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Figure 1: We examine users’ preferences for chair-based input of two distinct and complementary types: on-chair surface
gestures performed on the chair’s structural parts and from-chair mid-air gestures in the user’s peripersonal space, around the
chair. This figure showcases such “hand-chair gestures,” highlighting variations in gesture type, extent, and number of hands.

ABSTRACT

We explore the chair as a referential frame for facilitating hand
gesture input to control interactive systems. First, we conduct a Sys-
tematic Literature Review on the topic of interactions supported by
chairs, and uncover little research on harnessing everyday chairs for
input, limited to chair rotation and tilting movements. Subsequently,
to understand end users’ preferences for gestures performed on
the chair’s surface (i.e., on-chair gestures) and in the space around
the chair (i.e., from-chair gestures), we conduct an elicitation study
involving 54 participants, 3 widespread chair variations—armchair,
office-chair, and stool,—and 15 referents encompassing common
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actions, digital content types, and navigation commands for in-
teractive systems. Our findings reveal a preference for unimanual
gestures implemented with strokes, hand poses, and touch input,
with specific nuances and kinematic profiles according to the chair
type. Based on our findings, we propose a range of implications for
interactive systems leveraging on-chair and from-chair gestures.
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1 INTRODUCTION

Chairs are an integral part of our daily lives as they support a signifi-
cant portion of human activities, and numerous studies [57, 92, 110]
have consistently reported that people spend an average of seven
hours a day sitting. Whether it is the office chair at work, seats on
buses, trains, or in waiting rooms, or the cozy armchair at home,
a substantial portion of the day involves activities that require or
benefit from some form of a chair. It is thus little surprise that chairs
have also caught the attention of HCI researchers, who have lever-
aged their form factors for interactive systems. For example, the sim-
ple body movements of tilting or rotating a chair can be harnessed
to control remote devices, from desktop computers [76, 77] and
smartphones [90] to drones [40] and wall displays [18]. At the same
time, a complementary line of work has focused on sensing users’
body postures while seated to enhance work efficiency [58], bolster
comfort and ergonomic support [63], promote driving safety [5],
and facilitate social communication [70], respectively.

However, prior research on chairs for interactive systems has
been limited to simple body movements and poses for tilting, rotat-
ing, rolling, or merely sitting in a chair [18, 40, 76, 77, 90], which
constitute a limited interaction space compared to the richer pos-
sibilities offered by more expressive gesture modalities, such as
touch [14], stroke-gesture [55], and mid-air [36] input. In fact, chairs
offer a remarkably versatile input space, spanning from touch input
on their structural parts, e.g., the armrest or the backseat, to hand
movements performed around the chair, e.g., above the armrest
or under the seat. In this space, the chair stands as a referential
frame for gesture articulation. As we show in this paper, gesture
input has been little examined in reference to chairs, yet it pos-
sesses distinctive nuances by being performed from a comfortable,
seated position and leveraging the chair’s form factor. Thus, we ad-
vocate for the importance of “hand-chair gestures,” a unique blend
of hands’ dexterous movements and chairs’ structural elements.

1.1 Hand-Chair Gestures

Hand-chair gestures are hand movements and poses performed
in relation to the chair’s structural parts or the seated position,
which become the gesture support and reference. Following this
operational definition, we make a key distinction between on-chair
and from-chair gestures, each harnessing complementary aspects
of the chair’s potential for input, as follows.

o On-chair gestures utilize the chair’s surface and structural
elements, enabling touch, stroke, and grasp input, e.g., grasp-
ing the seat of a stool (Figure 1a), touching the backseat
of an office-chair (Figure 1b), or swiping on the armrest of
an armchair (Figure 1c) for fast and always-available tactile
input to control an interactive system.

o From-chair gestures are non-contact, performed around the
chair in the user’s peripersonal space, e.g., turning a knob
in mid-air with the elbow supported (Figure 1d), hovering a
hand above the armrest (Figure 1e), or performing bimanual
input while in the stable, seated position (Figure 1f).

While on-chair gestures transform the chair into an interactive
surface, from-chair gestures extend the interactions beyond the
chair’s boundaries. Unfortunately, a systematic examination of
such hand-chair gestures, where sitting in a chair enables a unique
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fusion of the user’s highly dexterous hand movements and the
chair’s referential frame, has been lacking, despite the overall large
interest in gesture input for interactive systems [36, 45, 55, 102].

1.2 Contributions
In this paper, we make the following contributions:

(1) We report results from a Systematic Literature Review (SLR)
about interactions with computer systems supported by
chairs for everyday users, and highlight limited research,
primarily centered on tilting or rotating the chair.

(2) To understand user preferences and perceptions of hand-
chair gestures, we conduct an end-user elicitation study in-
volving 54 participants, 3 commonly encountered chair vari-
ations—the cozy armchair, the ergonomic office-chair, and
the modest stool,—and 15 referents representing common
actions, digital content types, and navigation commands for
interactive systems. Our results highlight a preference for
unimanual gestures involving strokes, poses, and touch input
with specific kinematic profiles per chair type. We also report
high perceived ease of use, recall, and social acceptability of
hand-chair gestures.

(3) Based on our empirical findings, we propose actionable in-
sights for integrating chairs as hand gesture sensing devices
into interactive systems, represented by a set of six design
implications, to unlock the potential of hand-chair gestures
performed on and around the chair. Furthermore, to fos-
ter more work in this direction, we release our extensive
dataset (1,620 numerical gestures with companion source
code) freely available for research purposes.

2 CHAIRS IN INTERACTIVE SYSTEMS: A
SYSTEMATIC LITERATURE REVIEW

A large body of literature exists on gesture interaction, including
examinations of various gesture types [14, 45, 104], recognition
techniques [14, 55, 91], and gesture set design methods [102, 109], to
which we relate from the perspective offered by hand-chair gestures
and the seated position. With respect to the latter, prior work has
examined mid-air gestures designed to be used when in a relaxed
state [74, 94, 100, 111]. For example, Zaiti et al. [111] explored users’
preferences for mid-air input during television watching, which
they characterized as low-effort gestures for lean-back interaction.
Veras et al’s [100] mid-air spherical input space, where forearm
angles are mapped to screen coordinates, fosters restful interaction
from the couch: the arm rested, users are more likely to employ the
forearm and wrist, not the whole arm, for restful mid-air elbow-
anchored motion. Siean et al. [86] explored locations in a living
room where gesture sensing could be integrated for such restful
input, among which the couch armrest and the coffee table for a
sitting user. Additionally, when the user is sitting at a table, the
surface of the tabletop affords even more ergonomic postures and
resting opportunities for the arm and hand [11]. Such prior work,
centered on the specific context of a user sitting, provides restful
design alternatives to mid-air gesture-based interaction, specifically
addressing movement fatigue [38].

Besides expert design, understanding users’ preferences for intu-
itive and easy to use gesture commands has been primarily based
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on the gesture elicitation method [108]. For example, Vatavu [95]
used the method to compare mid-air gestures with input using
the TV remote control for home entertainment, and found that
familiar point & click and drag & drop interaction models were
preferred. By capitalizing on the gesture elicitation method, Ja-
hani and Kavakli [37] proposed a variation based on descriptive
mid-air gestures, while Lee et al. [48] combined elicitation with
the Wizard-of-Oz approach to enable groups of two people, acting
as performer and recognizer, to develop gestures through mutual
conversation. We refer to Villarreal ef al. [101, 102] for reviews of
gesture elicitation studies and Hosseini et al. [36] for an analysis
of mid-air gestures and a consensus gesture set compiled across
different application domains.

In this rich literature of gesture-based interaction, chairs oc-
cur only sporadically and, when they do, rarely serve an interac-
tive purpose. Nonetheless, prior work did examine interactions
involving chairs, mostly represented by chair titling, rotation, and
rolling [18, 40, 76, 77, 90]. To understand the extent of such contribu-
tions, we conducted a Systematic Literature Review (SLR) centered
on interactions where the chair plays an active role; see next.

2.1 SLR Design and Implementation
We followed Siddaway et al.’s [85] SLR best practice guidelines
to identify, screen, and confirm the eligibility of scientific contri-
butions relevant to our scope of investigation, which we applied
to bibliographic records available from the ACM Digital Library,
the most comprehensive scientific database exclusively dedicated
to computing,' and IEEE Xplore, the flagship digital platform for
electrical engineering and computer science.? The following query,
"query": {Abstract: ((chair* OR armchair* OR stoolx)
AND (interaction OR interface))}

employing common chair type variations [17, 20, 80], yielded a total
of 607 results in ACM DL and 296 in IEEE Xplore.? In the initial
screening stage, we excluded a significant proportion (308/903=34.1%)
of these results representing proceedings entries, which ended up
in our list because of the use of the keyword “chair” with a dif-
ferent meaning than in our scope, e.g., Conference Chair. For the
remaining entries, we applied the following eligibility criteria (EC):

EC;. Peer-reviewed contributions only. We exclusively focused on
academic, peer-reviewed conference papers and journal arti-
cles. Additionally, we required that these papers be written
in English and available in full text. Based on this criterion,
we excluded 144 entries (15.9%), such as interviews [2], demo
hours [62], keynote abstracts [25], session introductions [72],
which featured the word “chair,” but with other meanings.

ECy. Specificity to seated users. We excluded papers that did not in-
volve seated users or where sitting in a chair was not at their
core. For example, we excluded a multimodal interface for
querying a database of 3D chair models [26] and a computer
vision technique designed for segmenting the environment

INoteworthy, the ACM Digital Library also includes references from other publishers,
such as Springer-Verlag, Elsevier, MIT Press, among others, making it a comprehensive
resource with over 700,000 records in the ACM Full-Text Collection; see details at
https://dl.acm.org/about/content.

2Qver 6 million records in electrical engineering and computers; https://ieeexplore.
ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore

3We ran the query on April 6, 2023 (ACM DL) and November 7, 2023 (IEEE Xplore).
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into object classes, including “floor,” “chair,” and “table” [93].
In total, 229 entries (25.4%) were excluded by this criterion.

