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ABSTRACT

Gesture input is prevalent for interacting with computer systems, such as mobile and
wearable devices. However, representation and acquisition of motion gestures using iner-
tial sensors already built into these devices, e.g., accelerometers and gyroscopes, usually
require processing of large training sets because of the high sampling frequency of the
collected data. Consequently, one challenge that arises in the classification process of
motion gestures for interactive systems is delivering robust and accurate predictions of
user input in interactive time. Reducing the size of the training datasets is one way of
using more efficiently the computational resources required to run established machine
learning algorithms on mobile and wearable devices. To this end, we introduce TIGER,
a multilinear tensor-based instrument for motion gesture recognition that (i) uses the
Tucker2 decomposition to reduce the dimensionality of the training set by extracting fea-
tures from the data reported by inertial sensors and (ii) leverages ensemble learning to
increase gesture recognition accuracy for devices with built-in inertial sensors.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

A diversity of gesture input has been examined in the scien-
tific literature, including touch, hand, gaze, head, and whole-
body gestures [4,12,43,45,19,79,46]. Gesture set design has
been informed by documenting users’ preferences for gesture
input, e.g., in-vehicle interaction [4], smart homes [67], every-
day activities [57,37,47], and various devices, e.g., electronic
rings [20,69]. Gesture input for such applications can be read-
ily acquired using inertial sensors, e.g., accelerometers and gy-
roscopes, already embedded in a variety of devices. However,
the high sampling rate at which these sensors operate gener-
ates large training sets that require proportional storage and
processing time for mobile and wearable devices with limited
resources. Thus, efficient techniques are needed for both repre-
senting and recognizing motion gestures on such devices.

We conducted a Systematic Literature Review (SLR) on ges-
ture recognition algorithms trained with data from inertial sen-
sors with a focus on the curse of dimensionality, a phenomenon
that leads to low classification accuracy or suboptimal time re-
sponses for interactive systems [71]. As prediction and classifi-
cation algorithms have found a variety of applications in work
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safety [28], robotics [85], and wearable computing [20], mit-
igating the course of dimensionality has been reflected by a
trade-offbetween response time and classification accuracy.

Based on the findings from our SLR, we propose a new ap-
proach for efficient motion gesture recognition using inertial
sensors that leverages multilinear tensor representation and de-
composition to mitigate the response time vs. recognition accu-
racy trade-off. Specifically, we employ Tucker decomposition
to achieve dimensionality reduction [60] and ensemble learning
involving high-performance classifiers informed by our SLR.

Our practical contributions are as follows:
1. A systematic literature review of 52 scientific papers on

the topic of gesture recognition using inertial sensors. Our
results show that multilinear algebra tensor decomposition
was not addressed in any of the papers analyzed in our SLR.

2. TIGER, a new method for motion gesture recognition based
on a tensor representation of gestures and ensemble learning
with classification approaches informed by our SLR.

3. An evaluation of TIGER using a dataset of 5615 gestures
and three different cross-validation techniques.

2. Related Work

2.1. Systematic literature review

To identify relevant references from the scientific literature,
we followed Siddaway et al.’s [64] recommendations for con-
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Table 1. The processing techniques (total of 167) used by the gesture recognizers from the papers analyzed in our SLR.
Method Description References % (Fq)‡ Mean† STD†

Sample-rate
conversion

Obtain a new discrete unifying representation of input
(e.g., decimation, interpolation, resampling)

[63,57,23,73,2,84,81,72,86,37,47,1,56,
24,25,15,51,16,14,50,83,41,82,42]

23.95
(40)

0.870 0.909

Feature
scaling

Normalize the data (e.g., normalization, linear min-max
scaling)

[57,26,21,10,84,72,86,39,66,15,55,13,
16,50,77,31,58,49,83,41,76,42]

13.77
(23)

0.500 0.548

Filters
Smooth data and remove noise (e.g., high-pass filter,
low-pass filter, moving average filter)

[57,10,2,44,84,72,86,47,1,56,75,24,3,
25,15,55,13,16,14,34,77,49,83,82,5,76]

22.01
(37)

0.800 0.900

Feature
extraction

Extract relevant information used as features for
classification (e.g., Gabor transform, Slope Sign Changes,
segmentation, PCA)

[63,26,23,11,21,10,73,2,84,81,72,37,
32,47,39,33,56,52,75,24,3,66,25,55,51,
13,54,34,77,58,49,83,5,76]

40.11
(67)

