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ABSTRACT

We present empirical results about gesture expressivity and artic-
ulation complexity from an analysis of 231 gestures elicited from
eleven wheelchair users, for which we employ a combination of
McNeill’s gesture theory from psycholinguistics and a taxonomy
used in Human-Computer Interaction for the analysis of gestures
elicited from end users. We report that 53.7% of the gestures that we
analyzed were deictic in nature, and 50.7% were performed toward
the body. These findings suggest a potential tradeoff between the
expressivity of iconic and metaphoric gestures, less represented in
the gesture set analyzed in this work, for the low complexity of sim-
ple pointing movements performed from the wheelchair space. Our
results complement findings of previous gesture elicitation studies
conducted with users with motor and/or mobility impairments,
and suggest future work opportunities for gesture input performed
from the wheelchair space, including mixed-nature gestures that
feature both low complexity and rich expressivity.
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1 INTRODUCTION

There is a rich scientific literature documenting the ways in which
people with motor and/or mobility impairments experience ac-
cessibility challenges when interacting with computer systems,
including mobile and wearable devices [8,20], switching between
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devices and using devices while moving [7], interacting with tele-
vision [29], using touch input on large multitouch tables [9] and
public ambient displays [32], and entering text [39] and playing
motion-based games [13] from the wheelchair. These challenges
have been addressed with specific technical solutions, among which
solutions based on gesture input [3,31] are one convenient oppor-
tunity for accessible interactions due to the variety of gesture types
that can be sensed with off-the-shelf technology, following the
“ability” and “availability” principles of ability-based design [37].

Gesture input from the wheelchair space includes gestures per-
formed with mobile [8] and wearable [30] devices, gestures of the
hand performed in mid-air [3], on the body [20], the wheelchair
armrest [6], and “above-the-neck” gestures [40], respectively. These
examples show a diversity of gesture types of rich expressivity,
and the application domains are multiple and varied, including
wheelchair control [16,17], gesture-controlled robotics [1,15,28],
and interacting with public ambient displays [32] and services [30].
However, prior work has reported that accessible gestures elicited
from people with motor and/or mobility impairments are mostly
simple, i.e., simple head movements and eye blinks [40], taps and
single-stroke swipe gestures [19], and gestures performed in easily
accessible regions on and around the body [3]. These results show
a preference for low-effort, low-complexity gestures, and suggest a
potential tradeoff between the rich expressive capabilities of gesture
input [5,27] and gesture articulation complexity.

To examine this potential tradeoff, we use a combination of
McNeill’s [21] gesture theory from psycholinguistics, focused on
understanding gestures as images with which people “display their
inner thoughts and ways of understanding events of the world” [21,
p. 12], and a taxonomy from HCI used for gesture elicitation stud-
ies [38], focused on obtaining “a detailed picture of user-defined
gestures and the mental models and performance that accompany
them” [38, p. 1083] for the purpose of interacting with computer sys-
tems. We present empirical results about the expressive nature and
articulation complexity of user-defined gestures performed from
the wheelchair space by analyzing a public dataset of 231 gestures
proposed by eleven wheelchair users with various motor impair-
ments and health conditions [3]. We report more preference for
deictic (53.7%) and simple symbolic (26.0%) gestures, e.g., hand poses
and directional swipes, instead of gestures bearing iconic (14.3%) or
metaphoric (6.0%) connotations, in McNeill’s [21] sense, findings
that show the presence of the expressivity-complexity tradeoff in
our dataset. Based on our findings, we propose future work oppor-
tunities for gesture input performed from the wheelchair space,
such as designing gesture sets in accordance with the body image
representation and malleability of the peripersonal space, which
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may incorporate the wheelchair, as well as mixed-nature gestures
that are both low complexity and expressively rich, e.g., deictic
gestures that also have metaphorical connotations.

