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Abstract

We examine radar-based gesture input for interactive computer systems, a technology that has recently grown in
terms of commercial availability, affordability, and popularity among researchers and practitioners, where radar
sensors are leveraged to detect user input performed in mid-air, on the body, and around physical objects and
digital devices. We analyze forty-five academic papers published on this topic between 2010 and 2021, and report
results regarding gesture recognition techniques, application types, and evaluation approaches for radar-based
gesture input. Our findings reveal that (1) deep learning techniques, such as Convolutional Neural Networks, have
been the most popular approach for radar-based gesture recognition, (2) application opportunities for implement-
ing radar gestures have been diverse, but without any clear contender for a game changer in this area, and (3) the
gesture sets employed in prior work have been small with a median of just six gesture types. Based on these find-
ings, we draw ten implications for integrating radar-based gesture sensing in ambient intelligence environments.

Keywords: Gesture input, radar sensing, gesture recognition, ambient intelligence, smart environments,
interactive computer systems, interactive environments

1 Introduction

Gesture-based input for smart environments enables users
to leverage body pose and movement for more efficient,
fluent, and expressive interactions. Gesture types used for
interactive purposes range from symbolic stroke gestures
commonly employed on mobile devices (Magrofuoco et al,
2021) to finger, hand, and arm movements sensed with wear-
ables (Gheran et al, 2018), mid-air gestures for interacting
with content visualized on ambient displays (Ardito et al,
2015), foot-based interaction (Velloso et al, 2015), and whole-
body gestures (Vatavu, 2017a). To sense and recognize users’
gesture input, computer systems leverage (i) sensors, e.g.,
accelerometers integrated in electronic rings (Gheran et al,
2018), (ii) recognition algorithms, e.g., Nearest-Neighbor
classification of whole-body movement with the Dynamic
Time Warping dissimilarity function (Vatavu, 2017b), and
(iii) gesture sets for specifying mappings between gestures
and system functions, such as drawing the letter “M” in mid-
air to display a contextual menu on the smart TV (Vatavu,
2012). Among the sensors that detect contactless gestures,
radars enable unique opportunities for interactive computer
systems and smart environments, from simple presence and
proximity detection to microgestures performed at finger

level (Lien et al, 2016), on-body input (Leiva et al, 2020), tan-
gible interaction involving physical objects (Attygalle et al,
2021), and through-the-wall detection of movement (Adib
et al, 2015); see Figure 1 for a few examples of such ges-
ture types together with their signal representations acquired
using an off-the-shelf radar device.

Radar-based gesture recognition has recently received
increased attention (Palipana et al, 2021; Sluyters et al, 2022;
Ahmed et al, 2021; Yeo and Quigley, 2017) at the intersec-
tion of the scientific communities of Machine Learning (ML)
and Human-Computer Interaction (HCI) due to the applica-
tion potential of radars to enable interactions via unrestricted
body movement and contactless gestures; see Ahmed et al
(2021) for a survey of radar technology for the representa-
tion and recognition of hand gestures. Besides hand gestures,
however, the versatility of radars makes them effective at
sensing body gestures of many types, some of which are
illustrated in Figure 1, but less addressed in the scientific
community compared to hand gesture input. Additionally,
key aspects for the effective implementation of radar-based
gesture input, such as gesture set design and methods to eval-
uate user performance with radar gestures, have been little
examined compared to the extensive research conducted in
the scientific literature on other gesture types, such as ring



Fig. 1 The versatility of radars to sense a wide variety of
gesture types: gestures of the hand and fingers (top left),
proximity sensing (top middle), and gestures of the feet (top
right). At the bottom, 2D representations are shown for these
gestures, reported by the Walabot radar. Also note the ver-
satility of possible placement of radars in the environment,
an aspect that we examine in detail in Section 6.

gestures (Vatavu and Bilius, 2021), touchscreen stroke ges-
tures (Magrofuoco et al, 2021), multitouch gestures (Cirelli
and Nakamura, 2014), or foot-based interactions (Velloso
et al, 2015). In this context, our contributions are as follows:

1. We present the results of a Systematic Literature Review
(SLR) conducted to structure and analyze gesture-based
sensing and recognition with radar devices for interac-
tive computer systems and environments. Unlike other
types of reviews, SLRs are methodical, comprehensive,
transparent, and replicable (Siddaway et al, 2019).

2. Based on the results of our SLR, we propose ten impli-
cations and future work directions for the research and
practice of interactive computer systems and smart
environments implementing radar-based gesture sensing
and recognition. We also present a dictionary of radar
gestures compiled from an analysis of 307 individual
gestures extracted from 45 scientific papers on this topic.

3. To foster further research on and applications of radar-
based gesture input in Ambient Intelligence (AmlI)
applications, we propose a five-category taxonomy of
possible locations from the physical environment where
radars can be installed, attached to, or integrated.

Our contributions are intended to provide the scientific com-
munity with a practical means to inform design of contactless
gesture input detected with a versatile sensing technology
that matches the quality characteristics of interacting in AmlI
environments (Cook et al, 2009). Next, we specify the scope
of our work and outline our research questions for radar
gestures used for interactive systems and environments.