1.460 1.410

Total 167 3.212 2.023
†per study (46 papers); ‡Fq=frequency; not specified [30,74,65,59,35,7]

ducting systematic reviews. We ran the following query in
the ACM DL, IEEE Xplore, and Scopus electronic databases:
(“Document Title”: gesture) AND (“Document Title”: recog-
nition) AND (“Document Title”: IMU OR “Document Title”:
inertial measurement unit OR “Document Title”: Gyroscope
OR “Document Title”: accelerometer). The query returned 71
results, from which we excluded duplicates, keynotes, demon-
strations, and entries with abstracts only. The final set of pa-
pers used in our analysis consisted of 52 references, from which
we extracted information about gesture recognition techniques,
dataset size, and gesture dictionaries.

We found that most of the papers have used accelerometers
to collect hand motion gestures [63,57,26,10,2,11], but also gy-
roscopes [21,73,47], EMG [63,57,11], magnetometer [47,58],
flexion [59], and contact [59] sensors; see Fig. 1. A few papers
have employed multiple sensors, e.g., accelerometers and EMG
sensors [83,5,84] or accelerometers and gyroscopes [21,73,41].
The largest dataset contained 15,000 gestures (see Fig. 1) and
the size of the gesture dictionaries varied between 1 and 130.
We identified 54 methods for preprocessing data acquired from
sensors, which we clustered into four categories; see Table 1.
The most used method was data normalization (36.5% of the
papers analyzed in our SLR) followed by feature extraction
(32.7%) and applying a low-pass filter (19.2%). We also
identified a number of 47 classification approaches, which we
grouped into 11 categories (see Fig. 1): Neural Networks [57,
72,75,3,76], Dynamic Time Warping (DTW) [21,73,2,44],
Support Vector Machines (SVMs) [57,23,73], Linear Mod-
els (Logistic Regression, Linear Discriminant Analysis) [84,
32,33,41], sequence-based methods (e.g., sign sequence, area
sequence) [75,55,77,31], template matching [75,77,65], Hid-
den Markov Models (HMM) [63,84,83], tree-based classi-
fiers (e.g., Decision Tree, Random Forest) [84,47,58], Near-
est Neighbor classification (e.g., k-Nearest Neighbors, Nearest
Centroid) [3,66,51,50], Bayesian models (e.g., Naive Bayes,
Linear Bayes) [11,3,49], and other (e.g., K-means, Tracking
algorithm, Protractor3D, Affinity Propagation, Statistical tech-
niques) [2,84,47,1,75,77,65,41,82,42].

2.2. Tensorial decomposition

Tensorial decomposition, as “a way to break the curse of
dimensionality” [29], has found a wide range of applications
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Figure 1. Overview of the classification algorithms, sensors, number of par-
ticipants, and dataset size from the papers analyzed in our SLR.

in signal processing and machine learning [40]. According
to Kolda and Bader [40], tensor analysis and processing con-
sist of two basic methods: decomposing tensors as the sum of
a finite number of rank-one tensors (i.e., canonical polyadic
decomposition) and decomposing tensors into a core tensor
and factor matrices along each mode (i.e., Tucker decompo-
sition). Starting from these basic methods, various decompo-
sition techniques have been proposed, such as PARATUCK2,
Block Term Decomposition, or CANDELINC [40]. Among
these, the Tucker decomposition results in a core tensor that
represents a compressed version of the original [61]. This out-
come represents a key feature of this decomposition technique
since the core tensor defines “a linking structure among the
components of the reduced modes” [17] and retains the intrin-
sic multidimensional structure of the original data. Moreover,
the Tucker decomposition was found to process multidimen-
sional data in a way that captures more of the variance of the
data compared to other techniques, such as Principal Compo-
nent Analysis (PCA) [48].

2.3. Summary
Our SLR identified a variety of recognition algorithms for

motion gestures employing various data preprocessing tech-
niques. However, since multilinear algebra tensor decompo-
sition was not addressed in any of the papers analyzed in our
SLR, we decided to examine and exploit its valuable proper-
ties for efficient hand motion gesture recognition; see the next
section.



3. TIGER

We introduce TIGER (Tucker-based Instrument for GEsture
Recognition), our new motion gesture recognition method
based on the Tucker2 decomposition of data collected from in-
ertial sensors and ensemble learning.