2 RELATED WORK

Previous work has examined gesture input from the wheelchair
space and involving the wheelchair. Malu and Findlater [20] re-
ported accessibility challenges experienced by users with upper-
body motor impairments to lift the arm to the touchpad of Google
Glass, and proposed switch-based input using a touchpad that could
be affixed by the user at a convenient location on their body or
wheelchair. Wobbrock et al. [39] proposed gesture-based text entry
methods for the joystick and touchpad designed to be used from
the power wheelchair. Carrington et al. [8] coined “chairables” to
denote devices designed to fit with the form of the wheelchair and
be used from the wheelchair space, just like wearables fit with an
individual’s clothing, and explored possibilities for their placement
and form factors. An example is “Gest-Rest” [6] chairables that fit
over a standard wheelchair armrest to enable touch gesture input.
In this work, we primarily connect to the practice of gesture elici-
tation studies [38], where participants propose gestures in response
to system functions, known as “referents.” For details about imple-
menting such studies, we refer readers to Wobbrock et al. [36,38],
who proposed the method, and to Vatavu and Wobbrock [34] for an
overview of gesture analysis models. Despite the popularity [35]
of such studies for unveiling users’ preferences for gesture input,
only few gesture elicitation studies have been conducted with users
with motor and/or mobility impairments [3,19,23,40]. For instance,
Roy et al. [23] elicited gestures from people with Cerebral Palsy
in response to concepts of weight, emotion, character formation,
and object visualization, and trained a neural network to recognize
gestures reflecting users’ physical abilities. Malu et al. [19] elicited
more accessible smartwatch gestures from users with upper-body
motor impairments. Zhao et al. [40] examined users’ preferences
for above-the-neck gestures, e.g., gestures performed with head and
eye movements, to effect common functions on smartphones. Bil-
ius et al. [3] conducted a gesture elicitation study with wheelchair
users and a set of twenty-one referents, and found a large pref-
erence for on-body (47.6%) and in-air (40.7%) gestures, primarily
performed with one hand in the center and upper periphery re-
gions around the body. The gestures reported by these studies
have been mostly simple, performed in easily-accessible regions
on and around the body, highlighting a common sense preference
for low-effort, low-complexity input. We wonder to what extent
the richer expressiveness of other gesture types, more complex
in terms of their articulation and meaning [21], has been traded
off by participants seeking simple gestures. If this were the case,
this expressivity-complexity tradeoff might have caused missed
opportunities for discovering highly-expressive gesture input.

3 STUDY

We conducted an exploratory analysis of the combined nature and
articulation complexity of user-defined gestures performed from the
wheelchair space by using Bilius et al.’s [3] public gesture dataset.
After a brief description of the dataset, we present our procedure.

Bilius et al.

3.1 Dataset

Bilius et al. [3] collected a dataset of 231 gestures performed by
eleven wheelchair users with various motor and mobility impair-
ments' with the goal of understanding user preference for on-body,
in-air, and on-wheelchair gestures to control interactive systems.
Following the end-user elicitation method [38], the gestures were
elicited in response to twenty-one system functions (e.g., “access
email,” “turn on/off the TV, “next,” etc.) representing the conditions
of the REFERENT independent variable. Participants were instructed
to perform the gestures however they wanted: on their body, in-
cluding clothes, in the air around the body, or on various parts of
the wheelchair, and using their preferred hand or both hands. Ref-
erents were presented with short sentences on a computer screen,
and randomized per participant. Referents were also grouped into
three categories (Actions, Content, and Navigation), according to
their type, representing the REFERENT-CATEGORY variable. We refer
readers to Bilius et al. [3] for more details. The dataset consists of:
(i) text descriptions of the participants’ gestures, formatted as a
CSV file with 231 lines, one line per gesture, indexed by REFERENT
and REFERENT-CATEGORY, (ii) a description of participants’ motor
symptoms using the eleven categories from Findlater et al. [10], e.g.,
slow movements, fatigue, lack of sensation, etc., and (iii) R code that
reads the dataset and reports the on-body, in-air, and on-wheelchair
gesture measures analyzed in [3]. These resources can be freely
downloaded from the dataset web page;® see Figure 1 for a few
gesture examples. Although other studies [19,23,40] have elicited
gestures from people with motor and/or mobility impairments,
Bilius et al.’s [3] dataset is the only public data on this topic.