ECs. Specificity to standard chairs for general use. Many results
mentioned wheelchairs when discussing accessibility, even
though their focus was not always the wheelchair itself.
To maintain our emphasis on everyday chairs for general
use, we excluded papers on instrumenting wheelchairs with
technology [47, 71] and interactions for wheelchair users [8],
since their scope was a specific user population. Furthermore,
on-wheelchair gesture input has been explored before [4, 8,
56]. Following this criterion, a total number of 138 entries
(15.3%) were excluded.

EC4. Specificity to chair interaction. Lastly, we excluded 56 con-
tributions (6.2%) not portraying interactions between users
and chairs or other systems, supported by chairs. These were
papers where chairs were employed as measurement instru-
ments [19] or papers that met all our previous criteria but
did not address actual user interactions, e.g., Lee et al.’s [51]
kinetic chairs that gradually become unstable to mediate
intimate relationships between partners.

After the eligibility step, we arrived at 28 papers. Out of these, we
excluded five [15, 21, 32, 43, 66] representing extensions or varia-
tions of the same works by the same authors [31, 42, 44, 60, 67]. Our
final dataset comprised 23 papers published between 2006 and 2023,
describing diverse interactive systems leveraging chairs. From these
papers, we extracted information about input and output modalities,
integrated technology, and user studies. Additionally, we utilized
Wobbrock and Kientz’s [107] categories of research contributions
in HCI to categorize previous contributions in chair-based inter-
action. Two researchers independently extracted this information.
The average Gwet’s [29] AC1 coefficient was .900 (SD=.085) with a
cumulative membership probability of 99.6% (SD=1.02%), indicating
an almost perfect level of consensus according to the Landoch-Koch
benchmarking scale [30]. The few discrepancies (accounting for
4.8% of the extracted information) were resolved via discussion
and, when consensus could not be reached by the two coders, by
majority vote with the intervention of a third researcher.

2.2 Results

Table 1 presents a summary of our findings. The most prevalent
contribution type was artifact, present in all the papers, followed
by empirical research (13/23=56.5%). Less commonly encountered
contributions included methodological and theoretical ones, each
present in five papers. The artifacts found many applications, from
smartphones [90] to desktop computers [76, 77], large displays [18],
drones [40], VR [31, 42, 44], entertainment [3, 33, 82, 84, 90], smart
furniture [6, 28, 50, 67, 69], sedentary behavior interventions [60,
61, 65, 76, 87], user monitoring [22, 87], and care homes [3, 16, 61].

We found that a large percentage (56.5%) of the interactions
featured in these papers centered around armchairs, followed by
office-chairs (26.1%) and stools (21.7%). The most prevalent input
modality was body posture adjustment (19/23=82.6%), exemplified
by leaning [31, 40, 42, 44, 61], tilting [31, 40, 44, 61, 76, 77, 90],
rocking [3, 65, 76, 77], or rotating [18, 22, 28, 31, 40, 42, 44, 65, 76, 77,
90] movements while seated. In contrast, touch [6, 84], mid-air [16,
22], pen [33], and hand-held [87] gestures, the norm for modern
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Table 1: Summary findings of our Systematic Literature Review on chair-based interaction.
Chair type [%]* Input modali Output modalit Integrated Contributi ¥ Gest.’
% ntribution .
yP P ty P y technologyJr ° ution type ©s
body posture adjustments [3, visual [16], audio [3], F;l’lf;ngl 00 e artifact (all), empirical
Arm- 16, 18, 22, 31, 40, 60, 61, 69, 90], haptic [22, 90], chair S T T T T 3,6, 16, 18, 31, 61, 82, 90],
. [56.5%] 2o . 69, 82, 84, 90], ) 1-8
chair touch [6, 84], mid-air [16, 22], self-adjustments . methodological [6, 16, 31,
voice input [82] [6, 16, 60, 69] actuation [6, 22, 60, 901, oy "1 o1 etical [82, 84]
P 1000 other [3, 6, 16, 31] ’ ’
ofice ® body posture adjustments visual [87], haptic [50], sensing [65, 76, 77, 87], artifact (all), empirical
chair 4? [26.1%] [42, 50, 65, 76, 77, 87], chair self-adjustments actuation [50], [42, 65, 77], methodologi-  1-7
i hand-held device [87] [50] other [42, 50, 87] cal [77], theoretical [50]
. . . sensing [28, 33, 67], artifact (all), empirical
21.7%] bod t djust t 1[28, 33], ch
Stool = [ ] body posture adjustments visual [28, 33], chair actuation [67], research [42, 44, 67], 1-3

il (28, 42, 44, 67], pen input [33] self-adjustments [67]

other [28, 33, 42, 44] theoretical [33, 67]

Notes: *One paper [42] featured both an office chair and a stool and, thus, the percentages in the Chair Type column, calculated out of a total
of 23 papers, do not sum up to 100%. ' Sensing technology included the Leap Motion controller, IMUs, pressure, ultrasonic, light, temperature,
and MEMS sensors, and was used in 78.3% of the artifacts. Actuation technologies, including DC, servo, and stepper motors, were present in
26.1% of the artifacts. Other integrated technology included audio speakers, diffusive optical fibers, fiducial markers, robotic arms, and textile
interfaces, present in 43.5% of the artifacts. ¥ According to the categories in [107] specifying research contribution types in HCIL $The number
of gestures used by the artifacts varied, e.g., the armchair interactive prototypes (first row) utilized between one and four gesture types.

interactive systems, were infrequently applied to chairs. Common
output modalities were chair self-adjustments (26.1%), where the
chairs changed shape or moved autonomously; see Table 1.

Our results also revealed that only thirteen of the papers ex-
amined in our SLR [3, 6, 16, 18, 31, 42, 44, 61, 65, 67, 77, 82, 90]
conducted user studies, which involved between 2 and 30 partici-
pants (M=15.1, SD=7.4). For example, Brauner et al. [6] evaluated
three touch-based interactions (touching the fold, bending the fold,
and touching the stitches) performed with the index finger on a
swatch of armchair fabric, and reported a positive user experience
of controlling the armchair. Endert et al. [18] conducted an eval-
uation of chair rotation to facilitate cursor movements on a large
display, a technique designed to complement conventional mouse
input. The findings showed that users significantly reduced their
mouse movements and positively changed the way of accomplish-
ing the interactive task. Merilampi et al. [61] examined sedentary
behavior in the context of a smart chair prototype, which required
users to stand up and move to control a video game, e.g., stand
up, jump, and sit back on the chair. Other studies took a more in-
formal approach to evaluate chair interactions. For instance, Oozu
et al’s [67] “Escaping Chair,” a stool designed to interact with by-
standers by moving away from them, underwent evaluation during
an exhibition event. Visitors, after interacting with the stool, re-
ported a sense of personified intentions in the chair and expressed
sympathy toward it. Overall, chair interactions evaluated in the
scientific literature have employed a limited range of gestures, from
as few as one [18, 50, 60, 67, 69, 82, 84] to as many as eight [31]
(Mdn=3, M=2.9, SD=2.1).

2.3 Summary

Our findings revealed that interactions with computer systems in-
volving the chair as a key element have been limited in both number

and scope. These interactions have primarily focused on body pos-
ture adjustments, e.g., for chair tilting and rotation-based input, and
leveraged chair self-adjustments in response. Thus, the prospective
interaction possibilities offered by the chair as a referential frame
for more dexterous, expressive, socially acceptable, and restful hand
gestures, in contrast to whole-body pose adjustments while seated,
remain largely untapped. In particular, on-chair gestures, which
transform the chair’s structural elements into interactive surfaces
for input, and from-chair gestures, which extend the interactions
beyond the chair’s physical boundaries, have received little atten-
tion. To understand users’ preferences for such hand-chair gesture
input, we conducted an end-user gesture elicitation study; see next.

3 STUDY

We conducted a study to obtain insights into users’ preferences
of hand-chair gesture input implemented with on-chair and from-
chair gestures. To this end, we utilized the end-user elicitation
method [99, 106, 108] with a mixed experiment design involving
three commonly encountered chair variations [17, 20], i.e., stool,
office-chair, and armchair.

3.1 Participants

Fifty-four people (45 self-identified as male and 9 as female), aged
between 18 and 44 years old (M=23.3, SD=5.6), participated in our
study following recruitment via a technical university mailing list
and convenience sampling. Participants reported regular use of
smartphones and laptops and an average daily sitting time of 7.5
hours (SD=2.2)—a significant portion of their day and in line with
the average sitting time, of approximately 7 hours per day, consis-
tently reported in large studies [57, 92, 110]. We randomly assigned
participants to one of three groups in our study—corresponding to
stool, office-chair, and armchair,—with identical male-female ratios
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Table 2: The list of referents used in our end-user elicitation study about hand-chair gesture input.

Referent’ Description of the referents provided to the participants References

1. Place/answer call Answer/end an incoming phone call [23,79]
@ 2. Set/cancel alarm  Activate/deactivate the most recent alarm (the alarm is set if off and vice versa) [23]
-2 3. Turn on/off lights Turn on/off the lights (lights turn on if they are off and vice versa) [23, 41]
< 4. Turn on/off TV Turn on/off the TV (the TV turns on if it is off and vice versa) [23,41]

5. Turn on/off AC Turn on/off the air conditioner (the air conditioner turns on if off and vice versa) [23]

6. Photos and videos Get direct access to photos/videos; the first photo is displayed on a screen [41, 83]
e 7. Music Get direct access to music; the first file starts playing [23, 83]
% 8. Messages Get direct access to messages; the most recent message is displayed on a screen  [39, 41]
S 9. Agenda/calendar  Get direct access to the agenda/calendar, displayed on a screen [83]

10. Contacts Get direct access to phone contacts, which are displayed on a screen [79]
- 11. Next Go to the next element in a list, e.g., show next photo, go to next TV channel [23,39,41,49,73,77,79,108]
.2 12. Previous Go to the previous element in a list, e.g., previous photo, previous TV channel  [23,39, 41,49, 73,77,79, 108]
go 13. Increase Increase the value of a parameter, e.g., audio volume, light intensity, etc. [23, 39, 41, 64, 73, 77, 79]
Z 14. Decrease Decrease the value of a parameter, e.g., audio volume, light intensity, etc. [23, 39, 41, 64, 73, 77, 79]
. 15. Home screen Go to the home screen of the current application [49, 64, 77, 79]

TWhile the names of the referents (first column) may vary across various studies, our primary consideration was their intended effect.