3.1. Gesture tensor representation and decomposition
We represent a motion gesture as the matrix Gi∈Rn×pi with

i = 1,N, where N is the number of gestures from the training
set, n is the number of dimensions (e.g., n=3 for linear acceler-
ations measured along the x, y, and z axes, n=6 for acceleration
and rotation, etc.), and pi the number of data points in each di-
mension. Given Gi∈Rn×pi and G j∈Rn×p j , pi, p j∈N, pi,p j, ∀i, j,
i and j=1,N, a three-way tensor cannot be constructed and,
thus, the mean mg of all gestures Gi is computed, ∀i = 1,N.
We then resample each column of gesture Gi mg/pi times as
the original sample rate [27]. After this resampling step, all the
gestures Gi have the same dimensionality n×mg and the tensor
TG∈Rn×mg×N can be constructed successfully; see Algorithm 1
and [40] for details.

Tucker’s decomposition [40] is then applied to TG to reduce
its dimensionality and extract relevant features. The result is
represented by a core tensor and multiple factor matrices that
correspond to each dimension of the core tensor, as follows1:

TG ≈ Tg×1A×2B×3C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap◦bq◦cr = JTg; A, B,CK

(1)
where Tg∈RP×Q×R is the core tensor that can be seen as a com-
pressed version of the original TG with values that reveal the
interaction between its components, A∈Rn×P, B∈Rmg×Q, and
C∈RN×R are factor matrices corresponding to each dimension,
and P=n, Q=1, and R=N are the number of components in the
factor matrices. The factor matrices can also be seen as princi-
pal components along the different dimensions of the data [40].
Our method does not decompose along the dimension that cor-
responds to the number of gestures to reduce only those di-
mensions corresponding to n and mg. For a three-way tensor
TG∈Rn×mg×N , the Tucker2 decomposition is defined as follows:

TG = Tg ×1 A ×2 B = JTg; A, B, IK where C = I (2)

We choose the number of Tucker2 components [40] for mg

and n to be 1 and n in order to reduce each gesture data to an ar-
ray with a size equal to the number of different sensor measure-
ments. As shown in Fig. 2, the gesture tensor TG is decomposed
into a core tensor Tg∈Rn×1×N and factor matrices A∈Rn×n and
B∈R1×mg . The corresponding factor matrix for the N dimension
is the identity matrix I and the mg and n dimensions are decom-
posed into n and 1 components, respectively. The core of the
tensor Tg∈Rn×1×N is a matrix denoted by Mg∈Rn×N where each
gesture is a vector of length n.

1The symbol “×n” is the n-mode product, i.e. represents the multiplica-
tion of a tensor with a matrix or a vector in n-mode [40] and the symbol “◦”
represents the outer product of vectors [40].
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Figure 2. Tucker2 decomposition of the gesture tensor TG∈Rn×mg×N .

Algorithm 1 Construction of the gesture tensor.

Input: Gi ∈ Rn×pi , i = 1,N gestures
Output: Tg, A, B
for i← 1 to N do

for j← 1 to n do
Gi[:, j] = moving average filter(resample(Gi[:, j]))

end
end
TG = [G1, G2, G3, · · · , GN], where size of TG = [n, mg, N]
// apply Tucker2 on gesture tensor TG

[Tg, A, B] = TG ×1 A ×2 B, A ∈ Rn×n, B ∈ R1×mg ,Tg ∈ Rn×1×N

3.2. Optimization of prediction accuracy

Ensemble learning represents a technique to increase classi-
fication accuracy by involving several independent classifiers
and voting [22]. The classifiers can be chosen by the practi-
tioner or following an optimal cross-validation accuracy evalu-
ation with hyper-parameter optimization [80]. In our case, we
inform the structure of the ensemble using both approaches: we
select the best performing motion gesture classifiers from the
analysis of our SLR and run cross-validation performance eval-
uation to confirm our choice; see the next section for details.

Once the ensemble is defined, the next step consists in the
preprocessing of the gesture candidate that is subject to classi-
fication. The gesture is resampled to obtain a matrix of dimen-
sion GN+1∈Rn×mg that is multiplied with the factor matrices2:

gN+1 = (GN+1 · A)T · B, gN+1 ∈ Rn, GN+1 ∈ Rn×gN+1 (3)

to obtain a new representation that is linearly transformed in a
space of lower dimensionality. The gesture is then classified
by a voting committee composed of c independent classifiers,
and the class occurring with the highest frequency, f wins the
vote. For cases where tie-breaking is needed, we employ the k-
fold cross-validation misclassification mean error of the highest
accuracy values on the training data as the tie-break rule [62]:

E = [E1, E2, ..., Eq], Ei =

[∑c
t=1 e(t|l f i = lt)

f

]
(4)

where l f = [l f 1, l f 2, · · · , l f q] represents the array of the q class
occurring with the highest frequency f , e=[e1, e2, ..., ec] is an
array of the k-fold cross-validation misclassification errors of

2The symbol “·” represents the matrix multiplication.



