via convenience sampling from a non-profit association providing

technical support to people with disabilities. Our participants re-

ported a diversity of health conditions, functionality, and motor

impairments, reflected by a wide range of WHODAS 2.0 [98] health

and disability scores, between 12.5 and 45.8 (M=33.9, SD=10.7).
1

The most frequently reported motor impairments [23] included

difficulty holding (9 of 11 participants), rapid fatigue (7/11), low

strength (7/11), slow movements (6/11), poor coordination (6/11),

and difficulty gripping (6/11); see Table 1 for details. The number

of years since our participants had been living with their motor

impairments varied between 8 and 49 (M=26.0, SD=17.5). We had

a balanced distribution of wheelchair type in our sample with six

participants using manual and five using power wheelchairs.

3.2 Procedure

We elicited participants for on-body, in-air , and on-wheelchair ges-
tures to invoke specific referents for interactive systems, e.g., an-

swer a phone call or access email. To cover a wide range of system

functions and types of digital content, we selected 21 frequently

used referents from prior work, including from the top-10 most

influential gesture elicitation studies [91, p. 860], elicitation stud-

ies conducted with people with motor impairments [22,57,104], a

study focused on content type [74], content categories used during

interviews with wheelchair users for inclusive design [14], and

gesture elicitation involving wearables [26,40]. Also, following the

design of prior studies [15,41,57,69,72], we grouped our referents

in three generic categories: Actions, Content, and Navigation; see
Table 2. For each category of referents, participants received the

following instructions: “Here is a list of referents. Think about suit-

able gestures to execute these referents. The gestures should be

easy to perform, easy to recall at a later time, and a good fit to

1
According to the normative data report of Andrews et al. [2] based on 8,841 respon-

dents, individuals scoring between 20 and 100 on the WHODAS scale are in the top

10% of the population distribution likely to have clinically significant disabilities.
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Table 1: Demographics of our study participants, their self-reported motor impairments described using the eleven categories

from Findlater et al. [23], and the WHODAS 2.0 [98] health and disability scores.

Participant

(age, gender)

Health condition
‡

Functionality

Years

with

Self-reported impairments
† WHO-

DAS

Wheel

chair

imp. Mo Sp St Tr Co Fa Gr Ho Se Dir Dis # score type

P1 (45, M) Traumatic Brain Injury Tetraplegia 25 ✓ − − − ✓ ✓ − − − − ✓ 4 45.8 power

P2 (58, M) Spinal Cord Injury (T7) Paraplegia 8 − − − − − ✓ − ✓ − − − 2 41.7 manual

P3 (48, F) Spina Bifida Paraplegia 48 − − ✓ − − ✓ − ✓ − − − 3 39.6 manual

P4 (49, M) Osteogenesis Imperfecta Tetraplegia 49 − − − − − ✓ − ✓ − − − 2 33.3 power

P5 (50, M) Multiple Sclerosis Tetraplegia 22 ✓ − ✓ − ✓ − ✓ ✓ − − ✓ 6 39.6 manual

P6 (66, M) Spinal Cord Injury (C4,C5) Tetraplegia 10 ✓ ✓ ✓ − ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10 37.5 power

P7 (54, F) Parkinson’s Tetraplegia 13 − ✓ ✓ ✓ ✓ ✓ ✓ ✓ − ✓ − 8 37.5 power

P8 (44, F) Friedreich’s Ataxia Tetraplegia 8 ✓ − ✓ − ✓ − ✓ − − − − 4 14.6 manual

P9 (48, F) Cerebral Palsy Tetraplegia 48 ✓ ✓ ✓ − − ✓ ✓ ✓ − ✓ ✓ 8 37.5 manual

P10 (47, F) Cerebral Palsy Tetraplegia 47 − ✓ ✓ − ✓ − ✓ ✓ − ✓ ✓ 7 33.3 power

P11 (58, F) Parkinson’s Tetraplegia 8 ✓ ✓ − ✓ − − − ✓ − ✓ − 5 12.5 manual

Summary 26 6 5 7 2 6 7 6 9 1 5 5 5.4 33.9

†
The code in the parentheses denotes the affected vertebra(e), e.g., “Spinal Cord Injury (C4)” refers to a traumatic injury at the 4th cervical vertebra.

‡
From [23]: Mo = Slow movements; Sp = Spasm; St = Low strength; Tr = Tremor; Co = Poor coordination; Fa = Rapid fatigue; Gr = Difficulty gripping; Ho = Difficulty holding; Se =

Lack of sensation; Dir = Difficulty controlling direction; Dis = Difficulty controlling distance; # = number of impairments.

the referents. The gestures can be performed however you want:

on your body, including clothes, in air around the body, or on the

wheelchair. You are not constrained to use the same type of gestures

(on the body, in air, or on the wheelchair) for all of the referents;

rather, you should choose the type of gesture you believe is the

most appropriate to execute each referent. You can use any hand

to perform the gestures.” Then, each referent was presented with

a short sentence on a computer screen, e.g., “Propose a gesture to

answer an incoming phone call;” see the second column of Table 2.

The orders of the categories and referents in each category were

randomized per participant. The sessions were video recorded.

3.3 Design

Our study was a within-subjects design with one main indepen-

dent variable, Referent, nominal with twenty-one conditions; see

Table 2.We also used the grouping of referents into categories, speci-

fied with the Referent-Category nominal variable with three con-

ditions: Actions, Content, and Navigation. The dependent variables
are represented by the measures collected from our participants

and measures extracted from the videos; see next for details.

3.4 Measures

We characterize our participants’ preferences for and articulations

of on-body, in-air , and on-wheelchair gestures with a set of ten

measures representing the dependent variables in our experiment.

3.4.1 Measures of gesture articulation. We used the video record-

ings of the study to extract the following information:

• Gesture-Locale with three categories: on-body, in-air , and
on-wheelchair gestures.