3.2 Procedure

We extracted information about the nature and articulation com-
plexity of user-defined gestures proposed from the wheelchair space.
For the video analysis, we adopted McNeill’s [21] coding scheme
for transcribing and coding gesture characteristics from videos
(pp- 375-382) and a corresponding dimension from Wobbrock et
al’s [38] taxonomy for analyzing user-defined gestures, from which
we selected the following measures relevant to our goal:

o GESTURE-NATURE, nominal variable with four categories of
gesture expressivity: iconic, metaphoric, deictic, and symbolic.
The first three® categories are from McNeill’s [21] gesture
theory: iconics picture a concrete object or event (e.g., the
hand mimics holding a TV remote control), metaphorics de-
pict an abstract idea (e.g., the hands rise up to suggest the
genre of the TV content), and deictic gestures are pointing
movements used to indicate to both concrete and imaginary
objects and/or locations. To these categories, we added sym-
bolic gestures, e.g., iconics that depict a symbol, such as letter
“S” or a circle drawn in mid-air, by following Wobbrock et
al’s [38] “nature” dimension, popular in gesture elicitation
studies. Symbolic gestures are essentially iconic, but we con-
sider them distinctly due to their relevance for implementing

1Spinal Cord Injury, Traumatic Brain Injury, Spina Bifida, Osteogenesis Imperfecta,
Multiple Sclerosis, Parkinson’s, Cerebral Palsy, Friedreich’s Ataxia.
http://www.eed.usv.ro/~vatavu/projects/2023- GESTURES-BAW

3We ignored McNeill’s [21] “beats” and “cohesives” in our analysis since they accom-
pany speech, not relevant to our scope.
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Figure 1: Three examples of gestures from the dataset [3] analyzed in our study, corresponding to referents from the Actions,
Content, and Navigation categories: (a) a gesture proposed by a person with Multiple Sclerosis to effect “turn TV on/off,” (b) a
gesture proposed by a person with Parkinson’s to access “email,” and (c) a gesture proposed by a person with Cerebral Palsy
to effect “next horizontal” The gesture articulation phases, from preparation to retraction [21], are also illustrated.

gesture-based commands for interactive systems, e.g., letter be used to answer affirmatively and provide confirmation to
“S” can act as a mnemonic shortcut [24] for system functions the system about the last action, event, or notification.
that start with “S.” such as “Save,” “Search,” “Select,” while o GESTURE-COMPLEXITY, interval variable, computed follow-

“thumbs-up,” a culturally-dependent gesture of the hand, can ing a method from McNeill [21, p. 385] by counting any of
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the following elements of gesture articulation: (i) the ges-
ture is articulated with both hands, (ii) the gesture implies
finger movements, (iii) the gesture implies the hand chang-
ing position during articulation, (iv) hand position is other
than “open” or “closed hand,” and (v) the gesture implies
the movement of the hand from the rest position. GESTURE-
CoMPLEXITY evaluates as an integer between 1 (low) and 5
(high complexity). We adopted McNeill’s definition of ges-
ture complexity since it involves objective evaluation cri-
teria compared to the approach used in end-user gesture
elicitation studies, which relies on subjective assessments of
referents’ conceptual complexity [38]. Figure 1 and the last
paragraph of this section present a few calculation examples.

To complement these measures, we also extracted information
about the underlying motion of the gesture, as follows:

e MotioN-TYPE, nominal variable with four categories, spec-
ifies the direction of the gesture with respect to the user’s
body. Following McNeill [21, p. 380], we distinguished among
gestures performed toward the body (IB), away from the body
(AB), parallel to front (PF), and parallel to side of the body (PS).
Complementary to GESTURE-NATURE, the direction of mo-
tion is useful to situate gestures of a given nature, e.g., iconic
or deictic, in the personal (TB), peripersonal (PS and PF), and
extrapersonal (AB) space of the wheelchair user.

e ProDUCTION-TIME, in milliseconds, measured as the differ-
ence between gesture start and stop timestamps extracted
from the video recordings. PRoDUCTION-TIME is a key mea-
sure of user performance [4,18], which associates positively
with the perceived difficulty of gesture input [33].