2 Context, Scope, and Research Questions

The operating principle of radar sensing is represented by
the emission and reception of electromagnetic waves. After
hitting a target, the emitted radiation is spread, of which a
part returns to the radar, where it is caught by the receiver.
The properties of the received signal, such as the frequency,
amplitude, and delay, provide key information about the tar-
get’s shape and orientation, but also about the distance and
speed relative to the radar. Therefore, radar-based sensing
of contactless gestures can reveal a wealth of information
that computer systems can leverage for implementing user
interactions. Although radars have been an active area of
scientific research (Li et al, 2017; Skolnik, 2008), the use of
radar technology for interacting with computer systems has
been rather limited in scope because of the large form factors

of radar devices, their high energy consumption, and large
computing resources needed for processing radar signals.
However, recent advances in machine learning techniques
coupled with computer miniaturization have rendered radars
practical for integration into consumer devices, one relevant
example being the Google Pixel 4 smartphone with Soli (Lien
et al, 2016). In this context, new opportunities arise for inter-
active computer systems and smart environments that can
leverage radar sensing to detect the position and movement
of the user’s body. Before proceeding further, we provide our
operational definition of a radar gesture:

Definition: A radar gesture is any movement or pose
of a body part or the whole body, performed in mid-
air, around a physical object or digital device, or
in relation to the body, object, or device, which is
detectable and recognizable by a radar sensor.

This definition is broad enough to cover a variety of ges-
tures, from finger and hand poses to mid-air movements of
the hands and arms to gestures performed with the whole
body, but also gestures that involve physical objects, sur-
faces, and digital devices from the environment (Adib et al,
2015; Attygalle et al, 2021; Avrahami et al, 2019; Leiva et al,
2020). For example, Avrahami et al (2019) used RF radars to
recognize user activity on work surfaces. Thus, radars enable
a variety of gesture input, which we scrutinize in our SLR
to complement the survey of Ahmed et al (2021) on hand
gestures. Moreover, while Ahmed et al (2021) focused on
technical aspects of gesture sensing and recognition, such as
acquisition technology (pulsed vs. continuous-wave radars),
signal representation (time-amplitude, time-Doppler, range-
amplitude), and recognition algorithms for specific gesture
representations computed from radar signals, we provide
a complementary perspective. Our focus is on gesture set
design and taxonomy of locations from the environment
where to install radars. This focus requires an operational
definition of a smart environment, for which we adopt the
perspective of Cook and Das (2004), i.e., “a small world
where all kinds of smart devices are continuously working
to make inhabitants’ lives more comfortable” (p. 3), and
of Weiser et al (1999) of a “physical world richly and invisibly
interwoven with sensors, actuators, displays, and computa-
tional elements, embedded seamlessly in the everyday objects
of our lives and connected through a continuous network” (p.
694). This shift of perspective, centered on smart environ-
ments from the AmlI vision of computing, enables us to report
new results and draw implications for practical applications
of radars. We address three research questions:

RQ1: What types of gestures have been examined in the sci-
entific literature on radar-based gesture interaction?
In what ways has gesture set design been influenced
by the characteristics of radar gesture recognition
techniques and applications of radar gestures?
Where have radars been placed/installed in the phys-
ical environment to sense user gestures?

RQa2:

RQs:

3 Study Design

To answer our research questions, we conducted a SLR, for
which we employed the Best Practice Guide of Siddaway
et al (2019), and implemented identification, screening, eli-
gibility, snowballing, and inclusion stages. Figure 2 presents
the results obtained after each stage, illustrated using the
PRISMA (Preferred Reporting Items for Systematic reviews
and Meta-Analyses) diagram (Liberati et al, 2009).

During the identification stage, we searched for scien-
tific papers relevant to our scope by using the keywords
“gesture” and “radar” with the following query: “Abstract:
(radar AND gesture*).” We ran the query in the ACM



IDENTIFICATION

23 references returned by
the ACM Guide to
Computing Literature

SCREENING

no duplicates were
identified

ELIGIBILITY

9 articles were not
eligible, according to
the eligibility criteria
EC1, EC2, and EC3

SNOWBALLING

1334 references
considered in forward
snowballing (911 citations)
and backward snowballing
(423 references)

INCLUDED
PAPERS

14 initial papers +
31 papers from snowballing

45 papers used for the analysis

Fig. 2 The results of the identification, screening, eligibility,
snowballing, and inclusion stages of our SLR study.

Guide to Computing Literature,’ the most comprehensive
bibliographic database focused exclusively on the field of
computing with about three million records from many pub-
lishers. The query returned a total of 23 bibliographic results.
During the screening stage, we read the abstracts to deter-
mine their relevance to our scope. During the eligibility stage,
we read each paper and used the following criteria to filter
out results not relevant, either in form or content, to using
radar gestures for interactive systems:

ECy: The paper is academic and underwent peer review.
Magazine articles, white papers, and tutorials were
excluded. For example, we excluded Helal et al (2013)
and Townley (2018).

The paper is about radars used for interactive sys-
tems. We excluded four papers (Goenetxea et al,
2010; Liu et al, 2019; Reski et al, 2020; van Dantzich
et al, 2002) that did not address interactions enabled
by radars, e.g., van Dantzich et al (2002) presented a
user interface with a radar-like visualization.

The paper is about gesture-based interaction. We
excluded three papers (Shaker et al, 2018; Shui et al,
2009; Zhang et al, 2017) that did not present gestures.