• Gesture-Locale-Detail represents specific details about

each condition of Gesture-Locale. For on-body and on-
wheelchair gestures, we retained the body part (e.g., left

ear) and wheelchair part (e.g., right armrest) in relation to

which the gestures were performed. For in-air gestures, we

extracted their location in a system of reference centered on

the body with six regions: front, back, left, right, up, down.

• Gesture-Extent was measured in McNeill’s [61, p. 378]

“gesture space,” a division of concentric squares of the space

around a person performing gestures while seated (see Fig-

ure 2, right) with three main regions—center , periphery, and
extreme periphery,2—and seventeen subregions.

3
From the

center to the extreme periphery, gesture articulation requires

more space and, implicitly, more physical effort.

• Gesture-Type. We classified the input type implemented by

the on-body and on-wheelchair gestures into five categories:

pointing (the hand points to a specific body part or a part of

the wheelchair, without touching it), tap (a quick touch on

the body or the wheelchair, usually performed in less than

one second), touch (a touch longer than a tap), grasp (the

hand firmly grasps a body part or a part of the wheelchair),

and stroke (the hand swipes on a surface, draws a symbol,

mimics controlling a continuous slider, etc.). The last four

categories were inspired by Bergström and Hornbæk’s [9, p.

77:3] taxonomy of on-skin input, to which we added point-
ing due to the ubiquity of deictic gestures. This set of five

categories is convenient to position a variety of on-body
and on-wheelchair gestures on a continuum ranging from

non-contact (pointing) to contact-based gestures, where the

latter are differentiated by the duration and type of contact.

For in-air gestures, we used three categories: pointing and

stroke, defined as above, and hand pose (i.e., the hand adopts

a symbolic pose, such as “thumbs-up”).

• Handedness, adopted fromMcNeill [61], specifies the hand(s)

involved in gesture articulation: left hand (LH), right hand
(RH), two same hands (2SH), and two different hands (2DH).4

2
For reasons of coding simplicity, we considered McNeill’s [61] “center-center” in-

cluded in the “center” region.

3
Center and eight subregions for periphery and extreme periphery; see Figure 2, right.

4
Terminology and abbreviations used by McNeill [61, p. 379] for gesture coding, which

we adopt for consistency purposes.
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Table 2: The list of referents used in our end-user gesture elicitation study.

Referent Description provided to the participants References
†

Actions

1. Place call Open the phone application to place a call [72]

2. Answer call Answer an incoming phone call [26,40,72]

3. Send text Open the messaging application to send a text message [14,37]

4. Send email Open the email application to send an email [66]

5. Turn on/off lights Turn on/off the lights (lights turn on if they are off and vice versa) [26,41]

6. Turn on/off the TV Turn on/off the TV (the TV turns on if it is off and vice versa) [22,26,41]

7. Emergency call Call the emergency contact from the phone application [40]

Content

8. Photo/video Get direct access to photos/videos; the first photo is displayed on a screen [14,41,74]

9. Music Get direct access to music; the first file starts playing [14,74]

10. Email Get direct access to email; the most recent email is displayed on a screen [14,41,74]

11. Contacts Get direct access to phone contacts, which are displayed on a screen [72]

12. E-book Get direct access to e-books; the last accessed book is displayed on a screen [14,74]

13. Agenda/calendar Get direct access to the agenda/calendar, displayed on a screen [74]

14. Social media Get direct access to the most recent social media notifications, displayed on a screen [14,22,57,74]

Navigation

15. Next horizontal Go to the next element in a list, e.g., show the next photo or go to the next TV channel

[22,26,37,40,41,50,57,69,

72,96,104]

16. Previous horizontal Go to the previous element in a list same as for ref. 15

17. Next vertical

Move up in hierarchy, e.g., go to the top-level menu, or increase the value of a parameter, e.g.,

audio volume, light intensity, etc.

[26,37,40,41,57,66,72,

104]

18. Previous vertical Move down in hierarchy or decrease the value of a parameter same as for ref. 17

19. Undo Cancel or reverse the effect of the most recently executed command [37,40,69,96]

20. Menu Open the menu of the current application, e.g., show the TV menu [37,40,66,69,96]

21. Home screen Go to the home screen of the current application [50,57,66,72]

†
Papers from the scientific literature on gesture elicitation, from which we selected our referents, included: the top-10 most influential gesture elicitation studies, according to [91, p.

860], elicitation studies with people with motor impairments [22,57,104], an elicitation study focused on content type [74], content categories used during the chairables study [14],

and gesture elicitation studies for wearables [26,40].

The last two categories specify bimanual gestures, where the

hands may adopt the same or different poses and movements.

These measures were extracted independently by two researchers,

who confronted their results. The average Gwet’s [28] AC1 coeffi-

cient
5
was .816 (SD=.107) with a cumulativemembership probability

of 100%, indicating a substantial level of consensus according to

the Landoch-Koch benchmarking scale. Differences were discussed

and, when consensus could not be reached (2.6% of the cases), were

settled by majority vote with the intervention of a third researcher.