The GESTURE-NATURE, GESTURE-COMPLEXITY, and MOTION-TYPE
information was extracted independently by two researchers and
the results were confronted. Gwet’s AC1 [14] inter-reliability coef-
ficients were .715, .995, and .756, respectively (with the cumulative
membership probabilities .999, 1, and 1), corresponding to consen-
sus levels between “substantial” and “perfect,” according to the
Landis-Koch benchmarking scale.* To measure PRODUCTION-TIME,
we wrote a Python script to approximate gesture start and stop
timestamps using a motion detector based on the difference be-
tween consecutive frames, after which we manually extracted the
timestamps more precisely using the video player seek bar.

Figure 1 exemplifies three gestures from the dataset. The first
gesture mimics holding an imaginary TV remote control and, thus,
is iconic, performed away from the body, and has a complexity score
of 3 (i.e., +1 since finger movements are used to press the buttons of
the imaginary TV remote control, +1 since the hand changes shape
during the gesture articulation, and +1 since the hand moves from
the rest position). The second gesture is represented by the left
hand grabbing the right elbow, which is a deictic gesture performed
toward the body with a complexity score of 1 (the hand moves from
the rest position, but does not change form). The third gesture,
represented by the right hand pointing upward, is also deictic but,
unlike the second gesture, does not involve physical contact with
any object or body part.

4https://cran.r-project.org/web/packages/irrCAC/vignettes/benchmarking. html
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3.3 Design

We are interested in gesture nature and articulation complexity
overall, for all the elicited gestures, but we also present results
according to the REFERENT and REFERENT-CATEGORY variables; see
Figure 2 for their corresponding categories.

4 RESULTS

We report findings about the expressive nature and complexity of
user-defined gestures performed from the wheelchair space. To
this end, we analyze GESTURE-NATURE in relation to GESTURE-
CoMPLEXITY to examine the possible tradeoff between the semantic
expressivity of a gesture (e.g., users resorting to metaphors when
referring to specific referents) and the complexity of its articulation.
We complement these results with MoTION-TYPE, as the spatial and
directional description of a gesture in relation to the user’s body,
along with the PRopucTION-TIME needed to articulate the gesture.

4.1 Gesture Nature and Complexity

We found that deictic gestures were the most frequently proposed
(53.7%), followed by symbolic (26.0%), iconic (14.3%), and metaphoric
(6.0%) gestures; see Figure 2a. A Friedman test revealed a statistically
significant effect of REFERENT-CATEGORY on GESTURE-NATURE
()((23):14.471, p=.002), and post-hoc Wilcox signed-rank tests (Bon-

ferroni corrected ¢=.05/6=.0083) confirmed significant differences
between deictic and metaphoric gestures (Z=2.807, p=.006). Fig-
ure 2a also presents detailed results for each REFERENT, showing
that deictic gestures were the majority preference for seventeen of
the twenty-one referents (81.0%) for which gestures were elicited
from wheelchair users. Exceptions were the “place call,” “answer
call;” and “turn TV on/off” referents, for which most of the gestures
were iconic (e.g., mimicking a phone or a TV remote control) and
“undo,” for which more symbolic gestures were proposed. Most of
the symbolic gestures were simple, represented by hand poses, e.g.,
“thumbs up,” “open hand,” “fist,” etc., and directional swipes.

To understand the preference for deictic gestures, we look at
GESTURE-COMPLEXITY, which varied between 1 and 4 (M=1.7, SD=0.4)
on a scale from 1 (low) to 5 (high); see Figure 2b. Complexity scores
were overall low, with 88.3% of the gestures consisting in either
one or two elements of articulation complexity, according to Mc-
Neill’s [21] calculation method. The gestures proposed for the ref-
erents of the Actions category exhibited the highest complexity
(M=1.8, SD=0.6) and those of Navigation the lowest (M=1.5, SD=0.4),
but a Friedman test did not detect a statistically significant ef-
fect of REFERENT-CATEGORY on GESTURE-COMPLEXITY (X(22)=1.722,
p=.423, n.s.). Of the deictic gestures, just 16.9% were contactless,
represented by pointing in mid-air (an example is illustrated in
Figure 1c), while 83.1% involved physical contact with the part of
the body (61.3%) or wheelchair (21.8%) indicated by the gesture. Fig-
ure 3 illustrates linear correlations between GESTURE-COMPLEXITY
and specific GESTURE-NATURE categories. We found a statistically
significant® negative linear correlation with the percentage of ob-
served deictic gestures (r(11)=—.683), and a positive correlation with