(45/3=15 male and 9/3=3 female per group). Kruskal-Wallis tests re-
vealed our groups well balanced in terms of age ()((22) =0.624, p=.732,

n.s.) and daily sitting time ()(?2)=2.282, p=.320, n.s.). Seven of the
participants self-reported as left-handed and 38 as right-handed.

3.2 Procedure

According to the end-user elicitation method [108], we collected
gestures in relation to specific referents, e.g., answer an incoming
phone call or access photos. To encompass a diversity of system
functions, we employed 15 commonly used referents from previous
gesture elicitation studies, which we presented on paper with short
descriptions. We selected our referents to be representative of (i)
common system actions, e.g., turning on/off various devices, (ii)
accessing digital content, e.g., music or photos, and (iii) performing
generic navigation in interactive systems, e.g., next/previous, home
screen; see Table 2. To arrive at these referents, we relied on the
top-10 most influential gesture elicitation studies, according to
Villarreal et al’s [102, p. 860] systematic literature review as well as
elicitation studies focused on digital content type [83], chair-based
interaction [77], and finger instrumentation for gesture input [23].

Participants signed a consent form and filled out a demographic
questionnaire. Subsequently, they received the following instruc-
tions: “For the following list of referents, propose hand gestures on
the chair and in air from the seated position. Your gestures should
be easy to execute and recall, a good fit to the referents, and accept-
able in a public place. You are free to use either hand or both hands
to perform the gestures.” After confirming they understood the task,
participants were given as much time as needed to come up with
suitable gestures. Subsequently, one on-chair and one from-chair
gesture were recorded for each referent using a video camera and
two TapStrap v2 finger-augmentation devices (featuring a 3-axis ac-
celerometer per finger, Bluetooth 4.0, low weight of just 200g) [88]
worn on both hands. Our custom Android software application

stored the gestures as series of 3D linear acceleration points for the
ten fingers. The order of referents was randomized per participant,
while gesture locale, on-chair and from-chair, was randomized per
referent. Participants were not allowed to use the same gesture for
multiple referents within the same gesture locale, but were allowed
to reuse the gesture for the same referent across gesture locales,
e.g., “letter M” drawn in mid-air or on the chair’s seat for “Music.”

3.3 Design and Measures

Our study was a mixed design with one between-subjects vari-
able, CHAIRTYPE (nominal with three conditions, stool, office-chair,
and armchair), and one within-subjects variable, GESTURELOCALE
(nominal with two conditions, on-chair and from-chair). The CHAIR-
TyPE conditions cover common chair variations [17, 20, 80] with
increasingly more complex form factors and, thus, richer possibil-
ities for hand-chair gesture input. Although the referents specify
the conditions of another within-subjects variable, REFERENT, we
are not interested in this effect, since we see the referents as one
sample drawn from all possible system functions. Consequently,
we perform data aggregation on this variable or modeled it as a
random effect, according to the statistical model; see Subsection 3.4.
The dependent variables are the measures used to characterize our
participants’ gesture articulations and preferences, as follows.

3.3.1 Measures of gesture articulation. We utilized the video record-
ings to extract the following information:

e HANDEDNESs indicates the hand(s) employed to articulate
the gesture. Following McNeill [59], we used four categories:
left hand (LH), right hand (RH), two same hands (2SH), and
two different hands (2DH).* Bimanual gestures, 2SH and 2DH,
specify whether both hands act synchronously, perform the

4Terminology and abbreviations used by McNeill [59, p. 379] for gesture coding, which
we adopt exactly for consistency purposes.
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same movement, and form the same pose during gesture
articulation, i.e., they are the same (2SH) or different (2DH).
GesTURETYPE with six categories, adopted from [4]: pointing
(the hand points in mid-air or to a specific chair part), touch
input (a tap or variation of a tap on the chair), grasp (the
hand firmly grasps a part of the chair), stroke-gesture (the
hand swipes or draws symbols on the chair’s surface or in
mid-air), hand pose (the hand forms a symbolic pose, such as
“thumbs-down,” or mimics a manipulative pose, e.g., knob
turning), and mixed (any combination of the previous cate-
gories, e.g., draw a letter and subsequently tap twice on the
armrest). These categories expand Wobbrock et al.’s [108]
“form” dimension to both surface and mid-air gesture input.
o GESTUREEXTENT delineates the physical reach of the gesture.
We characterize the extent of on-chair gestures with the chair
part they involve by considering three regions—armrests,
seat, and backrest,—corresponding to the principal structural
elements of seating design [68]. We characterize the extent
of from-chair gestures with McNeill’s [59, p. 378] “gesture
space,” a division of concentric squares of the space around
a person while seated, with three regions—center, periphery,
and extreme-periphery;® see Figure 3, top.

Two researchers independently extracted this information from the
video recordings following a two-stage process. In the initial stage,
both researchers coded the same videos, representing a random
subset of twelve participants (22.2% of the data), which yielded an
average Gwet’s [29] AC1 coefficient of .888 (SD=.097) and a cumu-
lative membership probability of 99.997% (SD=0.01%), indicating an
almost perfect level of consensus according to the Landoch-Koch
benchmarking scale [30]. The few discrepancies (8.24% of the ex-
tracted information) were resolved through discussion and, when
consensus could not be reached by the two coders, by a majority
vote with the intervention of a third researcher. In the second stage,
each of the two researchers coded half of the remaining videos.

We also used the numerical gesture representations provided by
the TapStrap finger-augmentation devices to automatically com-
pute other measures of gesture articulation. Each gesture was rep-
resented as a set of linear accelerations for each of the ten fingers,
g = {aij=(xij, yi,j. zij, i) | i=1..n, j=1..10}, where j specifies the
finger and n is the number of points on the gesture path. During
a preprocessing stage, we removed the influence of the force of
gravity with a high-pass filter [27], left-trimmed the gestures by
300ms (a systematic bias that we observed in the data between the
participants’ and experimenter’s synchronization during gesture
recording), and resampled at 100Hz. Data preprocessing steps such
as these are common for accelerated motion [46, 54, 97]. Subse-
quently, we computed the following measures:

e PRODUCTIONTIME, expressed in milliseconds, a pivotal factor
in assessing gesture input performance [7, 52].

o NUMAXESMOVEMENT, dimensionless, represents the number
of axes on which acceleration is detected, adapted from Ruiz

5To maintain coding simplicity, we treated McNeill’s [59] “center-center” as part of the
“center” region, similar to previous work [4]. For gestures spanning multiple regions,
we considered the largest region encompassing the gesture. For example, a swipe
gesture performed upwards, starting in the center in front of the body, traversing the
periphery, and ending in the extreme-periphery above the user’s head, was coded as an
extreme-periphery gesture.
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et al’s [79] “dimension” category of their taxonomy of user-
elicited motion gestures. We counted the number of axes for
which the MEANACCELERATION exceeded 0.1g, a threshold
adopted from [35, 98].

e MEANACCELERATION, reports the average magnitude, in m/s?,
of the linear acceleration of the hands’ movement during
gesture articulation. Adopted from [34, 78, 97], we adapted
the measure to compute for ten fingers:

10 n
1 2 2 2 41
MEANACCELERATION(g) = Ton JZ_; ; (xij+yij+zip2 (1)

Eq. 1 computes a numerical value of the average acceleration
magnitude across all the sampled points i on the gesture
paths of each finger j=1..10. This measure, in its simplified
form involving just one moving object (finger/hand), has
also been referred to in the scientific literature as gesture
strength [34] or energy [78].

3.3.2  Measures of gesture similarity and consensus. To understand
participants’ level of consensus over suitable hand-chair gestures
for the referents used in our study, we adopted the computer analysis
model, recommended in Vatavu and Wobbrock [99], implemented
with the dissimilarity-consensus approach [96]. According to this
approach, the relationship between participants’ consensus (C) over
their gesture articulations and the tolerance (r) under which two
gestures are considered equivalent, given a dissimilarity measure
(), is modeled with logistic functions:

_ Coo - Co
(o) = Co+ (Coo — Cp) - exp (-1 - 1) @

where Coo=1im; 0 C(7) and Co=1lim;—,o C(7) are the upper and
lower bounds of consensus and r is the growth rate. Following
recommendations in [96], we implemented § with Dynamic Time
Warping (DTW), a robust and versatile approach to gesture recog-
nition [89]. Larger r values indicate faster reaching consensus [96].

3.3.3  Measures of gesture preference. We collected participants’
perceptions of their gestures via 7-point Likert scales:

e Easg, adopted from Wobbrock et al. [108], measures the
perceived ease of gesture articulation, in response to the
statement “The gesture I picked is easy to perform,” from 1
(strongly disagree) to 7 (strongly agree).

e GoODNEss, adopted from Wobbrock et al. [108], measures
the goodness of fit between the proposed gesture and the
corresponding referent, in response to “The gesture I picked
is a good match for its intended purpose”

e REecALL, adapted from Zaiti et al. [111], measures user percep-
tion of the recall likeliness of the proposed gesture through
the level of agreement with the statement “The gesture I
picked is easy to recall”

e SOCIALACCEPTABILITY, adapted from Rico and Brewster [78],
measures the participant’s willingness to perform the pro-
posed gesture in public, as a reaction to the statement “T am
willing to perform this gesture in public”
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Figure 2: Distribution of HANDEDNESS and GESTURETYPE for the elicited gestures. Note the large proportion of unimanual vs.
bimanual gestures (left chart) and stroke-gestures, hand poses, and touch input compared to other gesture types (right).