We used these eligibility criteria to identify peer-reviewed
scientific contributions about radar-based gestures for inter-
active systems, according to our scope presented in Section 2.
After the eligibility stage, we arrived at a number of 14
relevant papers, for which we applied two snowballing pro-
cedures (Wohlin, 2014): (1) backward snowballing, where we
analyzed the references of all of the eligible papers, total of
423, and (2) forward snowballing, where we analyzed their
Google Scholar citations, total of 911. Following the snow-
balling stage, we identified 31 additional papers that met our
three eligibility criteria. Our final set of papers contains 45
academic papers published between 2010 and 2021, of which
27 from IEEE Xplore,? 10 from ACM DL,? and 8 from other
publishers. These papers were analyzed by two researchers
(the first two authors of this article), who extracted the
following information to address our research questions:

ECas:

ECs:

1. Information about gesture technology: (i) recognition
techniques, (ii) placement and installation of the radars

b https://libraries.acm.org/digital-library /acm-guide-to-
computing-literature

2 https://ieeexplore.iece.org/Xplore/home.jsp

3https://dl.acm.org

in the environment, (iii) gesture types, and (iv) map-
pings between gestures and system functions. We used
this information to address RQ; and RQs.

2. Information about application types for radar-based ges-
ture interaction. A total of 17 application categories
emerged from our analysis, e.g., video games (Iwamoto
et al, 2010), in-vehicle interaction (Sun et al, 2018),
assistive technology (Li et al, 2015), etc.; details follow
in Section 4. We used this information to address RQa.

3. Information about the wvalidation of the scientific and
technical contributions, with three categories: (i) system
performance, e.g., recognition accuracy rate or recogni-
tion time, (ii) demonstration, e.g., working prototype,
application, or use case for radar gestures, and (iii) user
study, i.e., studies for radar gesture interaction involv-
ing representative end users. We used this information
to complement our findings in relation to RQ; to RQs.

4 Results

We present a meta-analysis of 45 scientific papers on radar
gestures for interactive computer systems and environments.

4.1 Gesture recognition techniques

Figure 3, top presents an overview of the recognition tech-
niques for radar gestures that we identified in the scientific
literature, shown in descending order of their frequency. The
most frequently used technique was represented by Convolu-
tional Neural Networks (CNNs), used in 32.89% of the papers
analyzed in our SLR. Other techniques included k-Nearest
Neighbors (kNN), and Long Short-Term Memory (LSTM)
with 18.42% and 14.47%. For example, Sakamoto et al (2017)
reported the recognition accuracy of a CNN trained to rec-
ognize a set of three gestures, Zhang et al (2020b) employed
a kNN with a set of six gestures for robot control, and Zheng
et al (2021) employed a LSTM for a set of eight gestures
for in-vehicle input. Other recognition techniques were used
sporadically, such as Self-Organizing Maps (SOM) (Patra
et al, 2018), Linear Discriminant Analysis (LDA) (Bannon
et al, 2020), Quadratic Discriminant Analysis (QDA) (Ban-
non et al, 2020) and Support-Vector Machines (SVMs) (Gigie
et al, 2019). The most common choices for radar sensing
frequencies were 60 GHz and 24 GHz, identified in 58% of
the papers from our SLR. For example, Dekker et al (2017)
employed a FMCW radar operating in the 24 GHz ISM fre-
quency band with an effective isotropic radiated power level
of 0dBm, Zhang et al (2018a) used a 24 GHz FMCW, Choi
et al (2019) used Soli, a 60 GHz FMCW, and Wang et al
(2019b) employed a 4 GHz FMCW radar sensor. The highest
frequency was 120 GHz (Altmann et al, 2021) and the lowest
2.4 GHz (Molchanov et al, 2015; Wan et al, 2014; Sakamoto
et al, 2018, 2017). A percentage of 8.89% of the papers did
not specify the working frequency of the radar (Sang et al,
2018; Yeo et al, 2017; Leiva et al, 2020; Iwamoto et al, 2010).
Overall, our findings indicate a predilection for deep learning
approaches for radar-based gesture recognition, likely due to
the complexity of radar signals and the corresponding gesture
representation, e.g., CNNs are known for their good perfor-
mance in handling complex signals (Xia et al, 2021; Skaria
et al, 2019; Zhang et al, 2018b, 2020a).

4.2 Validation of scientific contributions

We extracted information about the validation of the scien-
tific contributions about radar-based gestures for interactive
computer systems and smart environments; see Figure 3,
middle. We found that system performance (e.g., recogni-
tion accuracy rate, recognition time, etc.) was evaluated in
67.74% of the papers analyzed in our SLR. For example,
Amin et al (2019) reported recognition accuracy rates and
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Fig. 3 Gesture recognition techniques, validation types, and application categories for radar gestures identified in our SLR.
Notes: some of the papers described multiple applications, employed more than one validation type, and evaluated more than
one gesture recognition technique. For example, a number of 25 papers of the 76 reported recognition techniques implemented
CNNs (25/76=32.89%), and three applications, of the 48 reported, were about assistive technology (3/48=6.25%).