3.4.2 Agreement between elicited gestures. We evaluated the agree-

ment between participants’ gestures with AR𝜖 , a measure computed

automatically from the gesture descriptions following the “com-

puter” model of agreement analysis [90]:

AR𝜖 (𝑅) =
∑
𝑝

∑
𝑞≠𝑝 [𝛿 (𝑝, 𝑞) ≤ 𝜖]
𝑁 (𝑁 − 1) · 100% (1)

where 𝑁 is the number of gesture proposals elicited for referent

𝑅, 𝛿 is the dissimilarity function used to compare gestures 𝑝 and 𝑞,

𝜖 is a positive value representing the tolerance at or below which

two gesture descriptions are sufficiently similar to be considered

equivalent, and [·] is Kronecker’s function that evaluates to 1 when

the inner expression is true and 0 when false. With this definition,

AR𝜖 takes values between 0% (no agreement) and 100% (all the

gestures are equivalent). To evaluate the dissimilarity 𝛿 between

5
AC1 is a more stable coefficient of agreement than Cohen’s 𝜅; see [28]. We used the

irrCAC R package to compute AC1.

two gestures 𝑝 and 𝑞, we used their descriptions with the five mea-

sures of gesture articulation, Gesture-Locale, Gesture-Locale-

Detail, Gesture-Extent, Gesture-Type, and Handedness, de-

scribed in Subsection 3.4.1. Thus, any gesture 𝑝 was represented

as 𝑝=(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5), where 𝑝1 specifies the gesture locale and
𝑝5 the hands configuration, e.g., 𝑝 may be (on-body, left ear, upper
periphery, touch, RH ). Since these variables are categorical, we im-

plemented 𝛿 with the probabilistic information theoretic approach

proposed by Lin [52], one of the best performing distances for

categorical data [11], also employed by Vatavu and Wobbrock [90]:

𝛿 (𝑝, 𝑞) = 1 −
5∑︁

𝑘=1

𝑤𝑘𝑆𝑘 (𝑝𝑘 , 𝑞𝑘 ) (2)

where 𝑆𝑘 (𝑝𝑘 , 𝑞𝑘 ) is the per-attribute similarity between any two

values of the 𝑘-th categorical attribute, and 𝑤𝑘 is the weight as-

signed to the 𝑘-th attribute, as follows:

𝑆𝑘 (𝑝𝑘 , 𝑞𝑘 ) =
{
2𝑙𝑜𝑔 (𝜋𝑘 (𝑝𝑘 )) 𝑝𝑘 = 𝑞𝑘

2𝑙𝑜𝑔(𝜋𝑘 (𝑝𝑘 ) + 𝜋𝑘 (𝑞𝑘 )) otherwise

(3)

𝑤𝑘 =
1∑𝑑

𝑘=1
𝑙𝑜𝑔(𝜋𝑘 (𝑝𝑘 )) + 𝑙𝑜𝑔(𝜋𝑘 (𝑞𝑘 ))

(4)

𝜋𝑘 (𝑥) is the sample probability of the 𝑘-th attribute to take value 𝑥 ,

which we estimated from our collected data, e.g., 𝜋1 (on-body)=.476,
𝜋2 (left ear)=.026, 𝜋3 (upper periphery)=.216, 𝜋4 (𝑡𝑜𝑢𝑐ℎ)=.342, and
𝜋5 (2𝐷𝐻 )=.078 for the previous example; see Section 4 that presents

these results for the corresponding measures. According to Eq. 3,

https://cran.r-project.org/web/packages/irrCAC
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Lin’s [52] measure assigns higher weights to matches on frequent

values and lower weights to mismatches on infrequent values [11].

3.4.3 Gesture ratings. Weevaluated participants’ perceptions about

their own gestures using 7-point Likert scales:

• Gesture-Ease, adapted fromWobbrock et al. [96], measures

the perceived ease of gesture articulation with a rating from

1 (“very difficult”) to 7 (“very easy”).

• Gesture-Goodness, adapted fromWobbrock et al. [96], mea-

sures the goodness of fit between the proposed gesture and

the corresponding referent with a rating from 1 (“not fit at

all”) to 7 (“very good fit”).

• Recall-Ease, adapted from Zaiţi et al. [103], measures user

perception of the recall likeliness of the proposed gesture

with a rating from 1 (“very difficult”) to 7 (“very easy”).

• Social-Acceptability, adapted fromRico and Brewster [71],

measures participants’ willingness to perform the proposed

gestures in public with a rating from 1 (“unwilling at all”) to

7 (“very willing”).

3.5 Statistical Analysis

We employ non-parametric Friedman and Wilcoxon signed-ranked

tests to analyze the effect of Referent and Referent-Category

on participants’ gesture ratings. We aggregate the repeated mea-

surements extracted from the videos and use Wilcoxon tests to

compare observed percentages against expected ones (e.g., 33.3%

chances to observe an on-body, in-air , or on-wheelchair gesture).
To examine the effect of Referent and Referent-Category on

the repeated measurements collected for the categorical variables,

such as Gesture-Extent and Gesture-Type, we fit generalized

linear mixed-effects models with the Poisson distribution and Pow-

ell’s BOBYQA optimizer [7]. Finally, we use growth rates 𝑟 and

dissimilarity-consensus logistic modeling [85] to analyze the rela-

tionship between AR𝜖 and 𝜖 .

4 RESULTS

We report results about our participants’ preferences and percep-

tions of on-body, in-air , and on-wheelchair input from an analysis

of 231 gestures elicited in response to 21 referents.

4.1 Gesture Locale and Extent

We found that about one in two gestures (47.6%) was performed on

or with reference to the body, 40.7%were in air, and 11.7% on or with

reference to the wheelchair. The observed percentages of on-body
and on-wheelchair gestures were significantly different from chance

(𝑉=48.5, 𝑝=.036 and 𝑉=3.0, 𝑝=.011) with on-body gestures being

significantly more common (𝑝=.007, Bonferroni corrections applied

at 𝛼=.05/3=.0167); see Figure 2, top left. A GLMM analysis revealed

a statistically significant effect of Referent-Category onGesture-

Locale (𝜒2(2)=6.069, 𝑝=.048), but not of Referent (𝜒2(20)=15.823,
𝑝=.728, 𝑛.𝑠.). We found more on-body gestures (62.3%) for accessing

Content, e.g., 72.7% of the gestures elicited for “social media,” and

more in-air gestures (61.0%) for Navigation, e.g., 81.8% of the ges-

tures elicited for “next vertical” and “previous vertical”; see Figure 2,

top right. The percentages of on-wheelchair gestures were roughly
similar, between 10.4% and 13.0%, across Referent-Category.