3.4 Statistical Analysis

To analyze categorical and ordinal variables with polytomous re-
sponses in our mixed design, e.g., HANDEDNESS or GESTURETYPE, we
employed Cumulative Link Mixed Models [12] with maximum like-
lihood estimates of the parameters provided by the Laplace approx-
imation method [13] with participants nested within CHAIRTYPE,
and REFERENT treated as a random effect. To assess the statistical
significance of specific model terms, e.g., the effect of CHAIRTYPE,
we used likelihood-ratio chi-squared tests for pairs of models of pro-
gressive complexities. Additionally, we applied mixed ANOVA for
the measures automatically computed from numerical gesture de-
scriptions, e.g., MEANACCELERATION. For 7—C analysis of consensus
rates, we employ logistic modeling [96].

4 RESULTS

We present results from an analysis of 1,620 hand-chair gestures
(=54 participants X 2 gesture locales X 15 referents), for which we
extracted a total of 9,720 articulation characteristics, computed
6,885 dissimilarity measurements, and collected 6,480 self-reported
gesture ratings. In total, we report empirical findings based on a
dataset of 23,085 records.

4.1 Gesture Articulation Characteristics

4.1.1 Handedness. The large majority of the gestures (86.3%) was
unimanual (62.9% RH and 23.4% LH), whereas bimanual articu-
lations were characterized by symmetry (11.1% vs. 2.6% for 2SH
and 2DH, respectively); see Figure 2a. This distribution remained
consistent across CHAIRTYPE, with no significant effect on HAND-
EDNESS (X%2)=1.289, p=.525, n.s.). The proportion of unimanual

and bimanual gestures also remained consistent across on-chair

and from-chair gestures (87.6% and 85.1%), but with notable dif-
ferences within each category, according to a significant effect of
GESTURELOCALE ( X?I):98.677, p<.001) confirmed by post-hoc tests

(FDR p-value adjustments applied) for each chair type (p<.05). For
instance, we observed a stronger preference for RH over LH from-
chair gestures (71.9% vs. 13.2%), but less pronounced for on-chair
(54.0% vs. 33.6%)—a finding revealing that the chair surface encour-
aged a more balanced use of both hands for gesture articulation
compared to the open space around the user.

By following up on a significant CHAIRTYPE X GESTURELOCALE
interaction ()(?2):13,656, p<.005), we noted differences between

the HANDEDNESs distributions of armchair X from-chair and stool
X on-chair (p=.004), office-chair X from-chair and stool X on-chair
(p=.005), and armchair X on-chair and stool X from-chair (p=.049)
gestures. The common factor behind these differences was the
stool’s well-balanced distribution of LH and RH on-chair gestures
(45.6% and 41.9%), which can be attributed to the increased im-
portance of hand choice in differentiating among gestures to com-
pensate for the stool’s smallest surface area across all chair types.
Noteworthy, different HANDEDNESs distributions were observed
across the specific referents that we examined; see Figure 2a, bot-
tom. For example, “Next” and “Previous” predominantly favored
unimanual gestures (97.2% and 96.3%), while other referents, such
as “Photos and videos” and “Home screen,” exhibited the largest
percentage of bimanual gestures (23.1% and 20.4%). Out of these,
symmetrical from-chair gestures included clapping, swiping, and
extending the arms with synchronized movements, while asymmet-
rical ones primarily involved using one hand as support for writing
or drawing with the other. Bimanual on-chair gestures included
touching, swiping, or grasping various chair parts.
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We also found that participants’ handedness transpired into their
gesture articulations. On average, left-handed participants exhib-
ited an equal percentage of LH and RH gestures (37.1%), whereas
right-handed ones predominantly performed RH (67.3%) than LH
(21.3%) gestures. Additionally, left-handed participants engaged
in bimanual gestures twice as frequently (25.7%) as their right-
handed counterparts (11.9%). These findings were confirmed by
significant Kendall correlations between self-reported handedness
(binary coded, where 0 denotes left-handedness and 1 denotes right-
handedness) and participant preference for RH (z(54)=.287, p=.013)
and bimanual gestures (r(54)=—.319, p=.007), respectively.

4.1.2  Gesture type. We found that stroke-gestures were overall pre-
ferred by our participants (49.7%), followed by hand poses (24.7%)
and touch input (17.9%), whereas the other gesture categories—grasp,
pointing, and mixed,—were considerably less represented, account-
ing for just 7.7% in total; see Figure 2b. We did not detect a statisti-
cally significant effect of CHAIRTYPE on GESTURETYPE ( )((22)22774,

p=.250, n.s.), but we observed a significant effect of GESTURELO-
CALE ()(?1):397.604, p<.001), reinforced by post-hoc tests (with

FDR p-value adjustments) across all chair types. The large majority
of from-chair gestures consisted of stroke-gestures and hand poses
(93.3%), while on-chair gestures were primarily composed of stroke-
gestures, hand poses, and touch input (91.2%). Notably, from-chair
articulations favored considerably more hand poses (43.1% vs. 6.3%),
whereas touch input and grasps were used in the on-chair condition
(35.8% and 5.3%, respectively).

Stroke-gestures, hand poses, and touch input, in that order, were
the most preferred gesture types across all chair types, yet with
nuances revealed by a significant CHAIRTYPE X GESTURELOCALE
interaction ()(?2) =32.495, p<.001) with post-hoc tests confirming
significant differences (FDR-adjusted p<.001) across all 3X2 pairs.
For example, the stool exhibited the lowest percentage of touch
input usage (12.0%) in favor of the highest percentage of stroke-
gestures (58.0%) compared to the office-chair (20.2% and 42.0%) and
armchair (21.5% and 49.1%). Participants also proposed more grasp
gestures for stool and office-chair (2.6% and 4.6%) than in the case of
the more expansive armchair (0.7%). Figure 2b, bottom reports the
observed GESTURETYPE distributions per referent. Referents with
directional connotations, such as “Next,” “Previous,” “Increase,” and
“Decrease,” had the highest percentage of stroke-gestures (ranging
from 75.0% to 78.7%), whereas referents that mimicked actions
typically performed with remote controls, such as “Turn on/off
lights,” “Turn on/off AC,” and “Turn on/off TV, favored the highest
percentages of hand pose (32.4% to 38.0%) and touch input (23.1% to
30.6%). Additional insights into the spatial regions encompassing
these gesture types are presented next.

4.1.3 Gesture extent. Figure 3, top presents the spatial regions
where on-chair and from-chair gestures were performed, according
to CHAIRTYPE. The majority of from-chair gestures were encom-
passed by the periphery (45.8%) and extreme-periphery (42.8%) of
the user’s peripersonal space, while only a small portion (11.4%)
was observed in the center, with no significant effect of CHAIR-
TYPE on from-chair GESTUREEXTENT ()((22):0.862, p=.650). The ef-

fect was, however, statistically significant for the on-chair gestures
(ng) =14.033, p<.001), most of which being associated with the seat
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(70.6%), with articulations performed either on the seat’s surface
(35.2%) or underneath it (35.4%). Our findings show that the arm-
rests, when available, were preferred as the most convenient and
easily accessible surface for input, e.g., 73.3% of the armchair ges-
tures involved them. When the armrests were absent, participants
harnessed other distinctive chair parts, e.g., 10.4% of the office-chair
gestures were performed on the backrest vs. just 4.5% for the arm-
chair. The stool, lacking both armrests and a backrest and featuring
limited surface area, led to on-chair gestures that exclusively used
the seat. Among these, 57.8% were underneath the seat, including
the seat sides and corners.

Figure 3, bottom provides a visual summary of the relation-
ships among GESTUREEXTENT, HANDEDNESS, and GESTURETYPE
for each CHAIRTYPE. Each circular chart highlights the percentage
of gestures within specific pairs of gesture categories, e.g., the RH
category of HANDEDNESS and the armrest category of GESTURE-
ExTENT. To this end, the charts employ ribbons whose widths are
proportional to the respective percentages, offering a breakdown of
the overall GESTUREEXTENT percentages depicted in Figure 3, top.
For example, in the armchair, office-chair, and stool conditions, 2SH
gestures represented 6.7%, 9.5%, and 10.0% of the seat-referenced
gestures, a series of values that align with the increasing trend
of seat gesture percentages from Figure 3, top. Similarly, stroke-
gestures accounted for 65.1%, 68.5%, and 73.7% of all the articulations
performed in the extreme-periphery, following the increasing trend
observed for that region. These findings reveal consistent partici-
pant preferences regarding the number of hands and gesture type
at various locations on and around the chair, respectively. Next, we
continue our analysis by examining gesture kinematic profiles.

4.2 Kinematic profiles of gesture articulation

On average, hand-chair gestures were produced in 2.4s in the arm-
chair, 2.5s in the office-chair, and 2.6s in the stool condition, with no
significant effect of CHAIRTYPE (F (5 51)=0.262, p=.771, n.s.); see Fig-
ure 4a. However, we found a significant effect of GESTURELOCALE
(F(1,51)=34.288, p<.001) and a CHAIRTYPE X GESTURELOCALE inter-
action (F(2,51)=3.596, p=.035). From-chair gestures were about 10%
faster than on-chair ones (2.4s vs. 2.6s), with the largest difference
in PRODUCTIONTIME observed for armchair (11.5%) and stool (11.3%)
compared to just 3.2% for office-chair (2.4s vs. 2.5s). We also found
that the elicited gestures required at least two axes of movement,
with no significant effect of CHAIRTYPE (F(3 51)=0.246, p=.783, n.s.),
but a significant effect of GESTURELOCALE (F({ 51)=32.633, p<.001),
revealing more expansive from-chair gestures (2.3 vs. 1.9); see Fig-
ure 4b. Lastly, the mean acceleration of the elicited gestures varied
between 2.8m/s? for armchair and 3.4m/s? for stool, but with no sig-
nificant effect of CHAIRTYPE (F(251)=1.197, p=.310, n.s.). However,
from-chair articulations required significantly more acceleration
compared to on-chair ones (3.5m/s? vs. 2.7m/s?, F(1,51)=73.650,
p<.001), accounting for a difference of 30%; see Figure 4c.