.
4.44%,
Integrated in the On the body
smartphone

Fig. 4 Overview of physical locations, extracted in our SLR,
where radars were placed for sensing gestures.

confusion matrix analysis for SVMs, kNNs, and PCA for a set
of fifteen hand gestures represented as time-frequency spec-
trograms. A percent of 30.65% of the papers demonstrated
applications, which we discuss in detail in the next subsec-
tion. For example, Lien et al (2016) introduced the Soli radar
to detect gestures at sub-millimeter precision and an inter-
action language for virtual tools controlled using Soli. We
found only one article describing a user study: Liu et al (2020)
evaluated aspects of the user experience of a smart home
application, e.g., the perceived convenience and fun of using

radar-based gestures vs. voice input.

4.3 Application types

Applications of radar gestures were not explicitly stated in
52.07% of the papers that we analyzed in our SLR. For
example, Wang et al (2019c¢) proposed a gesture recogni-
tion system that delivered 96.4% recognition accuracy for
a set of five gestures (forward, backward, push, pull, and
rotate) with the goal of demonstrating noninvasive, real-time
human-machine interaction, but did not discuss a specific
application. Wang et al (2019a) proposed a gesture recog-
nition technique for Soli, a radar capable to detect a set
of eleven gestures with 99.7% user-independent accuracy
based on a combination of Convolutional and Recurrent
Neural Networks, but did not discuss applications. Most
of the papers that presented applications addressed smart
homes (Liu et al, 2020), IoT environments (Wang et al, 2021),
assistive technology (Li et al, 2015; Santhalingam et al, 2020),
and robot control (Zhang et al, 2020b); see Figure 3, bottom
for an overview of application categories for radar-based ges-
ture interaction. This result shows a diversity of application
opportunities, but without a clear trend or killer applica-
tion, indicating that the scientific community is still exploring
potential applications for radar-based interactions.

4.4 Locations of radars

We also extracted information about the locations where
radars were installed in the physical environment to sense
gestures, e.g., on a table, the user’s body, floor, etc. A per-
cent of 42.22% of the papers did not provide any information
regarding the physical location or installation of the radar.
The rest of the papers (57.78%) reported various locations,
as follows: on the floor (Iwamoto et al, 2010), integration in
the smartphone (Hayashi et al, 2021), inside the vehicle (Sun
et al, 2018), on the body (Li et al, 2015), on tripod (Pali-
pana et al, 2021; Salami et al, 2022; Kern et al, 2020), on the
wall (Liu et al, 2020; Sakamoto et al, 2017; Zheng et al, 2021);
see Figure 4 for details. In 37.77% of the papers analyzed in
our SLR, radars were placed on a table. Two papers (Wang
et al, 2021; Zhang et al, 2020b) used several radars, which
were placed on a table as well.
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Fig. 5 Finger and hand gestures (top) and gestures per-
formed with other body parts (bottom), identified in our
SLR. Note: finger and hand gestures were the most common.

4.5 Gesture types

We extracted a total number of 307 individual gestures per-
formed with the fingers, hands, arms, and the whole body,
and clustered them according to their type; see Figure 5, top.
The most frequent gesture was “push,” e.g., Palipana et al
(2021) implemented “push” for a mid-air input recognition
system with potential applications for offices, restaurants,
and factory environments. Other frequently used gestures
were directional and circular swipes. For example, Hazra and
Santra (2019) used a circular movement of the finger per-
formed above the radar sensor with a gesture set designed to
minimize muscle movement and hand displacement. Other
gestures that we found in more than one paper included “fin-
ger rub” (Hazra and Santra, 2019, 2018; Wang et al, 2016),
“grab” (Lee et al, 2020; Hazra and Santra, 2019, 2018), and
“click” (Bannon et al, 2020; Wang et al, 2020b). Figure 5,
bottom illustrates gestures performed with other body parts
than the hands. We identified fourteen such gestures, of which
seven performed with the tongue (Li et al, 2015). Iwamoto
et al (2010) employed whole-body gestures, such as “stand
on one foot,” “stand up,” and “squat.” Other gestures were
designed for the arms, such as “fly” (Kern et al, 2020),
“rotate clockwise” (Wang et al, 2021), and “stop” (Kern
et al, 2020), and one gesture involved a physical object (a
chair) (Sakamoto et al, 2018).

Besides the information about gesture types used in prior
work, another interesting finding from our analysis regards
the size of the gesture sets, which varied from just two ges-
tures (Yeo et al, 2018; Fan et al, 2016) to a maximum of
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Fig. 6 Histogram of gesture set sizes extracted in our SLR.

twenty-four (Wang et al, 2020a). The median size of the ges-
ture sets that we analyzed in our SLR was six (M=6.82,
SD=4.96); see Figure 6. This finding indicates that ges-
ture sets have been overall limited for applications involving
radars. Next, we present several implications of this finding
for interactive computer systems and smart environments.

5 Implications

The results of our SLR showed that the scientific research
on radar-based gesture recognition and interaction has been
limited compared to other gesture sensing technologies. Also,
a diversity of applications have been examined, but we could
not identify any conclusive trend or killer application among
them. Furthermore, there has been little to no examination of
the user experience of radar gestures for interactive computer
systems and smart environments, while the large major-
ity of validation types have addressed system performance,
e.g., recognition accuracy rates. Based on these findings, we
present several implications for radar-based gesture recogni-
tion and interaction, which we accompany with future work
directions. In Section 6, we expand one of our implications to
propose a taxonomy of locations to integrate radar sensors
in physical environments for new application opportunities.