The specific locations where the gestures were performed are il-

lustrated in Figure 2, bottom left. On-body gestures were performed

mostly with reference to the head (16.0%), followed by arms (12.2%),

legs (10.4%), and torso (4.7%), and 4.3% involved multiple body parts,

e.g., touching both the left and right thighs. In-air gestures were
performed in front of the body (29.4%), and only very few on the

left (2.2%) and right (1.3%) sides. The most common on-wheelchair
gestures involved touching the armrests (6.1%). Furthermore, Fig-

ure 2, bottom right shows the distribution of the Gesture-Extent

categories in McNeill’s [61] gesture space. A percentage of 27.7%

of the gestures were performed in the center and only 11.2% in the

extreme periphery, while the upper part of the periphery region

contained 21.6% of the elicited gestures due to their reference to the

head. Combined, gestures performed in the center and the upper

subregions of the periphery and extreme periphery around the head

represented more than half (56.2%) of the elicited gestures.

4.2 Gesture Type

We found a larger preference for touch (34.2%) and hand pose (22.5%)
compared to tap (14.3%), stroke (14.3%), pointing (12.1%), and grasp
(2.6%) gestures; see Figure 3, top. A GLMM analysis revealed a signif-

icant effect of Referent-Category on Gesture-Type (𝜒2(2)=8.887,

𝑝=.01), but not of Referent (𝜒2(20)=20.865, 𝑝=.405, 𝑛.𝑠.). Referents
from theNavigation category that had spatial connotations received
pointing and stroke gestures in response, e.g., 54.5% of the gestures

elicited for “next vertical,” 45.5% for “previous vertical,” and 45.5%

for “undo.” Touch gestures were predominant for the referents of the

Content category, e.g., 63.6% of the gestures elicited for “agenda/-

calendar,” “contacts,” “music,” and “social media.” The distribution

of gesture types was mainly split between touch and hand pose for
the Actions referents, e.g., 63.6% hand pose gestures to “place a call”

and 36.4% touch gestures to “send a text message,” respectively.

4.3 Handedness

The large majority (78.3%) of the elicited gestures involved one

hand, and were significantly more common (𝑍= − 2.497, 𝑝=.013)

than two-hand gestures (18.6%); see Figure 3, bottom. On rare oc-

casions (3.0%), a few participants proposed head gestures,
6
which

we exceptionally allowed since they were considered the best fit to

the corresponding referents. Although gestures performed with the

right hand were more common than those performed with the left

(46.3% and 32.0%), the percentages were not significantly different

from expected chance (𝑝>.05) with no significant difference either

between the two categories (𝑍= − .801, 𝑝=.423, 𝑛.𝑠.). Of the biman-

ual gestures, 11.3% were symmetric (2SH , 𝑉=6.0, 𝑝=.017) and 7.4%

involved different movements and poses (2DH , 𝑉=1.0, 𝑝=.004).

4.4 Agreement Rates

We computed agreement rates AR𝜖 for each Referent using the

procedure described in Subsection 3.4.2. We used the tolerance

level 𝜖=0 to specify that two gestures are equivalent if and only if

they have the same Gesture-Locale, Gesture-Locale-Detail,

Gesture-Extent, Gesture-Type, and Handedness attributes. Out

6
The seven head gestures (7/231=3.0%) observed in our study included turning the

head left (P10), up (a gesture that P8 proposed for two referents), down (P8), and back

(P8), eyes wide open (P9), and taking a deep breath (P6), respectively.
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Figure 2: Distribution of Gesture-Locale per Referent-Category and Referent (top), Gesture-Locale-Detail (bottom

left), and Gesture-Extent (bottom right). Note the high preference for on-body and in-air gestures.
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Figure 3: Distribution of Gesture-Type (top) and Handedness (bottom) per Referent-Category and Referent. Note the

high preference for touch and hand pose gestures (top) and unimanual gestures (bottom), respectively.
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Figure 4: Agreement rates [90] (left) and growth-rate dissimilarity-consensus curves [85] (right). Note the low agreement

(AR𝜖≤5.5%) and little variation in growth rates (M=14.7, IQR=3.1). Actual 𝛿 data is shown in orange, logistic models in black.
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Figure 5: Participants’ ratings of the gestures they proposed to effect various referents (higher values denote better ratings).

of the total number of (11·10)/2=55 pairs of gestures for each Refer-

ent, we found between 0 and 3 pairs in agreement (Mdn=0, M=0.71,

SD=0.95) and, correspondingly, very low agreement rates, between

0.0% and 5.5% (M=1.3%, SD=1.7%); see Figure 4, left.

According to these results, no consensus gesture set can be estab-

lished for any of the referents because of our participants’ different

preferences for gestures or, perhaps, our too restrictive gesture

equivalence criteria. To rule out the latter, we recomputed the agree-

ment rates AR𝜖 without considering the influence of some of the

gesture attributes, but the consensus did not increase significantly:

M=2.0% (SD=2.1%) without Handedness (i.e., we considered two

gestures equivalent regardless of the hand used to perform them),

M=3.6% (SD=2.7%) without Handedness and Gesture-Locale-

Detail (i.e., we considered two gestures equivalent regardless of

the hand used to perform them and the specific details of their ar-

ticulation on the body, wheelchair, or in air), and M=4.7% (SD=4.6%)

without Handedness and Gesture-Extent (i.e., we considered

two gestures equivalent regardless of the hand used to perform them

and the region in space where they were performed). This analysis

revealed that the lack of consensus was determined by participants’

different preferences for gestures. To further confirm this finding,

and also to learn more about agreement formation for the elicited

gestures, we employed the dissimilarity-consensus method [85],

an approach to agreement analysis designed to be agnostic to the

criterion 𝜖 . Following this method, we performed logistic modeling

of the growth curves of AR𝜖 function of 𝜖 . The estimated values for

the𝐶0 and𝐶∞ coefficients of the logistic models were close to zero

(M=0.75, SD=0.60) and 100 (M=100.3, SD=1.93), respectively, and

the growth rates 𝑟 were statistically significant (𝑝<.001), indicating

a good fit of the logistic models for our data; see [85, p. 8] for good-

ness of fit criteria in dissimilarity-consensus analysis. Figure 4, right

shows growth rates 𝑟 that vary little (M=14.7, SD=3.3, IQR=15.3-

12.2=3.1) between the referents. The similar speeds at which the

agreement rates computed for different referents increase with in-

creasingly larger tolerance values 𝜖 indicate similar processes of

agreement formation for those referents. Thus, the diversity ob-

served in the elicited gestures must have another cause than the

mere difference between the conditions of the Referent variable,

an aspect that we examine in detail in Subsection 4.6 in relation to

our participants’ self-reported motor impairments.

4.5 User Perception of the Elicited Gestures

Figure 5 shows the mean ratings of Gesture-Ease, Recall-Ease,

Gesture-Goodness, and Social-Acceptability for the gestures
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proposed by our participants. We found statistically significant ef-

fects of Referent-Category on Recall-Ease (𝜒2(2)=8.512, 𝑝=.014)

and Gesture-Goodness (𝜒2(2)=7.818, 𝑝=.020), complemented by

significant effects of Referent (𝜒2(20)=50.240 and 𝜒2(20)=56.961,
𝑝<.001), but not on Gesture-Ease and Social-Acceptability

(𝑝>.05, 𝑛.𝑠.). Post-hoc Wilcoxon signed-rank tests (Benjamini &

Hochber FDR corrections applied) revealed statistically significant

differences between the Content and Navigation categories for

Recall-Ease (𝑝=.043), and between Content and Actions (𝑝=.035)
and Content and Navigation (𝑝=.035) for Gesture-Goodness. Over-
all, our participants evaluated their own gestures easy to articulate

(M=6.83/7), easy to recall (M=5.48/7), a good fit to the referents

(M=5.16/7), and socially acceptable (M=6.42/7). Despite the little

agreement between users’ gesture proposals (see Subsection 4.4),

we found high gesture ratings within users, which suggests a design

approach based on personalized gesture sets.

4.6 Relationship Between Motor Impairments

and Gesture Characteristics

We computed visualizations of the relationship between the articu-

lation characteristics of the elicited gestures and participants’ self-

reported motor impairments; see Figure 6. In this figure, each partic-

ipant is represented on one row and the columns correspond to the

measures of gesture articulation from Subsection 3.4.1—Gesture-

Locale, Gesture-Locale-Detail, Gesture-Type, Handedness,

and Gesture-Extent,—which we have used consistently through-

out our analysis, including for computing agreement rates. In total,

seven circular layout charts are presented for each participant to

show the correspondence between the participant’s motor impair-

ments and the characteristics of their gesture articulations.

For example, P1 reported slow movements (Mo), poor coordi-

nation (Co), fatigue (Fa), and difficulty controlling distance (Dis);

see the first row of Table 1 and the first row of Figure 6, respec-

tively. During gesture elicitation, P1 proposed on-body (76.2%) and

in-air (23.8%), but not on-wheelchair (0.0%) gestures. The first circu-
lar chart puts into correspondence P1’s preferences for Gesture-

Locale (shown at the bottom part of the layout) with their self-

reported motor impairments (at the top of the layout) using ribbons

with a color coding matching that used to represent Gesture-

Locale in Figure 2. The next three circular charts show P1’s pref-

erences for locations, according to the Gesture-Locale-Detail

categories, where P1 performed on-body, in-air , and on-wheelchair
gestures. (Since P1 did not propose on-wheelchair gestures, the cor-
responding chart is empty for this category.) The rest of the charts

have the same structure (motor impairments at the top and gesture

characteristics at the bottom) and follow the color codings used

for Gesture-Type (yellow and orange, correspondence with Fig-

ure 3, top), Handedness (cyan hues, correspondence with Figure 3,

bottom), and Gesture-Extent (magenta, correspondence with Fig-

ure 2, bottom right). Thicker ribbons denote a higher percentage

of a given gesture characteristic, e.g., P1 performed 76.2% on-body
gestures (first chart), 47.6% touch gestures (fifth chart), and 61.9%

of the gestures in the periphery region (last chart).

Several interesting observations are revealed by the correspon-

dences illustrated in Figure 6, for which we found support in the

magnitudes of Kendall’s 𝜏𝑏 coefficients
7
computed between the

gesture articulation measures, e.g., Gesture-Locale or Handed-

ness, and the eleven categories of self-reported motor impairments

listed in Table 1, e.g., low strength (St), which we treated as binary

variables in this analysis (1 indicates the presence and 0 the absence

of a specific motor impairment for a given participant). Figure 6,

bottom right shows an overview of Kendall’s 𝜏𝑏 coefficients for

the correspondences that we identified between the characteristics

of the elicited gestures and our participants’ motor impairments.

These correspondences are discussed in detail next.

4.6.1 Gesture locale. On-wheelchair gestures were proposed by

four participants only (P4, P6, P7, and P9), all of which reporting the

combination of rapid fatigue (Fa, 𝜏𝑏 (11)=.519) and difficulty holding

(Ho, 𝜏𝑏 (11)=.323). We also found medium associations between the

observed percentage of on-wheelchair gestures and the difficulty

to control the direction of movement (Dir, 𝜏𝑏 (11)=.313) and spasm

(Sp, 𝜏𝑏 (11)=.313), two motor symptoms shared by P6, P7, and P9.