4.3 Gesture Ratings

Figure 5 presents participants’ self-ratings of their gestures, which
consistently trended towards high scores, i.e., 93.6% of the Goop-
NEss ratings fell above the midpoint item of the rating scale, and sim-
ilarly for Ease (98.5%), RECALL (96.9%), and SOCIALACCEPTABILITY
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Figure 4: The kinematic profiles of participants’ on-chair and from-chair gesture articulations, according to CHAIRTYPE.

(95.1%). Furthermore, more than half of the ratings for EAsE, RECALL,

yet statistically significant, higher ratings than on-chair gestures in
and SOCIALACCEPTABILITY (55.8% to 62.7%) as well as 41.0% of the

terms of GoobNEss (Mdn=6, M=6.0 vs. Mdn=6, M=5.7, X?n =40.765,
GOODNESS ratings were maximal (7, strongly agree). We did not ob- p<.001), EAsE (Mdn=7, M=6.4vs. Mdn=7, M=6.3, X?l):5v557a1’:-018)’
serve significant effects of CHAIRTYPE on any of these measures (all dR Mdne? Me6.3vs. Mdne7. Mat.1. v2.. =26.058 001
p-values>.05, n.s.). However, from-chair gestures received slightly, and Recart (Mdn=7, M=6.3 vs. Mdn=7, M=6. X(1) 708 P )
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but not SOCIALACCEPTABILITY (Mdn=7, M=6.2 vs. Mdn=7, M=6.3,
)((21) =1.314, p=.252, n.s.). One possible explanation for these find-
ings may be that from-chair gestures allow for a wider range of
hand movements, not constrained to a limited set of locations,
more or less distinctive, on the chair. Nevertheless, any observed
difference was small in magnitude, amounting to less than 5% in
terms of means, while the medians were identical. Referents with
directional connotations, e.g., “Next,” “Previous,” “Increase,” and
“Decrease,” consistently received high GoopNEss and EASE ratings,
while referents for which the elicited gestures mimicked physical
interactions, e.g., “Answer call,” “Turn on/off lights,” “Turn on/off
AC; and “Turn on/off TV, were rated highly in terms of RECALL.

4.4 Consensus Analysis and Representative
Hand-Chair Gestures

So far, we mentioned individual referents and the elicited gestures
for those referents only sporadically as we considered the referents
as random effects in our statistical models, i.e., a sample of all possi-
ble referents, used as a vehicle for collecting possible hand-chair ges-
tures that feel intuitive to end users. In the following, we look more
closely at the elicited gestures as we are interested in participants’
level of consensus (C) over suitable gestures to invoke specific ref-
erents. To this end, we modeled the dissimilarity-consensus curves
of the fifteen referents employed in our study using logistic models
(see Subsection 3.3.2 for details about our analysis method) for each
combination of CHAIRTYPE X GESTURELOCALE, and analyzed the
growth rates r; see Figure 6. (According to [96], larger r values
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indicate faster reaching consensus among participants’ gesture pro-
posals for a specific referent.) We found that the Cp parameters of
the logistic functions (Eq. 2) varied between 0.09 and 0.65 and C
between 98.38 and 103.50, showing of a good fit of the derived logis-
tic models; see [96] for details. We did not find a significant effect
of GESTURELOCALE on r (0.315 for on-chair vs. 0.328 for from-chair
gestures, F(114)=0.768, p=.396, n.s.), indicating similar consensus
formation for both on-chair and from-chair articulations. However,
we found a significant effect of CHAIRTYPE (F (3 24)=68.620, p<.01),
where stool gestures (mean r=0.186) exhibited significantly less
consensus compared to the cases of office-chair (0.286) and arm-
chair (0.266) gestures (FDR-adjusted p’s<.001), but we detected no
difference between the office-chair and armchair (p>.05, n.s.); see
Figure 6 for all of the growth rates computed per CHAIRTYPE X
GESTURELOCALE X REFERENT categories.

To complement these results, which present the computer per-
spective [96, 99] on our elicited gestures, we performed a frequen-
tial analysis of their qualitative characteristics of HANDEDNESS,
GesSTURETYPE, and GESTUREEXTENT. This approach enabled us to
identify representative gesture characteristics for each REFERENT
and combination of CHAIRTYPE X GESTURELOCALE, according to
the highest frequency observed across possible mixtures of those
characteristics. For example, 9 out of the 18 participants in the stool
condition (9/18=50%) proposed unimanual (1H) hand poses (P) in
the periphery (Pe) to effect “Place/answer call” with from-chair
gestures; see Figure 7.76 for a gesture with these characteristics rep-
resented by mimicking holding a phone next to the ear and mouth.
The largest frequencies of shared from-chair gesture characteristics
for the same referent, but in the armchair and office-chair condi-
tions, were 6 and 5, representing consensus rates of 33% and 28%,
respectively; see Figures 7.46 and 7.61. An interesting observation is
that, although the winning gesture for “Place/answer call” remained
consistent across CHAIRTYPE, the level of consensus was notably
higher in the stool condition compared to the more complex form
factors of the office-chair and armchair. This disparity suggests that
the participants envisioned different from-chair gesture articulation
possibilities influenced by the presence of the backrest and armrest,
two parts absent in the stool design. Besides common winning ges-
ture articulation categories across CHAIRTYPE, we also observed
common categories across GESTURELOCALE, e.g., drawing “letter
M,” either on the seat or in mid-air for “Messages” (7.38 and 7.83)
and drawing a triangular shape for “Music” (7.7 and 7.52).

Stroke gestures, constituting the most frequently occurring cate-
gory for from-chair input, were represented by geometric signs (e.g.,
Figures 7.52, 7.54, 7.59, 7.79), directional swipes (e.g., 7.57, 7.71, 7.58,
7.89), and letters and symbols (e.g., 7.67, 7.68, 7.77, 7.82). Strokes
were also common for on-chair articulations as geometric shapes
(e.g., 7.5, 7.7, 7.9, 7.35), directional swipes (e.g., 7.10, 7.26, 7.31), and
letters and symbols (e.g., 7.24, 7.36, 7.38). Examples of the latter
include drawing “letter P” on the front right side of the stool’s seat
to effect “Photos and videos” (7.36) and drawing the symbol of a
house on the seat’s side for “Home screen” (7.45). Representative on-
chair gestures also included touch input with different variations,
e.g., tapping with two fingers (7.2), four fingers (7.4), the whole
hand (7.3), and tapping multiple times (7.32). The winning on-chair
gesture categories always involved the armrest in the armchair
condition (7.1 to 7.15), and were identical for half of the referents
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for the on-chair gestures elicited in the office-chair and stool condi-
tions, which lacked armrests. Notable examples are the directional
referents “Next/Previous” and “Increase/Decrease,” which received
directional swipes performed on the armrest (7.11 to 7.14) and seat
(7.26 to 7.29 and 7.41 to 7.44), according to CHAIRTYPE. While we
provide the gestures from Figure 7 as a representative set of the
most frequently occurring articulation characteristics of the hand-
chair gestures observed in our study, we also make available a
detailed description of all of the 1,620 elicited gestures as part of
our open-source gesture dataset for further analyses.

To contextualize these findings, we compare them with the ges-
ture characteristics of two corresponding consensus gesture sets
from the literature of end-user elicitation. We contrast our findings
regarding the observed characteristics of on-chair gestures, a sub-
class of surface gestures performed in relation to the chair’s parts,
with the established set of surface gestures reported in Wobbrock et
al’s seminal paper on end-user elicitation [108, p. 1089]. We further
contrast the characteristics of from-chair gestures, a subclass of
mid-air gestures performed from the seated position in the space
around the chair, with a consensus set of mid-air gestures aggre-
gated across different application domains [36, p. 12]; see Table 3
for details and our results.

Several interesting observations highlight the distinctive nature
of hand-chair gestures in this context. For instance, while the large
surface of a tabletop encourages more opportunities for using both
hands (35.4%), the smaller chair surfaces resulted in none or rare
(6.7%) instances of bimanual on-chair input in our consensus sets.
However, the percentage of bimanual from-chair gestures was both
notably lower (0% for the armchair) and higher (20.0% for the stool)
than the expected norm (9.1%) of bimanual mid-air gestures [36]. In
the context where unimanual gestures are generally preferred due
to less effort, this discovery underscores that the armchair presented
more opportunities for performing from-chair unimanual gestures
when the participants could see and/or refer to more chair parts,
unlike the simpler form factor of a stool, where the participants
resorted to bimanual input more often. In addition to handedness
characteristics, we also noted interesting differences in terms of
gesture type; see the final three rows of Table 3. First, none of the
consensus on-chair gesture characteristics involved hand poses
for manipulative purposes, whereas these poses constituted more
than half (58.3%) of the in-consensus surface gestures [108]. In
contrast, from-chair gestures exhibited hand pose percentages close
to those observed in the literature (54.5%) [36], except for the stool,
where most of the from-chair gestures involved directional swipes
and symbolic strokes. Stroke-gestures were also considerably more
common for on-chair (46.7% to 80.0%) compared to surface (18.8%)
input [108]. To summarize, on-chair gestures are almost exclusively
unimanual, often involve simple tap input where a chair surface
is available to tap on, and involve drawing strokes on accessible
chair parts. As for non-contact input, from-chair gestures exhibit
many similarities to mid-air gestures but, as chair design complexity
increases, they involve fewer strokes and favor more hand poses.

5 DISCUSSION

In this section, we capitalize on our empirical findings to offer
actionable insights for novel hand-chair gesture interactions in the
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Figure 7: Representative on-chair and from-chair gestures per CHAIRTYPE and REFERENT. Notes: gesture characteristics (e.g.,
1H) are indicated below each photo; consensus percentages are calculated across groups of gestures with the same characteristics.
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Table 3: Hand-chair gesture characteristics vs. two established surface [108] and mid-air [36] consensus gesture sets.