Algorithm 2 Gesture recognition algorithm using tensor de-
composition and ensemble voting.
Input: Tg, A, B, and test gesture GN+1
Output: label L of gesture GN+1
for i← 1 to n do

GN+1[:, i] = moving average filter(resample(GN+1[:, i]))
end
gN+1 = (GN+1 · A)T · B
Model = fit( [C1, C2, · · · , Cc], Tg )
e = missclassification error(fit([C1, C2, · · · , Cc]))
e : [e1, e2, · · · , ec]
[l1, l2, · · · , lc] = predict (Model, gN+1)
[ f ]= max (frequency( [l1, l2, · · · , lc]))
if length [ f ] > 1 then

foreach k ∈ [l f 1, l f 2, · · · , l f q] do
s = 0 , where s represents the sum of missclassification
errors of the highest frequency labels
foreach t ∈ [l1, l2, · · · , lc] do

if l f k == lt then
s = s + et

end
end
E[k] = s/ f

end
L = lmin(E)

else
L = l f ,
where l f is the class occurring with the highest frequency

end

classifiers C1, ...,Cc, E represents the array of the q mean er-
rors of classes occurring with the highest frequency f , and l =
[l1, l2, · · · , lc] are the classes assigned by classifiers C1, ...,Cc to
a gesture. The label that corresponds to the smallest error is
represented by min(E); see Algorithm 2.

4. Results

To evaluate the recognition accuracy of our method, we used
the 6DMG dataset consisting of 5615 gestures of 20 distinct
types collected from 28 participants using the Wiimote built-
in accelerometer and gyroscope sensors [8,9]; see Fig. 3. We
preferred this dataset for our evaluation because it includes a
wide range of motion gestures commonly employed for interac-
tive systems, such as directional swipes and geometrical shapes.
Also, the number of distinct gestures from this dataset is larger
than the average gesture set size from the scientific literature of
gesture input with electronic rings [69].

Figure 3. Gesture types of the 6DMG dataset [8,9] used in our evaluation.

Table 2. The top-20 algorithmic variants evaluated with grid search hyper-
parameter optimization and 5-fold cross-validation; see also Fig. 1 for our
SLR results. The top-5 algorithms were included in our ensemble.

Classifier µ‡ Std⋏

C1 SVM† (ovr, rbf kernel) 90.90 6.43
C2 Extra Trees (50 estimators, 2 split) 90.85 5.82
C3 SVM (ovr, linear kernel) 90.01 5.95
C4 SVM† (ovr, linear kernel) 89.12 6.93
C5 Extra Trees (20 estimators, 2 split) 88.98 6.08

C6 Label Propagation (rbf kernel) 87.57 8.77
C7 Label Spreading (rbf kernel) 87.53 8.75
C8 1NN† (Euclidean distance) 86.87 9.17
C9 1NN† (correlation distance) 86.24 9.01
C10 1NN (correlation distance) 85.76 6.67
C11 SVM (ovr, rbf kernel) 85.58 5.64
C12 Bagging Classifier (10 SVM estimators) 85.43 5.28
C13 5NN† (Euclidean distance) 84.72 8.17
C14 Logistic Regression† (normalized data) 84.12 8.34
C15 3NN (Canberra distance) 83.87 6.36
C16 5NN (correlation distance) 83.74 6.49
C17 1NN (Euclidean distance) 83.73 6.57
C18 15NN (Manhattan distance) 82.27 6.37
C19 5NN (Euclidean distance) 81.91 6.34
C20 15NN (correlation distance) 81.29 6.39
†Standardized data; ‡Mean; ⋏Standard deviation.

To construct the tensor TG, we resampled the gestures from
the 6DMG dataset and applied a moving average filter to
smooth the sensor signals. We represented each gesture with a
13× 69 matrix and used a tensor of size 13× 69× 5, 615 for the
entire dataset. The Tucker2 (Eq. 2) with constrained singular
value decomposition [6] returned a 5, 615× 13 matrix. To com-
pile the voting committee of the ensemble, we conducted grid
search hyper-parameter optimization [80] with cross-validation
and evaluated 20 algorithmic variants from scikit-learn [18]; see
Table 2 for the top twenty best performing classifiers. From
these, we selected the five best performing gesture classifiers,
denoted with C1, C2, C3, C4 and C5 in the following, to consti-
tute our ensemble.