©® More studies are needed to understand end
users’ preferences, expectations, needs, and behav-
ior regarding radar gestures for interactive computer
systems and smart environments. This direction of
scientific investigation includes understanding aspects of
learnability and memorability (Nacenta et al, 2013), user
experience (Xuan et al, 2019), and perceived difficulty (Rekik
et al, 2014) of using radar-based gesture input, but also users’
preferences for intuitive associations between radar gestures
and system functions (Magrofuoco et al, 2019). Expected
results will complement those about the system performance
of radar gestures (see Section 4) towards more usable and
effective interactive systems for end users.

® Evaluate the performance of radar gesture recog-
nizers on datasets with more gesture types. Our results
showed a median set size of just six gestures (Figure 6) with
limited utility and expressive power for practical applica-
tions. Pantomime (Palipana et al, 2021) is one exception with
a publicly available dataset containing 21 gesture types and
22,000 templates. In contrast, other types of gesture sens-
ing technologies have employed considerably larger gesture
sets, e.g., Kristensson and Zhai (2004) designed a vocabulary
of 10k-20k words for gesture shape writing on touchscreens,
Appert and Zhai (2009) reported users being able to recall
three times as many stroke-gesture commands compared to
keyboard shortcuts, and Nacenta et al (2013) found that user-
defined multitouch gestures are 44% more memorable for end
users than gestures created by designers. An interesting note
is that the size of the radar gesture datasets employed by
prior work is large, but not in terms of the diversity of the



constituent gesture types, but because of the number of ges-
ture samples or templates needed by specialized recognition
techniques, e.g., CNNs, to deliver high accuracy rates.

©® Examine more diverse radar gesture types, beyond
simple directional movements and hand poses. As
Figure 5, top shows, the most frequent radar-based ges-
tures used in previous work have been very simple, mainly
consisting of hand poses and directional swipes. For exam-
ple, the Pantomime gesture set (Palipana et al, 2021)
includes the “push” gesture performed in various directions,
“lift,” “pull,” directional swipes, two-hand “throw,” “push,”
“pull,” “lateral-raise,” and “circle (counter-)clockwise” ges-
tures. According to the hand gesture classification of Aigner
et al (2012), the radar gestures depicted in Figure 5, top
are semaphoric in nature, while other gestures categories,
such as pantomimic and iconic, have not been covered to the
same extent. Also, gestures performed with other body parts
(Figure 5, bottom) have been considered to a less extent
(14/307=4.56%) despite the versatility of radar sensors to
detect gestures of many types. Thus, we recommend more
explorations of radar gestures performed with various body
parts, either in isolation or combination. To this end, we point
to the SLR of Villarreal-Narvaez et al (2020) for a diversity
of gesture types proposed and preferred by end users.

@ Identify genuine application areas for radar ges-
tures. Almost half of the papers analyzed in our SLR did
not discuss applications of radar-based gesture recognition
and interaction, but only introduced and/or evaluated radar
gesture recognizers. In this context, we believe that the killer
application for radar gestures is still to be identified. Poten-
tial candidates may include using gestures from a distance for
interactive systems, e.g., robot control, or gestures performed
under occlusion, e.g., under a table, for the smart environ-
ments of the AmlI vision. Thus, further explorations of the
application potential of radar gestures are recommended.

® Design interactive systems that combine multi-
ple radar sensors, but also radars with other sensing
technology. Radars present unique opportunities for sensing
presence and proximity, body poses, movement, and gestures.
By combining radar gesture sensing with other gesture acqui-
sition technologies, either from the environment (e.g., video
cameras, depth sensors) or worn on the body (e.g., smart-
watches, smart rings), cross-device input could be leveraged
for more expressive and richer gesture interactions. For exam-
ple, Avrahami et al (2019) found that two orthogonal radars
improve recognition accuracy, while a radar and a smart-
watch used together enable user identification besides gesture
recognition. Such explorations will also impact the devel-
opment of new gesture recognition techniques that combine
data collected from different sensors. Combining multiple
radar sensors is also likely to increase the processing com-
plexity of the corresponding signals, which may interfere with
each other. Soft sensors, implemented on computer software-
based and embedded systems, also play an important part
in the context of Aml, where they are digital projections of
hardware-sensing devices in a virtual space, but can also exist
without a physical counterpart; see Jiang et al (2021) for a
review. Conjoint examination of radars and other physical
and soft sensors is thus recommended in future work.

O Explore new gesture types enabled by radar sens-
ing for interactive computer systems and smart
environments. Gestures sensed by radars can, in principle,
capture any type of human movement, including whole-body,
head, hand, and arm gestures, and breathing. The underly-
ing movement can be performed either in isolation, e.g., hand
gestures, or in combination, e.g., hand and foot gestures.