Surface vs. on-chair gestures

Mid-air vs. from-chair gestures

Criteria Wobbrock Arm- Office- Stool Hosseini et  Arm- Office- Stool
et al. [108] chair chair al. [36] chair chair
Number of referents 27 15 15 15 22 15 15 15
Number of gestures in the consensus set 43 15 15 15 22 15 15 15
Percentage of unimanual gestures 64.6% 100% 100% 93.3% 90.9% 100% 93.3% 80.0%
Percentage of bimanual gestures 35.4% - - 67% 9.1% - 67% 20.0%
Percentage of taps 229% 40.0% 53.3% 20.0% - - - -
Percentage of poses/manipulative gestures’ 58.3% - - - 54.5% 60.0% 53.3% 20.0%
Percentage of stroke-gestures 18.8% 60.0% 46.7% 80.0% 455% 40.0% 46.7%  80.0%

TBoth [108] and [36] describe manipulative gestures, which we subsume under the hand poses category; see details about our GESTURETYPE

measure in Subsection 3.3.

form of six design implications. We also present limitations of our
study and outline next steps to address them.

5.1 Design Implications for Hand-Chair Gesture
Interactions

Before proceeding with our implications, we briefly set their context.
Chairs that provide a frame for gesture input fit into the ubiquitous
computing paradigm [103], where user sensing is dissimulated into
everyday objects. For instance, when applying Poslad’s [75] user
interface design heuristics for ubicomp environments (italicized
below) to the specific case of chairs, we find that the distinctive
structural elements of a chair favor self exploration, turn the chair
into a user interface proxy to simplify access to multiple individual
devices, while the familiar chair form factor provides a predictable
interaction context. Within this framework, we propose the follow-
ing set of design implications.

O Use the chair’s structural elements to inform customized
on-chair gesture input. Our discoveries showed that when arm-
rests are present, they are the preferred choice for on-chair input
(73.3%). In their absence, the seat becomes the primary choice, ac-
counting for 89.6% in chairs with a backrest and 100% otherwise
(Figure 3). Thus, the structural elements of chairs can be leveraged
for (i) gesture vocabulary designs that ensure consistency across
various chair types by centering on input on the seat—available
on all chairs—at the intersection of the consensus sets in Figure 7,
but also (ii) designs specific to chair form factors, e.g., armrest ges-
tures, for applications leveraging the convenience of such elements,
such as in lean-back interaction [111] when using the armrest as a
metaphorical remote control. Additionally, we recommend (iii) ex-
ploration of gesture sets that are both chair- and user-dependent, as
our dissimilarity-consensus analysis (Figure 6) revealed differences
between users’ gesture articulations.

@ Leverage the seated position for fast, expressive, and rest-
ful from-chair gesture input. Our findings revealed that mid-air
hand gestures performed from the seated position are fast with
an average production time of just 2.4s (Figure 4). Moreover, they
utilize the peripersonal space, located in between the center region
(closest to the body) and the extreme periphery (farthest away from

the body; see Figure 3). In this easily reachable space, from-chair
gestures predominantly consist of symbolic stroke-gestures and ex-
pressive hand poses (93.3%, Figure 2) in a ratio that depends on the
chair type (Table 3). In the light of these findings, we recommend
capitalizing on the rich literature of mid-air gesture design [45] to
pinpoint high consensus [36] stroke-gestures and hand poses with
articulations that peak in the peripheral region and leverage chairs’
parts for restful mid-air interactions [100, 111].

© Harness the high perceived social acceptability of hand-
chair gestures for interactions in public contexts. Hand-chair
gestures can be used to mitigate concerns [77] regarding the social
acceptability of whole-body gestures for chair-based input, such as
chair tilting and rotating, as we found high social acceptability for
both on-chair (6.3 out of 7) and from-chair (6.2) gestures (Figure 5).
This implication suggests future work where hand-chair gesture
Uls are conveniently available in seated public settings, e.g., public
transportation, lecture halls, waiting rooms, etc.

@ Play on the complementarity between on-chair and from-
chair gestures. On-chair and from-chair gestures exhibit a com-
plementarity that should be exploited for gesture set design. While
on-chair gestures turn the chair’s structural elements into a tangible
interface for always-available surface input, from-chair gestures add
a supplementary layer of interaction beyond the chair’s boundaries.
This complementarity should be explored for gesture set designs
that favor seamless interchangeability of input on the chair and
around it. To provide support for this implication, it is worth noting
an interesting insight, where 30.2% of the pairs of on-chair and
from-chair gestures elicited for the same referents shared identical
HANDEDNESs and GESTURETYPE characteristics. This implication
aligns with Poslad’s [75] design heuristics for streamlined input,
self exploration, and using predictable contexts in ubicomp envi-
ronments, which in our case imply that on-chair and from-chair
input could be used interchangeably. We also recommend explor-
ing the combination of touch and stroke-gesture hybrid input [1]
for on-chair gestures as well as combined on-chair and from-chair
input, following prior air+touch interaction techniques [10].

@ Conceptualize chairs as always-available input sensing
devices. Despite prevalent, most current chairs lack user sensing
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technology, a seamless integration that could significantly enhance
their functionality. For example, based on our findings that stroke-
gesture and touch input dominate users’ preferences for on-chair
input (84.9%), we suggest integration of touch sensing into the arm-
rests of everyday chairs, similar to accessible input technology for
wheelchair users [8, 56], and into the lateral sides and corners of
the seat (Figure 3). Chair designers should consider enlarging these
structural elements, without compromising user comfort [68], to
accommodate an expanded gesture input area. New chair materials
could also be leveraged for touch sensing, such as textile inter-
faces [6]. Additionally, from-chair gestures could be detected with
video cameras in armrests to capture gestures above them [111],
but also with users’ own devices, such as smartwatches for wrist
gestures [53] or rings for stroke-gestures [23].

O Design for multimodal input including hand-chair ges-
tures. Our findings revealed a strong preference for unimanual vs.
bimanual gestures (86.3% and 13.7%, see Figure 2). An implication
of this result is that the other hand, not involved in gesture articu-
lation, is free to operate another device, such as a desktop mouse,
a smartphone in mobile contexts of use, or a smartwatch through
wrist and motion gestures, which opens up interesting possibilities
for multimodal input. In contrast, bimanual gestures (13.7%, with
11.1% being symmetrical 2SH gestures) should be reserved for less
frequent tasks where movement symmetry can provide valuable in-
formation to the system. Examples include touching both armrests
to confirm an important action for the system, directional swiping
with both hands to fast-forward while browsing a list, or lever-
aging the physical distance between the hands of identical poses
to control a system parameter, i.e., parameterized gestures [105].
Furthermore, the observed correlation between users’ handedness
and their preferred gestures suggests the potential for customizing
chair input to individual users, similar to how smartwatch Uls can
be configured to match the hand they are worn on [81].

5.2 Limitations and Next Steps

While our study has yielded valuable first insights into hand-chair
gestures, we acknowledge its limitations, and propose next-step
examinations to address them. First, since we focused on standard
chairs for everyday users, we made the decision of omitting ac-
cessibility research on instrumenting wheelchairs. Although this
decision delineated a clear scope for various chair designs and
everyday users, we see interesting follow-up investigations con-
necting our scope with accessible input for wheelchair users, e.g.,
comparing on-wheelchair gestures [4, 8] performed by people with
mobility impairments with the on-chair gestures from our study.
Second, our participant sample consisted mostly of males. While
females were equally distributed across the three CHAIRTYPE con-
ditions, their overall representation was low (17%) since we did not
intend GENDER as an analysis factor in our study. Unfortunately,
female representation tends to be low in elicitation studies, with
males often outnumbering female participants in a ratio of 2:1 [102,
p- 859]. To explore potential gender effects on hand-chair gestures,
we recommend replicating our study using a type-7 replication [24]
with a balanced representation of genders, and, possibly, a type-8
replication [24] involving an unsupervised context [9]. To support
this, we provide our gesture dataset, together with NET C# code
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that computes the measures reported in this paper, freely avail-
able at http://www.eed.usv.ro/~vatavu/projects/2024- GESTURES-
CHAIR. Third, future explorations of other chair designs, e.g., with
varying leg configurations, alternative structural elements, and
range of materials [20], as well as involving other user popula-
tions, e.g., children’s playful interactions with computer systems
applied to the case of chairs, are recommended to further expand
our understanding of hand-chair gesture input.

6 CONCLUSION

We conducted an extensive examination of users’ preferences and
articulation characteristics of hand-chair gestures, which are ges-
tures performed in the chair’s space to control interactive sys-
tems. Our study, involving 54 participants, yielded very high self-
perceived gesture ratings, fast execution times, and insightful find-
ings about users’ preferences to articulate hand-chair gestures ac-
cording to the distinctive structural elements of the chair. We believe
that hand-chair gestures have the potential to seamlessly integrate
in our daily interactions with computer systems, given the ubiquity
of chairs and their multifaceted cultural significance. As we have
just started to explore the vast potential of hand-chair gesture input,
we look forward to exciting further developments in this direction,
while our dataset and resources are readily available to pave the
way for other researchers who wish to embark on this journey.

ACKNOWLEDGMENTS

This work is also supported by the NetZeRoCities Competence
Center, funded by European Union - NextGenerationEU and Roma-
nian Government, under the National Recovery and Resilience Plan
for Romania, contract no. 760007/30.12.2022 with the Romanian
Ministry of Research, Innovation and Digitalization through the
specific research project P3 - Smart and Sustainable Buildings.