We employed leave-one-gesture-out, a subject dependent
scenario (Table 3), leave-one-subject-out, a subject independent
scenario (Table 4), and a leave-one-subject-out cross-validation
technique function of the number of participants from which
gesture samples were collected for training (Fig. 4) to evalu-
ate the recognition accuracy of our method. The latter cross-
validation technique was employed to evaluate the effect of the
dataset dimensionality on recognition accuracy. For compari-
son purposes, we include in our evaluation two other techniques
that have been employed in the scientific literature for dimen-
sionality reduction (see Table 1 from our SLR): Principal Com-
ponent Analysis (PCA) [53] and Nonnegative Matrix Factor-
ization (NNMF) [38], which represent two variants of Singular
Value Decomposition (SVD). PCA and NNMF were applied
on the resampled, filtered, and matricized dataset that was de-
composed into n components to make a fair comparison with
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Figure 4. Recognition accuracy rates obtained with leave-one-subject-out cross-validation technique function of the number of participants (left) and the
training time (right) function of the number of participants from which gesture samples were collected for training.

Table 3. Recognition accuracy rates obtained using the leave-one-gesture-
out cross-validation (LOGO-CV) procedure.

Model TIGER PCA NNMF ND†

Decomposition time (s) 0.877 0.321 124.34 −

Learning time (s) 0.753 0.825 0.105 8.127
Classification time (s) 1.351 1.456 1.313 2.003

Recognition accuracy C1 97.5% 97.1% 90.1% 99.3%
Recognition accuracy C2 95.6% 96.4% 86.1% 99.2%
Recognition accuracy C3 95.8% 96.3% 91.1% 98.5%
Recognition accuracy C4 96.7% 97.2% 89.7% 99.1%
Recognition accuracy C5 97.8% 96.8% 86.4% 98.3%

Ensemble voting 99.1% 97.7% 91.5% 99.6%
The Tucker2 sum of squared error was 35.21.
The sum of variances of the first 13 PCA components was 89.2%.
The NNMF root mean square residual was 0.91.
†ND = non-decomposed data.

TIGER, but we also evaluated recognition accuracy for non-
decomposed data. Moreover, TIGER consists of both Tucker2
decomposition and ensemble learning, but the ensemble was
treated separately in this study for PCA, NNMF, and the non-
decomposed data to appreciate the effect of the dimensionality
reduction achieved with the Tucker2 decomposition.

Tables 3 and 4 list the recognition accuracy rates obtained for
ensemble learning and each individual classifier C1, C2, C3, C4,
and C5 with leave-one-gesture-out and leave-one-subject-out
cross-validation with ensemble learning delivering the higher
accuracy. Also, the decomposition time was smaller for Tucker
and PCA, but significantly larger for NNMF. After the Tucker2
decomposition, the training data represented only 1.45% of the
original dataset with more training time needed for the non-
decomposed data, but lower for TIGER; see Table 4.

We studied the effect of training data size on gestures recog-
nition accuracy by employing the leave-one-subject-out cross-
validation technique. We performed S=28 training rounds and
for each round, we trained the ensemble using S − O subjects
data, where O=1, S − 1, and S represent the total number of
participants. Similar results as LOSO-CV (see Table 4) were
obtained using the latter technique, leave-one-subject-out cross-
validation function of the number of participants from which
gesture samples were collected for training; see Fig. 4, left.
The trends from Fig. 4 indicate that recognition accuracy rates

Table 4. Recognition accuracy rates obtained with the leave-one-subject-
out cross-validation (LOSO-CV) procedure.

Model TIGER PCA NNMF ND†

Decomposition time (s) 1.144 0.963 105.46 —
Learning time (s) 0.701 0.722 0.988 7.887
Classification time (s) 1.234 1.457 1.282 1.933

Recognition accuracy C1 85.1% 86.2% 72.8% 96.1%
Recognition accuracy C2 88.5% 87.1% 64.6% 95.8%
Recognition accuracy C3 88.9% 86.5% 59.4% 95.2%
Recognition accuracy C4 87.8% 86.4% 75.7% 94.9%
Recognition accuracy C5 89.5% 86.9% 57.9% 95.6%

Ensemble voting 92.9% 89.9% 76.6% 96.2%
The Tucker2 sum of squared error was 38.39.
The sum of variances of the first 13 PCA components was 88.5%.
The NNMF root mean square residual was 0.89.
†ND = non-decomposed data.

increase when gesture samples are collected from more par-
ticipants. Also, training time increases significantly for non-
decomposed data compared to the dimensionality techniques
discussed in this paper; see Fig. 4, right.