These three participants also reported the largest numbers of motor

impairments (10, 8, and 8, respectively, see Table 1) and preferred

gestures supported by the wheelchair armrests. On-body gestures

were proposed by all the participants but in different percentages,

from 14.3% (P11) to 76.2% (P1). They were generally favored by the

absence of spasm (Sp, 𝜏𝑏 (11)=− .348), difficulty controlling direction

(Dir, 𝜏𝑏 (11)=− .348), and difficulty holding (Ho, 𝜏𝑏 (11)=− .449), and

were preferred to other gesture types when poor coordination (Co,

𝜏𝑏 (11)=.422) was present. Finally, in-air gestures were not proposed
at all by P4 and P7, who both reported rapid fatigue (Fa), a symp-

tom negatively associated (𝜏𝑏 (11)= − .441) with the percentage of

observed in-air gestures. In the case of P4, fatigue was accompa-

nied by uneven development of the arms caused by Osteogenesis

Imperfecta, a health condition in which bones fracture easily. Fig-

ure 1, right from Section 1 shows an overview of all participants’

preferences of Gesture-Locale.

4.6.2 Gesture extent. All of the participants proposed gestures in

the center (27.7%) and periphery (57.6%) regions. Gestures in the

extreme periphery were rare (14.7%), and three participants (P6, P10,

and P11) did not use them at all; see Figure 6, last column. These

participants shared a combination of three motor symptoms, for

which we found medium and strong negative associations with the

percentage of extreme periphery gestures: spasm (Sp, 𝜏𝑏 (11)=− .614),

difficulty holding (Ho, 𝜏𝑏 (11)=− .297), and difficulty controlling the

direction of movement (Dir, 𝜏𝑏 (11)= − .614), respectively.

4.6.3 Gesture type. All of the participants proposed touch gestures

to a fairly large extent and most participants (8/11) also used taps,
the longer version of a touch, according to our Gesture-Type cate-

gories. Also, almost all of the participants used pointing, except for
P4 and P7 (Figure 6, fifth column), who reported rapid fatigue (Fa)

and difficulty holding (Ho), two motor symptoms that associated

negatively with the percentage of pointing gestures (𝜏𝑏 (11)= − .394

and 𝜏𝑏 (11)=− .281). These two participants were also the only ones

7
Kendall’s 𝜏 [38] measures the ordinal association between two quantities and is prefer-

able to other measures based on concordant and discordant pairs; see [1, p. 191]. The 𝜏𝑏
variant [39] is adjusted for ties. According to https://www.spss-tutorials.com/kendalls-

tau/#kendalls-tau-interpretation, a value of .21 indicates a “medium” association and

.35 a “strong” one.We report only𝜏𝑏 coefficients that are above the “medium” threshold.

https://www.spss-tutorials.com/kendalls-tau/#kendalls-tau-interpretation
https://www.spss-tutorials.com/kendalls-tau/#kendalls-tau-interpretation
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B19  left forearm 

B20  left hand 

B21  left thigh 
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Figure 6: Relationship between participants’ self-reported motor impairments and their gesture articulation characteristics; see

also Table 1 and Figures 2 and 3. The bottom right table summarizes Kendall’s 𝜏𝑏 coefficients for the trends discussed in the text.
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that did not propose hand poses, for which we found a negative asso-
ciation with rapid fatigue (Fa, 𝜏𝑏 (11)=− .314). The four participants

that used grasps (P3, P5, P7, and P9) shared the low strength (St,

𝜏𝑏 (11)=.543) and difficulty holding (Ho, 𝜏𝑏 (11)=.339) motor symp-

toms. Stroke gestures were also popular, being proposed by more

than half of the participants (7/11), of which P5 stood out with 52.4%

of the gestures he proposed to invoke the referents from our study.

4.6.4 Handedness. Unimanual gestures (78.4%) were more com-

mon than bimanual gestures (18.6%). All of the participants pro-

posed unimanual gestures, and the use of either the left or right

hand was determined by their specific motor conditions. For exam-

ple, P7’s right hand was almost paralyzed, so she performed most

of the gestures with the left hand (71.4%), while the rest (28.6%)

were bimanual. P1, P4, and P11 performed gestures with the right

hand exclusively because of the left hand being paralyzed (P1), less

developed than the right hand (P4), or affected more by Parkinson’s

symptoms (P11). For most of the participants (7/11), the percentage

of their bimanual gestures was well below 10% (M=3.4%), but three

participants (P3, P5, and P8) stood out with a high preference for

bimanual gestures (57.1%, 57.1%, and 38.1%, respectively). Figure 6,

sixth column shows that these participants shared a distinct combi-

nation of motor symptoms, for which we detected medium to strong

associations with the percentage of observed bimanual gestures:

absence of the difficulty to control the direction of movement (Dir,

𝜏𝑏 (11)= − .362 for 2SH and 𝜏𝑏 (11)= − .292 for 2DH ) and symptoms

of low strength (St, 𝜏𝑏 (11)=.288 for 2SH and 𝜏𝑏 (11)=.393 for 2DH ).

Head gestures, proposed by P6, P8, P9, and P10, who considered

them more appropriate to effect specific referents compared to

gestures of the hand (see Figure 6, sixth column) and, thus, were

exceptionally accepted in our study (3.0%), associated positively

with the presence of low strength (St, 𝜏𝑏 (11)=.543) and difficulty

gripping (Gr, 𝜏𝑏 (11)=.656) motor symptoms, respectively.

4.6.5 Summary. Our analysis revealed that the gestures proposed

by different participants were different in terms of the combi-

nation of Gesture-Locale, Gesture-Locale-Detail, Gesture-

Extent, Gesture-Type, and Handedness characteristics. Instead

of a consensus gesture set that would be representative for a large

group of users—a common end result for gesture elicitation stud-

ies [90,96]—we found highly individualized gesture preferences.