REFERENCES

[1] Ahmed Arif, Michel Pahud, Ken Hinckley, and Wllliam Buxton. 2013. A Tap and

Gesture Hybrid Method for Authenticating Smartphone Users. In Proceedings of

the 15th International Conference on Human-Computer Interaction with Mobile

Devices and Services (MobileHCI ’13). ACM, New York, NY, USA, 486-491. https:

//doi.org/10.1145/2493190.2494435

Claus Atzenbeck. 2014. Interview with Kumiyo Nakakoji. SIGWEB Newsl. 2014,

Article 1 (jul 2014), 4 pages. https://doi.org/10.1145/2641730.2641731

[3] Peter Bennett, Heidi Hinder, and Kirsten Cater. 2016. Rekindling Imagination
in Dementia Care with the Resonant Interface Rocking Chair. In Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’16). ACM, New York, NY, USA, 2020-2026. https://doi.org/10.
1145/2851581.2892505

[4] Laura-Bianca Bilius, Ovidiu-Ciprian Ungurean, and Radu-Daniel Vatavu. 2023.
Understanding Wheelchair Users’ Preferences for On-Body, In-Air, and On-
Wheelchair Gestures. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI °23). ACM, New York, NY, USA, Article 78,
16 pages. https://doi.org/10.1145/3544548.3580929

[5] Andreas Braun, Sebastian Frank, Martin Majewski, and Xiaofeng Wang. 2015.
CapSeat: Capacitive Proximity Sensing for Automotive Activity Recognition. In
Proceedings of the 7th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI ’15). ACM, New York, NY, USA,
225-232. https://doi.org/10.1145/2799250.2799263

[6] Philipp Brauner, Julia van Heek, Martina Ziefle, Nur Al-huda Hamdan, and Jan
Borchers. 2017. Interactive FUrniTURE: Evaluation of Smart Interactive Textile
Interfaces for Home Environments. In Proceedings of the 2017 ACM International
Conference on Interactive Surfaces and Spaces (ISS °17). ACM, New York, NY, USA,
151-160. https://doi.org/10.1145/3132272.3134128

[7] Xiang Cao and Shumin Zhai. 2007. Modeling Human Performance of Pen
Stroke Gestures. In Proceedings of the SIGCHI Conference on Human Factors in

N,


http://www.eed.usv.ro/~vatavu/projects/2024-GESTURES-CHAIR
http://www.eed.usv.ro/~vatavu/projects/2024-GESTURES-CHAIR
https://doi.org/10.1145/2493190.2494435
https://doi.org/10.1145/2493190.2494435
https://doi.org/10.1145/2641730.2641731
https://doi.org/10.1145/2851581.2892505
https://doi.org/10.1145/2851581.2892505
https://doi.org/10.1145/3544548.3580929
https://doi.org/10.1145/2799250.2799263
https://doi.org/10.1145/3132272.3134128

Computing Systems (CHI ’07). ACM, New York, NY, USA, 1495-1504. https:
//doi.org/10.1145/1240624.1240850

Patrick Carrington, Amy Hurst, and Shaun K. Kane. 2014. The Gest-Rest: A
Pressure-Sensitive Chairable Input Pad for Power Wheelchair Armrests. In
Proceedings of the 16th International ACM SIGACCESS Conference on Computers
& Accessibility (ASSETS °14). ACM, New York, NY, USA, 201-208. https://doi.
org/10.1145/2661334.2661374

Michael Chamunorwa, Mikolaj P. Wozniak, Susanna Kramer, Heiko Miiller, and
Susanne Boll. 2023. An Empirical Comparison of Moderated and Unmoderated
Gesture Elicitation Studies on Soft Surfaces and Objects for Smart Home Control.
Proc. ACM Hum.-Comput. Interact. 7, MHCI, Article 198 (sep 2023), 24 pages.
https://doi.org/10.1145/3604245

Xiang ’Anthony’ Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and
Scott E. Hudson. 2014. Air+touch: Interweaving Touch & in-Air Gestures. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (UIST '14). ACM, New York, NY, USA, 519-525. https://doi.org/10.
1145/2642918.2647392

Yi Fei Cheng, Tiffany Luong, Andreas Rene Fender, Paul Streli, and Christian
Holz. 2022. ComforTable User Interfaces: Surfaces Reduce Input Error, Time,
and Exertion for Tabletop and Mid-air User Interfaces. In Proceedings of the 2022
IEEE International Symposium on Mixed and Augmented Reality (ISMAR °22).
IEEE, USA, 150-159. https://doi.org/10.1109/ISMAR55827.2022.00029

Rune Haubo B. Christensen. 2022. ordinal—Regression Models for Ordinal Data.
https://CRAN.R-project.org/package=ordinal version 2022.11-16.

Rune Haubo Bojesen Christensen. 2023. Package ’ordinal’. Regression Models
for Ordinal Data. https://CRAN.R-project.org/package=ordinal. Accessed Dec.
2023.

Mauricio Cirelli and Ricardo Nakamura. 2014. A Survey on Multi-Touch Gesture
Recognition and Multi-Touch Frameworks. In Proceedings of the 9th ACM Int.
Conference on Interactive Tabletops and Surfaces (ITS '14). ACM, New York, NY,
USA, 35-44. https://doi.org/10.1145/2669485.2669509

Ida Damen, Daphne Menheere, Carine Lallemand, and Steven Vos. 2020. Ivy:
Reading a Critical Design for Sedentary Behavior in the Office Context. In
Companion Publication of the 2020 ACM Designing Interactive Systems Conference
(DIS’ 20 Companion). ACM, New York, NY, USA, 7-12. https://doi.org/10.1145/
3393914.3395893

Carlos Henrique De Aguiar, Reza Fateminasab, Chase G. Frazelle, Ryan Scott,
Yixiao Wang, Michael B. Wooten, Keith E. Green, and Ian D. Walker. 2016. The
Networked, Robotic Home+ Furniture Suite: A Distributed, Assistive Technology
Facilitating Aging in Place. In Proceedings of the 2016 IEEE International Confer-
ence on Automation Science and Engineering (CASE ’16). IEEE, USA, 1067-1072.
https://doi.org/10.1109/COASE.2016.7743522

Florence de Dampierre. 2006. Chairs: A History. Harry N. Abrams, Inc., New
York, NY, USA.

Alex Endert, Patrick Fiaux, Haeyong Chung, Michael Stewart, Christopher An-
drews, and Chris North. 2011. ChairMouse: Leveraging Natural Chair Rotation
for Cursor Navigation on Large, High-Resolution Displays. In CHI '11 Extended
Abstracts on Human Factors in Computing Systems (CHI EA ’11). ACM, New
York, NY, USA, 571-580. https://doi.org/10.1145/1979742.1979628

Jheanel E. Estrada and Larry A. Vea. 2020. Real-Time Human Sitting Position
Recognition Using Wireless Sensors. In Proceedings of the 2nd International
Conference on Image, Video and Signal Processing (IVSP "20). ACM, New York,
NY, USA, 133-137. https://doi.org/10.1145/3388818.3393714

Charlotte Fiell and Peter Fiell. 2017. 1000 Chairs. Taschen America, Los Angeles,
CA, USA. https://www.taschen.com/en/books/architecture-design/49357/1000-
chairs-revised-and-updated-edition/

Jacob Freiberg, Alexandra Kitson, and Bernhard E. Riecke. 2017. Development
and Evaluation of a Hands-Free Motion Cueing Interface for Ground-based
Navigation. In Proceedings of IEEE Virtual Reality (VR ’17). IEEE, USA, 273-274.
https://doi.org/10.1109/VR.2017.7892282

Ferdinand Fuhrmann and Rene Kaiser. 2014. Multimodal Interaction for Future
Control Centers: An Interactive Demonstrator. In Proceedings of the 16th Inter-
national Conference on Multimodal Interaction (ICMI °14). ACM, New York, NY,
USA, 66-67. https://doi.org/10.1145/2663204.2669620

Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Ges-
tures for Smart Rings: Empirical Results, Insights, and Design Implications. In
Proceedings of the Designing Interactive Systems Conference (DIS °18). ACM, New
York, NY, USA, 623-635. https://doi.org/10.1145/3196709.3196741
Bogdan-Florin Gheran, Santiago Villarreal-Narvaez, Radu-Daniel Vatavu, and
Jean Vanderdonckt. 2022. RepliGES and GEStory: Visual Tools for Systematizing
and Consolidating Knowledge on User-Defined Gestures. In Proceedings of the
2022 International Conference on Advanced Visual Interfaces (AVI 2022). ACM,
New York, NY, USA, Article 5, 9 pages. https://doi.org/10.1145/3531073.3531112
Yolanda Gil. 2020. Keynote Speaker: Yolanda Gil. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
"20). ACM, New York, NY, USA, 4. https://doi.org/10.1145/3394486.3407094
Daniele Giunchi, Alejandro Sztrajman, Stuart James, and Anthony Steed. 2021.
Mixing Modalities of 3D Sketching and Speech for Interactive Model Retrieval in

Take a Seat, Make a Gesture: Charting User Preferences for On-Chair and From-Chair Gesture Input

[27]

[28

[29

[30

[31]

[32]

[33

[34

[35

[36]

[37

[38

[39

[40]

[41

[42]

[43

[44

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Virtual Reality. In Proceedings of the ACM International Conference on Interactive
Media Experiences (IMX "21). ACM, New York, NY, USA, 144-155. https://doi.
org/10.1145/3452918.3458806

Google for Developers. 2023. SensorEvent | Android Developers. https://
developer.android.com/reference/android/hardware/SensorEvent. Accessed
Dec. 2023.