@ Design gesture types specific to radar sensing. By
combining implications @ and @, radar-based gestures could
prove beneficial in contexts of use not covered or supported

by other gesture sensing technology. To this end, we propose
the following opportunities specific to radar sensing: (7.1) use
radars to expand the sensing range of other gesture sensors,
e.g., beyond the 70 cm distance from the Leap Motion con-
troller or beyond on-surface gestures for touchscreen input;
(7.2) gestures performed in the dark produced in environmen-
tal conditions where other sensing technology would fail, e.g.,
firefighters employ gestures to communicate under extreme
conditions, but such communications only work when light-
ing conditions permit them; when the lighting is insufficient,
a distinct set of gestures performed on the body may be
used, e.g., on the scapula because it is the largest and flat-
test bone of the human body. Also, gestures used in aviation,
e.g., for landing or refueling, could be considered under foggy
weather conditions; (7.3) hidden gestures, represented by ges-
tures produced behind a surface, either translucent, e.g., in
front of a store window, or opaque, e.g., behind a door or
under the table; (7.4) reflected gestures, represented by ges-
tures produced in other directions than directly facing the
sensor or the interactive system by redirecting the radar sig-
nal via a reflective surface, e.g., gestures could be picked up
by a radar placed in a hallway with the user located in a
lateral room with the door open. An example is Solids on
Soli (Copi¢ Pucihar et al, 2022), reporting the effect of 81
material types on radar-based gesture recognition accuracy.

©® Compare off-the-shelf vs. custom-made radars for
gesture recognition. Most of the papers analyzed in our
SLR employed custom-made radars using technologies that
are challenging to reproduce, which hinders further scientific
investigation and exploration of practical application oppor-
tunities of radar gestures. In contrast, off-the-shelf radars,
such as Walabot (Figure 1), allow flexible configuration of the
integrated emitters and receivers with implications for repro-
ducibility (Villarreal-Narvaez et al, 2022) and reusability in
the context of open-source practices for scientific research; see
also implication @. We expect that some of the newest radar
technologies will become increasingly available and affordable
in the foreseeable future, e.g., the custom-made radar used
in (Berenguer et al, 2019) has already become available.

O Publicly available radar gesture datasets. Because
of the large size of radar gesture representations and require-
ments of deep learning techniques, training datasets are
frequently very large. For instance, Hayashi et al (2021) used
up to 3.68x10° positive samples to train a CNN (p. 5:12).
Unfortunately, gesture datasets are rarely released. Making
data available is crucial for replicability purposes (Villarreal-
Narvaez et al, 2022; Gheran et al, 2022), but also for
evaluating the performance of new radar gesture recognizers.

©® Identify new locations for radar sensor place-
ment and installation in the environment to enable
a variety of gesture types for interactive systems.
Most of the papers analyzed in our SLR did not pro-
vide sufficient details about the locations where the radars
were positioned to capture users’ gestures. When details
were provided, typical locations included in-lab settings, an
anechoic chamber (Sakamoto et al, 2018), or controlled envi-
ronments with radars carefully positioned. An exception is
Pantomime (Palipana et al, 2021), which compared several
realistic physical environments, e.g., restaurant, office, etc. In
the next section, we expand this implication for Aml envi-
ronments, where interactions are intended to be transparent,
intuitive, familiar, and natural to users, but also adaptive
and context-sensitive (Cook et al, 2009).

6 A Taxonomy of Radar Gesture Sensing
Integration in AmI Environments

Our set of implications following the SLR meta-analysis has
focused on the need for diversifying application gesture sets
to take advantage of the versatility and flexibility of radar
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Fig. 7 Various locations where radars sensors can be placed,
installed, attached, or integrated. Five distinct categories of
the taxonomy are highlighted using colors, e.g., location 4c
specifies integration of the radar into a flying robot and
location 3a depicts integration into the user’s smartwatch.

sensors for detecting body poses and movements. One partic-
ular implication regards the installation of radars in various
locations from the environment, from where to sense a diver-
sity of gesture types. In the following, we elaborate on this
implication by proposing a taxonomy of possible locations
for integrating radar-based gesture sensing for Aml. In par-
ticular, we focus on the living room due to the diversity
of activities that this space fosters, including conversation,
socialization, leisure, play, home entertainment, etc. Our tax-
onomy extends a preliminary attempt by Siean et al (2022),
who focused on gesture-based interactions for smart T'Vs.
Integrating radars into various objects and digital devices
from the living room can provide a uniform way to inter-
act within the Aml environment of that room consisting of
an ecology of users, devices, and objects (Marquardt and
Greenberg, 2015; Greenberg et al, 2011) and spanning a wide
range of digital content types Vatavu (2022); Schipor and
Vatavu (2018). We argue that radars are suitable for such
an integration since Aml systems and services are unobtru-
sive, embedded, adaptive, and transparent (Cook et al, 2009).
Therefore, we introduce a five-category taxonomy of possi-
ble locations where radar sensors can be placed, installed,
attached, or integrated in the physical environment, which
we describe in terms of use case scenarios involving diverse
gesture types and potential applications, e.g., radar sensors
integrated in the smart TV, robot assistants, or a smart lamp
from the living room. Figure 7 illustrates the categories of our
taxonomy and examples of locations within each category.