5To determine statistical significance, we use 95% Cls of Pearson’s r correlation coeffi-
cient computed with bootstrapping with N=2,000 samples.
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Figure 2: Nature, complexity, motion type, and production time of user-defined gestures. Note the large proportion of deictic
gestures (54%) and movements toward the body (51%), fast articulations (M=1.58s), and gestures of low complexity (M=1.7).

the percentage of iconic gestures (r(11)=.664). These results, corrob-
orated with the percentages of deictic (53.7%), symbolic (26.0%), and
iconic (14.3%) gestures, suggest that the rich expressiveness of icon-
ics was traded off for simple, low-complexity pointing movements.

4.2 Gesture Motion and Production Time

Half of the user-defined gestures were performed toward the body
(50.7%) compared to parallel to front (21.2%), parallel to side (17.3%),
and away from the body (10.8%), respectively; see Figure 2c. A
Friedman test detected a statistically significant effect of REFERENT-
CATEGORY on MOTION-TYPE ()((23)=14.915, p=.002), and post-hoc

Wilcox signed-rank tests revealed significant differences (Bonferroni-
corrected @=.05/6=.0083) between the TB and AB (p=.004), and
TB and PS (p=.007) categories, respectively. Figure 2c also shows
MoTION-TYPE results for the individual referents.

Gesture PRoDUCTION-TIME varied between 1007ms and 2116ms
(M=1575.4ms, SD=322.5ms); see Figure 2d. A Friedman test detected
a significant effect of REFERENT-CATEGORY on PRODUCTION-TIME
()((22)=10.364, p<.01), and post-hoc Wilcoxon signed-rank tests re-

vealed significant differences (Bonferroni-corrected a=.05/3=.0167)
between the Actions (M=2043.0ms, SD=682.1ms) and Navigation
(M=1224.3ms, SD=298.5ms) referents (p=.005). We did not find sig-
nificant correlations between PrRopucTION-TIME and the observed
percentages of the MoTION-TYPE gesture categories; see Figure 3.

These results complement our findings about the expressive na-
ture and complexity of user-defined gestures with specific nuances.
For example, gestures performed toward the body and parallel to
side were mostly deictic (34.2% and 12.6%), used to indicate in the
personal and peripersonal space of the body and wheelchair. Ges-
tures performed away from the body contained an equal number
of deictic and symbolic gestures (4.3%), while gestures parallel to
front were mostly symbolic (14.7%), revealing the convenience of
the peripersonal space for articulating swipes and stroke-gestures.

4.3 Qualitative Findings

The videos of the dataset occasionally contained participants’ brief
comments about the gestures they proposed, which we use in the
following to complement our quantitative findings.

Deictic gestures performed toward the body were chosen by the
participants in relation to specific meanings they attributed to spe-
cific body parts. For example, P4 positioned his hand near the heart
to access “e-books,” and said “I made this gesture because I really
love reading,” while P; and P4 proposed the same gesture with a
similar motivation to invoke “home screen.” Another example is Py,
who placed the hand on his stomach for “menu,” and said “This ac-
tion [menu] made me think of the restaurant menu.” These results
suggest the design option of enhancing simple, low-complexity
pointing movements with expressively rich connotations. In other
cases, the body part referenced by the deictic gesture was related
to the participant’s specific health condition. For example, P, and
P4 (Spinal Cord Injury) mentioned that they chose to place their
hands on the chest/heart to effect “emergency call,” because of their
high blood pressure complication.