5. Limitations

We found that using the Tucker2 decomposition for feature
extraction and dimensionality reduction led to smaller training
and classification time without compromising recognition ac-
curacy. This result recommends our method for motion gesture
recognition within the constraints of interactive response time.
Also, TIGER offers valuable advantages of reducing compu-
tational cost when training datasets are large, but, for training
datasets of smaller size, the recognition accuracy was slightly
lower compared to the non-decomposed data. This finding led
to our design decision to employ ensemble learning for TIGER
to achieve high recognition accuracy.

Gesture input with mobile and wearable devices can be en-
cumbered by everyday situations, such as driving or walking.
TIGER is intended for user-segmented gesture input, e.g., via
button presses [36], and was not evaluated for continuous ges-
ture recognition, which we leave for future work. Neverthe-
less, user-segmented input has the net advantage of empower-
ing users with the feeling of control over input, eliminates the



Midas effect affecting gesture-based interaction, and is more ro-
bust compared to automatic gesture segmentation approaches.

6. Conclusion

We conducted a systematic literature review to analyze cur-
rent recognition approaches for motion gestures that use iner-
tial sensors. Based on our findings, we proposed TIGER, a
new recognition method that leverages multilinear algebra, ten-
sors for gesture representation, Tucker2 decomposition for both
feature extraction and dimensionality reduction of gesture data.
Coupled with ensemble learning, our method surpassed exist-
ing techniques in both recognition accuracy and training and
classification time. To the best of our knowledge, our work is
the first applying tensor decomposition for hand motion gesture
recognition acquired using inertial sensors. We see more oppor-
tunities of employing multilinear tensor algebra decomposition
for gesture recognition, including automatic gesture segmenta-
tion in continuous gesture data, combining statistical classifiers
that use gesture features with Tucker2 decomposition, but also
extending our method for other gesture types, such as gestures
of the head [70], feet [78], and whole body [68].
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[66] T. Marasović, V. Papić. Feature weighted nearest neighbour classification
for accelerometer-based gesture recognition. In IC SoftCOM, 2012.

[67] R.-D. Vatavu. A Comparative Study of User-defined Handheld Vs. Free-
hand Gestures for Home Entertainment Environments. In Journal of Am-
bient Intelligence and Smart Environments, volume 5(2), 2013.

[68] R.-D. Vatavu. Beyond features for recognition: Human-readable mea-
sures to understand users’ whole-body gesture performance. Interna-
tional Journal of Human–Computer Interaction, 33(9):713–730, 2017.
doi: 10.1080/10447318.2017.1278897. URL https://doi.org/10.

1080/10447318.2017.1278897.
[69] R.-D. Vatavu and L.-B. Bilius. GestuRING: A Web-Based Tool for De-

signing Gesture Input with Rings, Ring-Like, and Ring-Ready Devices.
In ACM Symp. UIST, pages 710–723. ACM, 2021.

[70] E. Velloso, D. Schmidt, J. Alexander, H. Gellersen, and A. Bulling. The
feet in human–computer interaction: A survey of foot-based interaction.
ACM Comput. Surv., 48(2), sep 2015. ISSN 0360-0300. URL https:

//doi.org/10.1145/2816455.
[71] M. Verleysen and D. François. The Curse of Dimensionality in Data Min-

ing and Time Series Prediction. In Lecture Notes in Computer Science,
volume 3512, pages 758–770, 06 2005. ISBN 978-3-540-26208-4.

[72] J. Wang and F. Chuang. An Accelerometer-Based Digital Pen With a Tra-
jectory Recognition Algorithm for Handwritten Digit and Gesture Recog-
nition. In Trans. on Industrial Elec., 2012.

[73] Y. Wang and H. Ma. Real-Time Continuous Gesture Recognition with
Wireless Wearable IMU Sensors. In Int. Conf. on Healthcom, 2018.

[74] H. Watanabe, M. Mochizuki, K. Murao, and N. Nishio. A Recognition
Method for Continuous Gestures with an Accelerometer. In UbiComp.
ACM, 2016.