Since this result could not be attributed solely to differences be-

tween referents (see our dissimilarity-consensus analysis from Sub-

section 4.4), we analyzed it in the context of our participants’ spe-

cific motor impairments and identified several correspondences.

Next, we adopt the lenses of ability-based design [94,95]—an ap-

proach to designing interactive systems where designers focus on

users’ abilities, not disabilities, and systems change to match and

adapt to those abilities—to propose implications for accessible on-
body, in-air , and on-wheelchair gesture input for wheelchair users.

5 ABILITY-BASED DESIGN OF ACCESSIBLE

ON-BODY, IN-AIR, AND ON-WHEELCHAIR

GESTURE INPUT

Our results revealed that both user preference and motor impair-

ments influence the characteristics of gesture articulations. Next, we

capitalize on Gesture-Locale, Gesture-Locale-Detail, Gesture-

Type, Gesture-Extent, and Handedness to outline practical im-

plications for accessible gesture input for wheelchair users with the

seven principles of ability-based design [94,95]: ability, accountabil-
ity, availability, adaptability, transparency, performance, and context.

According to the ability principle [94], designers should focus

on users’ abilities, not disabilities. We suggest:

➊ Design gesture sets that are customizable in terms of

gesture locale, i.e., on-body, in-air, on-wheelchair, ac-
cording to the motor ability of the user to raise the arms,

rotate the wrists, and form specific hand poses for in-air
gestures, reach to specific body parts for on-body gestures,

and extend and bend fingers to touch the armrest for on-
wheelchair gestures, respectively. Example: P7 proposed on-
body and on-wheelchair touch, tap, and grasp gestures (see

Figure 6), which involved a stable physical target to support

the hand and finger, but not in-air gestures because of her
Parkinson’s condition causing spasm and tremor.

➋ For a given locale, design gestures that are customiz-

able in terms of how the locale is implemented. Example:
not all of the participants proposed in-air gestures and, from
those who did (9/11), only less than half could raise their arm

to the head or above the head, two regions for which they

assigned specific meanings; see the conditions A2 and A4 of

the in-air gesture locale in Figure 6, third column. However,

all of the participants performed gestures in front of the body

(A5 in Figure 6). Example: because of his specific condition of

Osteogenesis Imperfecta, P4 has small legs and short stature.

However, unlike all of the other participants, who performed

on-body gestures no lower than the thigh level, he was able

to touch his legs and feet without any difficulty.

The accountability principle [94] states that designers change

systems, not users to foster usability. We propose:

➌ Use gesture recognizers that are invariant to the body

part articulating the gesture. Example: participant P7’s
right hand was almost paralyzed, so she performed the large

majority of the gestures with her left hand. Unlike conven-

tional touchscreens that are agnostic to the finger, hand, or

body part implementing touch input, an aspect that favors

diverse coping strategies for people with upper-body motor

impairments to use mobile devices effectively [3,34], detect-

ing in-air gestures may require computer vision approaches,

e.g., using a video camera placed above the wheelchair arm-

rest [42], on the user’s head [46], or in the environment [100].

Since such systems can easily distinguish various body parts

[75], their flexibility should not diminish, but foster usabil-

ity, e.g., designers should not expect a gesture to always be

performed with the left hand or always be unimanual.

According to the availability principle [94], designers use afford-

able and available software and hardware. As wheelchairs become

smart devices [49] with embedded sensors, actuators, and commu-

nications (see Subsection 2.1), these resources can be exploited to

detect and recognize a diversity of gesture input. Moreover, the

sensors integrated in users’ mobile and wearable devices could be

employed for the same purpose. Our practical implication is:
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➍ Reuse embedded sensors from smart wheelchairs, mo-

bile devices, and wearables to detect a variety of on-
body, in-air, and on-wheelchair gestures. Example: in-
air and on-body gestures can be detected with conventional

video cameras from smartphones, tablets, and smartwatches

[54,77]. Example: accelerometers and gyroscopes, common in

off-the-shelf wearables, such as smartwatches, fitness track-

ers, and armbands, can detect gestures performed in-air , on-
body, and with objects; see [17,47,88]. Example: NFC/RFID
technology has been used for body-centric interactions [102]

and interactions with objects, including the wheelchair [56].

The adaptability principle [94] states that interfaces provide the

best possible match to users’ abilities. We propose:

➎ Design gesture sets of on-body, in-air, and on-wheelchair
gestures that can be used interchangeably in the per-

sonal and peripersonal space. Example: a directional swipe
gesture can equally be performed in mid-air [69], drawn on

the palm [29], or sketched on thewheelchair armrest [13]. Ex-
ample: somemotor abilities are invariably lost as the result of

health conditions increasing in severity, e.g., Parkinson’s is a

neurodegenerative brain disorder with symptoms that begin

gradually and worsen over time. Participant P7 (Parkinson’s

diagnostic for 13 years) proposed on-body and on-wheelchair
touch, tap, and grasp gestures (see Figure 6, fifth column)

involving a stable physical target to support the hands, but

not in-air gestures because of her condition causing spasm

and tremor. However, P11 (Parkinson’s diagnostic for 8 years)

proposed in-air gestures in front of the body.

Interfaces that implement the transparency principle [94] give

users awareness of their adaptive behavior. Our practical imple-

mentation of this principle is as follows:

➏ Accompany gesture articulation with feedback match-

ing gesture locale.While on-body and on-wheelchair ges-
tures are naturally accompanied by the haptic sensation of

feeling touching the intended target, e.g., the palm of the

other hand or the wheelchair armrest, in-air gestures are not,
which makes non-contact gestures more challenging to pro-

duce by users [24] and recognize by computers [80]. Example:
when in-air gestures are implemented with wearables [88],

vibrotactile feedback impacts positively user experience [44].