6.1 Radar sensors integrated into
non-digital objects

In this category, radar sensors are integrated into non-digital
objects from the living room. We identify the following
non-exhaustive possibilities to retrofit physical objects with
radar-based gesture sensing and recognition:

(1a) Furniture. The radar is integrated into living room
furniture, such as a cabinet, which enables sensing of
gestures performed with the hands, arms, and the whole
body. Two pieces of furniture, the couch and the coffee
table, respectively, are considered distinctly in our tax-
onomy (scenarios 1b and 1c¢) due to the specific gesture
types they enable (Vatavu and Pentiuc, 2008; Vanatten-
hoven et al, 2019). Also, radars integrated into furniture
near the couch could be used to detect various gesture

types from a distinct perspective. For example, a radar
integrated into a lamp or a cabinet can pick up the
user’s gestures while the user is sitting on the couch.
Another example is ambient devices, such as the Ambi-
ent Monitor,* a cylinder-shaped device that allows users
to perform gesture input directed at IoT devices from
the smart environment. Depending on the position of
the user relative to the radar, gestures of the hands and
arms, such as “palm tilt” (Altmann et al, 2021) and
“stand up” (Sakamoto et al, 2017), can be detected in
the couch vicinity.

Couch and couch armrest. In this scenario, users inter-
act with applications and services from the Aml envi-
ronment via gestures of the hands and fingers performed
on or above the couch armrest. Information about the
user’s location and body pose could be further exploited
for adaptive and context-sensitive Aml services, e.g.,
volume, stereo balance, and panning of the sound (Lee
and Lee, 2010), or adaptive systems that integrate end
users’ preferences for comfortable gestures (Vanatten-
hoven et al, 2019). Examples of radar-based gestures
from the scientific literature that can be implemented
for this scenario include “push,” “pull,” and “swipe”;
see Figure 5 for corresponding illustrations.

Coffee table. This scenario enables gestures of the hands,
arms, and legs performed with larger amplitude of the
underlying movement than the gestures from scenario
1b. Gesture interactions around or below the surface
of the table (Avrahami et al, 2018) or above and on
the table (Vatavu and Pentiuc, 2008) are representa-
tive for this scenario, during which users transition
between “lean back” and “lean forward” interaction.
Moreover, the coffee table can provide output, e.g., via
an integrated display, speakers, or video projections.
(1d) Decorative objects. The same types of gestures as in
scenario 1c could be detected by integrating radar sens-
ing into a decorative, non-digital object from the coffee
table. What differentiates this scenario from 1c is that
the decorative object is mobile and, thus, enables more
flexible placement, orientation, and different use cases
compared to the coffee table. This setup was mimicked
in Slujters et al (2022), where a portable radar was
placed inside a mobile box on a coffee table.

Dedicated stand for the radar. In this scenario, the
radar sensor is placed on a tripod, a dedicated stand,
which we found in 11.11% of the papers from our SLR;
see Figure 4. Interactions are performed via hand and
whole-body gestures.

(1b)

(1le

~

6.2 Radars integrated into digital devices

Radar sensors can be integrated into electronic and comput-
ing devices, either personal, e.g., the smartphone, or from the
living room, e.g., the smart TV. We identify the following
non-exhaustive possibilities for an Aml environment:

(2a) Smartphone/tablet. In this scenario, users can employ
both radar gestures and conventional touchscreen input
to interact with the device and in the Aml environment.
For example, the Soli radar was integrated into a smart-
phone to enable specific gesture interactions, such as
swiping over the smartphone (Lien et al, 2016).

TV set. The TV represents the main home entertain-
ment device from the living room and, thus, holds a
privileged position in our taxonomy. Possible gestures
are represented by hand poses and movements in mid-air
as well as whole-body gestures (Vatavu, 2012; Free-
man and Weissman, 1995; Stec and Larsen, 2018), e.g.,
“click” (Wang et al, 2020a; Bannon et al, 2020) for
selecting options shown on the TV screen; see Figure 5.

(2b)

“https://www.design-burger.com/media/ambient-interfaces
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(2¢) TV remote control. A particular case for scenario 2b
regards integration of the radar into the TV remote con-
trol, which enables combined gestures with the remote
control (Bailly et al, 2011), above, and around it.

(2d) Soundbar/speakers. We equally propose integrating
radar sensors into the audio system of an Aml envi-
ronment. Examples of hand gestures include repeated
“push” for decreasing the audio volume or a whole-body
gesture, such as “stand up” followed by the user exiting
the room, to turn off the music; see Figure 5.

(2e) Smart lighting. Integrating radar sensing with smart
lighting systems will foster new interactions with
light (Andrei et al, 2022; Lucero et al, 2016; Offermans
et al, 2014), but also gesture-based input sensed by
ambient devices that provide feedback using light.

6.3 Radar sensors integrated into wearables

In this category, radar sensors are integrated into devices
designed to be worn or affixed to the users’ body and clothes:

(3a) Smartwatch/Fitness tracker. By integrating the radar
into a device worn on the wrist, various hand gestures,
e.g., above the smartwatch, head gestures, e.g., look-
ing at the device, or breathing could be detected and
employed for interactive purposes. Small radar chips,
such as Soli (Lien et al, 2016), could potentially be used
for integration into future smartwatch models.

(3b) Smart glasses/Head-mounted displays. Conventional
gesture input for smart glasses and head-mounted dis-
plays involves touch gestures performed on the glasses
temples (Islam et al, 2018) and head movements (Yan
et al, 2018). Integrating radars into devices worn on the
head and at eye level would expand their sensing range
with mid-air gestures performed with the fingers, hands,
arms, and legs. Just like for scenario 3a, the unique
vantage point delivered by a wearable enables distinct
opportunities for detecting specific gesture types.