[75] R. Xie and J. Cao. Accelerometer-Based Hand Gesture Recognition by
Neural Network and Similarity Matching. In IEEE Sensors Journal, 2016.

[76] L. Xu, K. Zhang, G. Yang, and J. Chu. Gesture recognition using dual-
stream CNN based on fusion of sEMG energy kernel phase portrait and
IMU amplitude image. Biomedical Signal Processing and Control, 2022.

[77] R. Xu, S. Zhou, and W. J. Li. MEMS Accelerometer Based Nonspecific-
User Hand Gesture Recognition. In IEEE Sensors Journal, volume 12,
pages 1166–1173, 2012.

[78] Y. Yan, C. Yu, X. Yi, and Y. Shi. Headgesture: Hands-free input ap-
proach leveraging head movements for hmd devices. Proc. ACM Inter-
act. Mob. Wearable Ubiquitous Technol., 2(4), dec 2018. URL https:

//doi.org/10.1145/3287076.
[79] J. Yim, E. Qiu, and T. C. N. Graham. Experience in the Design and

Development of a Game Based on Head-Tracking Input. In ACM Future
Play. ACM, 2008.

[80] T. Yu and H. Zhu. Hyper-Parameter Optimization: A Review of Algo-
rithms and Applications. ArXiv, abs/2003.05689, 2020.

[81] Z. He, L. Jin, L. Zhen, and J. Huang. Gesture recognition based on 3D
accelerometer for cell phones interaction. In APCCAS, 2008.

[82] D. Zhang, X. Wu, and C. Wang. Fine-Grained and Real-Time Gesture
Recognition by Using IMU Sensors. In ICPADS, 2017.

[83] X. Zhang, X. Chen, W. Wang, J. Yang, V. Lantz, and K. Wang. Hand Ges-
ture Recognition and Virtual Game Control Based on 3D Accelerometer
and EMG Sensors. In IUI. ACM, 2009.

[84] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang. A Frame-
work for Hand Gesture Recognition Based on Accelerometer and EMG
Sensors. In Transactions on Systems, Man, and Cybernetics - Systems,
volume 41(6), 2011.

[85] X. Zhang, J. Liu, J. Feng, Y. Liu, and Z. Ju. Effective Capture of Nongras-
pable Objects for Space Robots Using Geometric Cage Pairs. IEEE/ASME
Transactions on Mechatronics, 25(1):95–107, 2020.

[86] Zhe Ji, Zhi-Yi Li, Peng Li, and MaoBo An. A new effective wearable hand
gesture recognition algorithm with 3-axis accelerometer. In Int. Conf.
FSKD, 2015.