We also found comments about the other GESTURE-NATURE
categories. For example, some of the participants proposed iconic
gestures to perform actions on imaginary objects, e.g., P1 said that
his gesture to “turn on/off the lights” was inspired by how he
would pull aside a curtain, and P5 performed a swiping gesture
from head to knee mimicking how he would draw the blinds. Three
participants (P3, P3, and Ps) held an imaginary book to access
“e-books,” “menu,” and “photo/video,” P1; mimicked holding an
imaginary microphone to “place a call,” Pg imagined pressing the
button of a photo camera to access “photo/video,” P, pressed the
buttons of an imaginary remote control to “turn on/off the TV” and
“turn on/off the lights”, and both P5 and Pg typed in mid-air on an
imaginary keyboard in response to the “email” and “social media”
referents. Other gestures were symbolic in nature, represented by
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Figure 3: Relationships between the nature, complexity, motion type, and production time characteristics of user-defined
gestures. Note: statistically significant correlations (corresponding to 95% CIs that do not include 0) are highlighted in black.

signs commonly found in graphical user interfaces. For example,
P;; used the “thumbs-up” hand pose to access “social media” due
to the similarity with the “Like” button, and P3 said: “I am thinking
about how these commands could be represented graphically. For
‘turn on/off the lights, I am thinking of a bulb, and for ‘emergency
call, of the exclamation mark.”

5 CONCLUSION AND FUTURE WORK

We found more preference for deictic gestures, mainly performed
toward the body in the user’s personal and peripersonal space, com-
pared to iconic and metaphoric gestures and movements away from
the body directed to the extrapersonal space. Symbolic gestures
were simple, mostly represented by hand poses and directional
swipes. Our results complement the findings of previous gesture
elicitation studies [3,19,23,40] conducted with users with motor
and/or mobility impairments with insights into the combined ex-
pressiveness and articulation complexity of user-defined gestures.
By corroborating our results with previous reports about users
with motor and/or mobility impairments preferring simple ges-
tures [19,40] performed in easily accessible regions on and around
the body [3], we suggest the existence of a potential expressivity-
complexity tradeoff for accessible gesture input, to be examined
more closely in future work, including for other user groups, in-
teractive devices and systems, and application domains that use
gesture-based input. Another interesting direction is understand-
ing how the expressivity-complexity tradeoff is linked to the users’
life experience and past interactions with computer systems in the
context of the legacy bias phenomenon [22].

Our results also have implications for gesture input performed
from the wheelchair space, for which we suggest future work oppor-
tunities. First, we found that deictic gestures cover a wide spectrum
of the space around the user, from mid-air, in front, and to the
side of the body to pointing at objects and/or locations from the
extrapersonal space to pointing at the wheelchair in the peripersonal
space, and toward and on the body in the personal space, respec-
tively. Given the low complexity of a pointing gesture, future work
is recommended to compile a vocabulary of deictics that exploits
this spectrum for wheelchair users and common tasks in smart
environments. Second, the large preference for gestures performed
toward vs. away from the body indicates an opportunity for future
interesting investigations into designing gesture-based interactions
with computer systems that capitalize on aspects of body image
representation and body-environment interaction (i.e., here and
personal vs. there and extrapersonal) for wheelchair users as well as
on the malleability of the peripersonal space representation, which
can integrate the wheelchair [12]. For example, adaptive user in-
terfaces can switch among deictic gestures performed away from
the body directed at the extrapersonal space [32], gestures on the
wheelchair [6] in the peripersonal space, and gestures toward and
on the body in the personal space [3], or combinations thereof [2],
according to context. Third, future exploration of metaphoric and
iconic gestures, for which we found less preference in the dataset an-
alyzed in this work, is interesting in relation to deictic gestures, far
more common, so that the low complexity of the latter would com-
plement the rich expressivity of the former. Examples include point-
ing at an imaginary object [26] or pointing that bears metaphorical
meaning by design [27]. Such mixed-nature gesture designs, which
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capitalize on the familiarity and low complexity of deictics, are
possible since “pointing has the obvious function of indicating ob-
jects and events in the concrete world, but it also plays a part even
where there is nothing objectively present to point at,” according to
McNeill [21, p. 18]. Mixed-nature gestures could also be examined
for personalizing input for users with specific motor abilities in the
context of user interface adaptation [11] and input modality and
device personalization [25] approaches to accessibility.
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