(3c) Smart rings. Integration with small wearables could
enable interactions performed using microgestures of the
fingers, gestures of the opposite hand, the arm, and
the head, respectively. Such gesture types, sensed from
the vantage point of the index finger wearing an elec-
tronic ring (Vatavu, 2023), would complement gestures
sensed with other technology, such as inertial sensors
already embedded in electronic rings, towards imple-
menting gesture sets that reflect more closely end users’
preferences (Gheran et al, 2018).

(3d) Smart jewelry. Integrating radar sensing into devices
designed for various parts of the body or that can be
worn on different locations will further increase the
versatility of radar-based gesture interaction; also see 3e.

(3e) From smart wearables to smart clothes. We found in our
SLR two papers that examined radar sensors attached
to the body: Li et al (2015) placed a radar sensor on the
neck to enable gestures performed with the tongue, and
Copic Pucihar et al (2019) placed the Soli radar on the
wrist to sense microgestures on physical objects. These
use case scenarios can be implemented either in the form
of wearables, but also via integration into clothing, fol-
lowing recent technology trends (Poupyrev et al, 2016),
for deploying invisible ubiquitous interactivity at scale
via interactive textile materials.

6.4 Radars integrated into robot assistants

In this category, radars are integrated into digital devices
that take the form factor and function of robot assistants.
We identify the following non-exhaustive possibilities:

(4a) Voice assistants. Personal robot assistants that accept
interactions via speech input have increased in popu-
larity. By integrating radar sensors, a dual goal could

be achieved: (i) enrich the interaction modalities for
personal assistants and (ii) use personal assistants as
sensing devices for gestures directed at other systems
from the Aml environment. Examples of gestures from
our SLR include “push” and “pull” to increase and
decrease the audio volume, respectively; see Figure 5.

(4b) Robot assistants. Unlike personal voice assistants that
are still, mobile robots can follow the user, occupy differ-
ent locations in the room, change location, and perform
various services, such is the case of robot vacuums.

(4c) Drones. As a special category of robot assistants, drones
benefit of higher mobility, and many models implement
“follow me” functionality (Abtahi et al, 2017).

6.5 Radars integrated into the building

In this category, the radar sensors are integrated into the
architectural elements of the room, as follows:

(5a) Walls. Walls, as large surfaces, can be leveraged for both
input and output in the context of Aml environments,
and radars already have applications for sensing through
the walls. For example, Walabot?® is a commercial radar
with applications including pipes detection in the wall.
The wall behind the TV screen. Just like the TV was
considered distinctly in our taxonomy (scenarios 2b and
2¢), the wall behind the TV screen presents unique inter-
action opportunities. For example, a video projection on
the wall behind the TV can enrich the content rendered
on the TV screen (Jones et al, 2013). Thus, radar sens-
ing could be integrated in the wall behind the TV screen
to enable scenario 2b, but also gesture input addressing
other interactive systems from the Aml environment.

(5¢) Floor. When the sensor is positioned on or near the
floor, it offers a distinct vantage point to capture various
gesture types (Bailly et al, 2012).

(5d) Ceiling. Complementary to scenario 5c, a radar sensor
placed on or near the ceiling also offers distinct possi-
bilities to detect specific gesture types. The radar could
be integrated into decorative elements from the ceiling,
which would privilege the detection of arm and head
gestures performed at the zenith of the user’s body.

(5b)

7 Conclusion

We conducted a systematic literature review to analyze
recent developments in radar-based gesture recognition
through the prism of application types and corresponding
gesture sets for interactive computer systems and smart envi-
ronments. Our results revealed gesture sets composed of few
and simple gestures, a bias towards technical performance
evaluation centered on the system, while mostly neglecting
the user experience with radar gestures, and an inconclusive
trend for applications that implement radar-based gesture
interactions. By capitalizing on these findings, we proposed
ten practical implications for future work towards making
radar-based gesture interaction more expressive. As radars
become increasingly accessible and affordable, we expect
to see more applications of radar-based sensing, enabling
new interactions with computer systems and smart environ-
ments (Yeo and Quigley, 2017). Also, given the increasing
adoption of smart home technology, including smart light-
ing, smart assistants, online digital services, IoT products,
etc., we expect further integration of new user input sens-
ing technology, such as enabled by radars, in the physical
environment towards implementing the vision of AmI (Cook
et al, 2009; Epstein, 1998; Aarts and Encarnagao, 2006).
To foster such integration, we explored in detail one of our

Shttps://walabot.com
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implications, for which we proposed integration of radar sen-
sors into diverse physical locations from an Aml environment
with a corresponding taxonomy of digital devices, non-digital
physical objects, robot assistants, and architectural elements,
respectively. Finally, the increasing availability of virtual and
augmented reality technology will likely foster new advances
in terms of interactions that span across smart environ-
ments and virtual worlds, enabled by the shared philosophical
overlap between the computing visions of Aml and aug-
mented reality (Vatavu, 2022). This favorable technological
context sets the foundation for further innovations in design-
ing interactions, based on natural gesture input, for smart
environments of many kinds.
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