https://doi.org/10.1109/ESPA.2012.6152471
https://doi.org/10.1109/ESPA.2012.6152471
https://doi.org/10.1109/ESPA.2012.6152471
https://faculty.cc.gatech.edu/~hpark/papers/GT-CSE-08-01.pdf
https://faculty.cc.gatech.edu/~hpark/papers/GT-CSE-08-01.pdf
https://doi.org/10.1109/EMBC.2019.8856844
https://doi.org/10.1109/EMBC.2019.8856844
https://doi.org/10.1109/EMBC.2019.8856844
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/2449396.2449419
https://doi.org/10.1145/2449396.2449419
https://doi.org/10.1145/2449396.2449419
http://dx.doi.org/10.1016/j.protcy.2012.03.012
http://dx.doi.org/10.1016/j.protcy.2012.03.012
http://dx.doi.org/10.1002/cpe.6063
https://doi.org/10.1109/PERCOM.2009.4912759
https://doi.org/10.1109/PERCOM.2009.4912759
https://doi.org/10.1109/PERCOM.2009.4912759
http://dx.doi.org/10.1155/2021/4828102
http://dx.doi.org/10.1155/2021/4828102
https://doi.org/10.1002/cpe.6574
https://doi.org/10.1002/cpe.6574
https://doi.org/10.1002/cpe.6574
https://doi.org/10.23919/ICACT.2018.8323826
https://doi.org/10.23919/ICACT.2018.8323826
https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/proposal-Mansi.pdf
https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/proposal-Mansi.pdf
https://doi.org/10.1145/2451176.2451211
https://doi.org/10.1145/2451176.2451211
https://doi.org/10.1145/2451176.2451211
https://doi.org/10.1109/SMC42975.2020.9283231
https://doi.org/10.1109/SMC42975.2020.9283231
https://doi.org/10.1109/MLSP.2012.6349717
https://doi.org/10.1109/MLSP.2012.6349717
https://doi.org/10.1109/EUC.2015.25
https://doi.org/10.1109/EUC.2015.25
https://doi.org/10.5455/ijlr.20170415115235
https://doi.org/10.5455/ijlr.20170415115235
https://doi.org/10.1109/IJCNN.2011.6033541
https://doi.org/10.1109/IJCNN.2011.6033541
https://doi.org/10.1109/IJCNN.2011.6033541
https://doi.org/10.1109/ISDA.2012.6416645
https://doi.org/10.1109/ISDA.2012.6416645
https://doi.org/10.1109/ISDA.2012.6416645
https://doi.org/10.1109/AFRCON.2009.5308175
https://doi.org/10.1109/AFRCON.2009.5308175
https://doi.org/10.1109/TCYB.2020.3007173
https://doi.org/10.1109/TCYB.2020.3007173
https://doi.org/10.1109/TCYB.2020.3007173
https://doi.org/10.1145/2594368.2594379
https://doi.org/10.1145/2594368.2594379
https://doi.org/10.1109/ICIIP.2015.7414787
https://doi.org/10.1109/ICIIP.2015.7414787
https://doi.org/10.1587/nolta.1.37
https://doi.org/10.1587/nolta.1.37
https://doi.org/10.1007/978-1-84882-299-3_5
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1109/BWCCA.2014.145
https://doi.org/10.1109/BWCCA.2014.145
https://doi.org/10.1146/annurev-psych-010418-102803
https://doi.org/10.1146/annurev-psych-010418-102803
https://doi.org/10.1146/annurev-psych-010418-102803
https://doi.org/10.1109/ISTMET.2014.6936550
https://doi.org/10.1109/ISTMET.2014.6936550
https://ieeexplore.ieee.org/document/6347628
https://ieeexplore.ieee.org/document/6347628
https://doi.org/10.3233/AIS-130200
https://doi.org/10.3233/AIS-130200
https://doi.org/10.1080/10447318.2017.1278897
https://doi.org/10.1080/10447318.2017.1278897
https://doi.org/10.1145/3472749.3474780
https://doi.org/10.1145/3472749.3474780
https://doi.org/10.1145/2816455
https://doi.org/10.1145/2816455
https://doi.org/10.1007/11494669_93
https://doi.org/10.1007/11494669_93
https://doi.org/10.1109/TIE.2011.2167895
https://doi.org/10.1109/TIE.2011.2167895
https://doi.org/10.1109/TIE.2011.2167895
https://doi.org/10.1109/HealthCom.2018.8531095
https://doi.org/10.1109/HealthCom.2018.8531095
https://doi.org/10.1145/2968219.2968291
https://doi.org/10.1145/2968219.2968291
https://doi.org/10.1109/JSEN.2016.2546942
https://doi.org/10.1109/JSEN.2016.2546942
https://doi.org/10.1016/j.bspc.2021.103364
https://doi.org/10.1016/j.bspc.2021.103364
https://doi.org/10.1016/j.bspc.2021.103364
https://doi.org/10.1109/JSEN.2011.2166953
https://doi.org/10.1109/JSEN.2011.2166953
https://doi.org/10.1145/3287076
https://doi.org/10.1145/3287076
https://doi.org/10.1145/1496984.1497033
https://doi.org/10.1145/1496984.1497033
https://arxiv.org/pdf/2003.05689.pdf
https://arxiv.org/pdf/2003.05689.pdf
https://doi.org/10.1109/APCCAS.2008.4745999
https://doi.org/10.1109/APCCAS.2008.4745999
https://doi.org/10.1109/ICPADS.2017.00100
https://doi.org/10.1109/ICPADS.2017.00100
https://doi.org/10.1145/1502650.1502708
https://doi.org/10.1145/1502650.1502708
https://doi.org/10.1145/1502650.1502708
https://doi.org/10.1109/TSMCA.2011.2116004
https://doi.org/10.1109/TSMCA.2011.2116004
https://doi.org/10.1109/TSMCA.2011.2116004
https://doi.org/10.1109/TMECH.2019.2952552
https://doi.org/10.1109/TMECH.2019.2952552
https://doi.org/10.1109/FSKD.2015.7382120
https://doi.org/10.1109/FSKD.2015.7382120

	Introduction
	Related Work
	Systematic literature review
	Tensorial decomposition
	Summary

	TIGER
	Gesture tensor representation and decomposition
	Optimization of prediction accuracy

	Results
	Limitations
	Conclusion