Example: lack of sensation in a body part involved in the

articulation of an on-body gesture, e.g., on the supporting

palm, could be compensated with an accessible feedback

modality to confirm reaching the target. P6 reported lack of

sensation below the upper arms, caused by spinal cord injury

at vertebrae C4-C5, yet he proposed on-body gestures on the

head, chin, mouth, shoulder, elbow, and right hand. Inde-

pendent of gesture locale, providing feedback about gesture

sensing and recognition [36] or feedforward during gesture

articulation [20] can increase usability and provide users

with the means to inspect, discard, or revert, if needed, the

outcome of a command.

The performance principle [94] states that systems employ data

collected about their users to provide the best possible match to

the users’ abilities. We propose the following implication:

➐ Model the user’s gesture preferences. Example: predilec-
tion for specific gesture locales (e.g., on-body, on-wheelchair
instead of in-air for P7), specific gesture types (e.g., touch
and tap, but not pointing, grasp, or stroke for P4), handedness
(e.g., exclusive use of the right hand by P1, P4, and P11 for uni-

manual gestures), but also body parts (e.g., P6 proposed head

instead of hand gestures, when they believed that head ges-

tures were better suited to a specific referent) are examples

of information that an adaptive gesture recognizer [12,92]

could use to tune its training set and/or parameters.

According to the context principle [94], systems use context to

anticipate and accommodate effects on users’ abilities:

➑ Complement and enrich smartphone-based interac-

tion with on-body, in-air, and on-wheelchair gestures.
Example: some wheelchair users prefer keeping their smart-

phones always available, e.g., on the wheelchair armrest or

their lap and thigh [67,87]. This context favors conjunct use

of the smartphone and gesture input performed in the vicin-

ity of the smartphone in the personal and peripersonal space

of the user. The result is higher flexibility for users to select

the gesture modality best suited to their abilities in context:

gross movements of the large muscle groups for on-body and

in-air gestures vs. fine-precision aiming and tapping abilities

for touch input on the smartphone and on-wheelchair arm-

rest, respectively. Another opportunity is new interaction

techniques for the wheelchair space, e.g., a combined gesture

that starts with the user touching the smartphone and contin-

ues with pointing to the TV to transfer content in the style of

AirLink [16] interactions. Conjoint use of smartphone-based

input and gestures performed in the personal and periper-

sonal space of the wheelchair user for various interactive

contexts and systems, e.g., public interactive displays [89],

is an interesting direction to explore in future work.

➒ Enable easy switching between gesture locales and

types. Example: infer the context, e.g., indoor, outdoor, pri-
vate, public, interlocutors, type of audience, etc., to enable

switching to gesture locales and gesture types socially ac-

ceptable in that context, e.g., from potentially attention seek-

ing [30] or conspicuous [71] on-body and in-air gestures to
more subtle and discreet on-wheelchair gestures performed

on the joystick or armrest.

6 LIMITATIONS AND FUTUREWORK

There are several limitations to our experiment, which we present

in this section together with ways to address them in future work.

Our sample of participants was of N=11 wheelchair users only,

which is just over half the size of the most common choice (N=20)

for the number of participants in gesture elicitation studies, accord-

ing to statistical findings from Villarreal et al. [91]. In this general

context, our sample size falls in the [10,20) interval alongside 38%

of more than two hundred published gesture elicitation studies,

but is larger than the sample size from other 11% studies that used

less than ten participants; see [91, p. 859]. However, in the specific

context of elicitation studies involving people with motor impair-

ments, our sample size is identical to that of Malu et al. [57], who
elicited accessible smartwatch interactions. In the same context
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of accessibility research, our sample size is also representative of

those from studies traditionally published at CHI and ASSETS, ac-

cording to Mack et al.’s [55, p. 8] findings that revealed a median

number of N=10 participants with motor or physical disabilities.

Nevertheless, a larger sample size can offer more opportunities for

gesture analysis, e.g., by relating participants’ preferences for on-
body, in-air , and on-wheelchair gestures to other motor and physical

disabilities not present in our sample, such as arthritis or lost limbs.

Also, a larger, multicultural sample of participants would enable

understanding potential interactions between motor symptoms and

cultural factors given that gestures develop culturally, a fact that

has implications for the design of gesture user interfaces [21,60].

Thus, we recommend more investigations in future work with a

larger sample of participants to examine aspects such as these and,

potentially, reveal more practical implications for accessible com-

puting. To foster such future work, including replications [33] of

our findings as well as extension and repurposing [27] of the data

collected in our experiment toward new discoveries, we release

our gesture dataset and results obtained with our gesture articula-

tion measures freely available to download from the web address

http://www.eed.usv.ro/~vatavu.

Another limitation of our experiment is that we did not record

participants’ gestures in a computational form, which would have

enabled further insights on their gesture articulations with special-

ized measures and tools, e.g., [4,86], or evaluating gesture recogniz-

ers. We recommend such examinations in future work to increase

our understanding of both user and system performance with ges-

tures of various types performed from the wheelchair space.

7 CONCLUSION

We examined the articulation characteristics of on-body, in-air , and
on-wheelchair gestures proposed by wheelchair users for common

actions, types of digital content, and navigation commands in inter-

active systems, for which we employed a diversified set of measures

of gesture articulation, user perception, and agreement analysis.

Our results revealed a high preference for on-body and in-air com-

pared to on-wheelchair gestures, having specific articulation char-

acteristics according to the users’ specific motor abilities. Based on

our findings, we proposed practical implications, structured using

the principles of ability-based design, for gesture input performed

from the wheelchair in the user’s personal and peripersonal space.

We look forward to more examinations of on-body, in-air , and on-
wheelchair gesture input, reflective of both users’ preferences and

motor abilities, toward more accessible gesture-based interactions

performed from the space of the wheelchair.
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