Ge Guo, Gilly Leshed, Trevor Pinch, and Keith Evan Green. 2022. SocialStools:
A Playful, Socio-Spatial Interface for Fostering Togetherness Across Strangers.
In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI EA °22). ACM, New York, NY, USA, Article 173, 5 pages. https:
//doi.org/10.1145/3491101.3519877

Kilem Li Gwet. 2010. Computing Inter-Rater Reliability and its Variance in
the Presence of High Agreement. Brit. J. Math. Statist. Psych. 61 (2010), 29-48.
https://doi.org/10.1348/000711006X126600

Kilem Li Gwet. 2019. irrCAC-benchmarking. https://cran.r-project.org/web/
packages/irrCAC/vignettes/benchmarking.html. Accessed Dec. 2023.
Abraham M. Hashemian, Ashu Adhikari, Ernst Kruijff, Markus von der Heyde,
and Bernhard E. Riecke. 2023. Leaning-Based Interfaces Improve Ground-Based
VR Locomotion in Reach-the-Target, Follow-the-Path, and Racing Tasks. IEEE
Transactions on Visualization and Computer Graphics 29, 3 (2023), 1748-1768.
https://doi.org/10.1109/TVCG.2021.3131422

Abraham M. Hashemian, Matin Lotfaliei, Ashu Adhikari, Ernst Kruijff, and
Bernhard E. Riecke. 2022. HeadJoystick: Improving Flying in VR Using a Novel
Leaning-Based Interface. IEEE Transactions on Visualization and Computer
Graphics 28, 4 (2022), 1792-1809. https://doi.org/10.1109/TVCG.2020.3025084
Sunao Hashimoto, Ryohei Suzuki, Youichi Kamiyama, Masahiko Inami, and
Takeo Igarashi. 2013. LightCloth: Senseable Illuminating Optical Fiber Cloth for
Creating Interactive Surfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 603-606.
https://doi.org/10.1145/2470654.2470739

Feng Hong, Shujuan You, Meiyu Wei, Yongtuo Zhang, and Zhongwen Guo. 2016.
MGRA: Motion Gesture Recognition via Accelerometer. Sensors 16, 4 (2016),
530. https://doi.org/10.3390/516040530

Mark Hopkins and Jocelyn Berrendonner. 2023.  Accelerometer thresh-
olds. https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/
accelerometer-thresholds. Accessed Dec. 2023.

Masoumehsadat Hosseini, Tjado Thmels, Zigian Chen, Marion Koelle, Heiko
Miiller, and Susanne Boll. 2023. Towards a Consensus Gesture Set: A Survey
of Mid-Air Gestures in HCI for Maximized Agreement Across Domains. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(CHI °23). ACM, New York, NY, USA, Article 311, 24 pages. https://doi.org/10.
1145/3544548.3581420

Hessam Jahani and Manolya Kavakli. 2018. Exploring a User-Defined Gesture
Vocabulary for Descriptive Mid-air Interactions. Cognition, Technology & Work
20 (2018), 11-22. https://doi.org/10.1007/s10111-017-0444-0

Sujin Jang, Wolfgang Stuerzlinger, Satyajit Ambike, and Karthik Ramani. 2017.
Modeling Cumulative Arm Fatigue in Mid-Air Interaction Based on Perceived
Exertion and Kinetics of Arm Motion. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA,
3328-3339. https://doi.org/10.1145/3025453.3025523

Shaun K. Kane, Jacob O. Wobbrock, and Richard E. Ladner. 2011. Usable Gestures
for Blind People: Understanding Preference and Performance. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI "11). ACM,
New York, NY, USA, 413-422. https://doi.org/10.1145/1978942.1979001

Md. Nafiz Hasan Khan, Carman Neustaedter, and Alissa Antle. 2019. Flight Chair:
An Interactive Chair for Controlling Emergency Service Drones. In Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI EA ’19). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3290607.3313031

Christine Kiihnel, Tilo Westermann, Fabian Hemmert, Sven Kratz, Alexander
Miiller, and Sebastian Méller. 2011. I'm Home: Defining and Evaluating a Gesture
Set for Smart-Home Control. Int. J. of Human-Computer Studies 69, 11 (2011),
693-704. https://doi.org/10.1016/].ijhcs.2011.04.005

Alexandra Kitson, Abraham M. Hashemian, Ekaterina R. Stepanova, Ernst
Kruijff, and Bernhard E. Riecke. 2017. Comparing Leaning-based Motion
Cueing Interfaces for Virtual Reality Locomotion. In Proceedings of the 2017
IEEE Symposium on 3D User Interfaces (3DUI ’17). IEEE, USA, 73-82. https:
//doi.org/10.1109/3DUL2017.7893320

Alexandra Kitson, Abraham M. Hashemian, Ekaterina R. Stepanova, Ernst Krui-
jff, and Bernhard E. Riecke. 2017. Lean Into It: Exploring Leaning-based Motion
Cueing Interfaces for Virtual Reality Movement. In Proceedings of IEEE Virtual
Reality (VR ’17). IEEE, USA, 215-216. https://doi.org/10.1109/VR.2017.7892253
Alexandra Kitson, Bernhard E. Riecke, Abraham M. Hashemian, and Carman
Neustaedter. 2015. NaviChair: Evaluating an Embodied Interface Using a Point-
ing Task to Navigate Virtual Reality. In Proceedings of the 3rd ACM Sympo-
sium on Spatial User Interaction (SUI ’15). ACM, New York, NY, USA, 123-126.
https://doi.org/10.1145/2788940.2788956


https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.1145/2661334.2661374
https://doi.org/10.1145/2661334.2661374
https://doi.org/10.1145/3604245
https://doi.org/10.1145/2642918.2647392
https://doi.org/10.1145/2642918.2647392
https://doi.org/10.1109/ISMAR55827.2022.00029
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal
https://doi.org/10.1145/2669485.2669509
https://doi.org/10.1145/3393914.3395893
https://doi.org/10.1145/3393914.3395893
https://doi.org/10.1109/COASE.2016.7743522
https://doi.org/10.1145/1979742.1979628
https://doi.org/10.1145/3388818.3393714
https://www.taschen.com/en/books/architecture-design/49357/1000-chairs-revised-and-updated-edition/
https://www.taschen.com/en/books/architecture-design/49357/1000-chairs-revised-and-updated-edition/
https://doi.org/10.1109/VR.2017.7892282
https://doi.org/10.1145/2663204.2669620
https://doi.org/10.1145/3196709.3196741
https://doi.org/10.1145/3531073.3531112
https://doi.org/10.1145/3394486.3407094
https://doi.org/10.1145/3452918.3458806
https://doi.org/10.1145/3452918.3458806
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/reference/android/hardware/SensorEvent
https://doi.org/10.1145/3491101.3519877
https://doi.org/10.1145/3491101.3519877
https://doi.org/10.1348/000711006X126600
https://cran.r-project.org/web/packages/irrCAC/vignettes/benchmarking.html
https://cran.r-project.org/web/packages/irrCAC/vignettes/benchmarking.html
https://doi.org/10.1109/TVCG.2021.3131422
https://doi.org/10.1109/TVCG.2020.3025084
https://doi.org/10.1145/2470654.2470739
https://doi.org/10.3390/s16040530
https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/accelerometer-thresholds
https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/accelerometer-thresholds
https://doi.org/10.1145/3544548.3581420
https://doi.org/10.1145/3544548.3581420
https://doi.org/10.1007/s10111-017-0444-0
https://doi.org/10.1145/3025453.3025523
https://doi.org/10.1145/1978942.1979001
https://doi.org/10.1145/3290607.3313031
https://doi.org/10.1145/3290607.3313031
https://doi.org/10.1016/j.ijhcs.2011.04.005
https://doi.org/10.1109/3DUI.2017.7893320
https://doi.org/10.1109/3DUI.2017.7893320
https://doi.org/10.1109/VR.2017.7892253
https://doi.org/10.1145/2788940.2788956

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

(45]

(46

(47

=
&

(49

(50

[51

(52]

(54]

[55

[56

[57

[58

[59

(60

(61

[62

Panayiotis Koutsabasis and Panagiotis Vogiatzidakis. 2019. Empirical Research
in Mid-Air Interaction: A Systematic Review. International Journal of Hu-
man—Computer Interaction 35, 18 (2019), 1747-1768. https://doi.org/10.1080/
10447318.2019.1572352

Sven Kratz and Jason Wiese. 2016. GestureSeg: Developing a Gesture Seg-
mentation System Using Gesture Execution Phase Labeling by Crowd Work-
ers. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering In-
teractive Computing Systems (EICS ’16). ACM, New York, NY, USA, 61-72.
https://doi.org/10.1145/2933242.2933261

Mike Lambeta, Matt Dridger, Paul White, Jesslyn Janssen, and Ahmad Byagowi.
2016. Haptic Wheelchair. In ACM SIGGRAPH 2016 Posters (SIGGRAPH ’16). ACM,
New York, NY, USA, Article 90, 2 pages. https://doi.org/10.1145/2945078.2945168
Sang-Su Lee, Jeonghun Chae, Hyunjeong Kim, Youn-kyung Lim, and Kun-
pyo Lee. 2013. Towards More Natural Digital Content Manipulation via User
Freehand Gestural Interaction in a Living Room. In Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13). ACM, New York, NY, USA, 617-626. https://doi.org/10.1145/
2493432.2493480

Sang-Su Lee, Sohyun Kim, Bopil Jin, Eunji Choi, Boa Kim, Xu Jia, Daeeop
Kim, and Kun-pyo Lee. 2010. How Users Manipulate Deformable Displays as
Input Devices. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '10). ACM, New York, NY, USA, 1647-1656. https:
//doi.org/10.1145/1753326.1753572

Young Suk Lee and Daniel Saakes. 2021. “Footsie”: Exploring Physical Human-
Machine-Interaction through Flirtatious Furniture. In Proceedings of the 15th
International Conference on Tangible, Embedded, and Embodied Interaction (TEI
"21). ACM, New York, NY, USA, Article 79, 4 pages. https://doi.org/10.1145/
3430524.3444639

Young Suk Lee and Daniel Saakes. 2022. “Téte-a-Téte 22”: Mediating Intimate
Relationship through Expressive Digital Interaction. In Extended Abstracts of
the 2022 CHI Conference on Human Factors in Computing Systems (CHI EA ’22).
ACM, New York, NY, USA, Article 194, 4 pages. https://doi.org/10.1145/3491101.
3519889

Luis A. Leiva, Daniel Martin-Albo, Réjean Plamondon, and Radu-Daniel Vatavu.
2018. KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times.
In Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 239, 12 pages. https://doi.org/10.
1145/3173574.3173813

Qi Feng Liu, Keiko Katsuragawa, and Edward Lank. 2019. Eliciting Wrist and
Finger Gestures to Guide Recognizer Design. In Proceedings of Graphics Interface
(GI ’19). Canadian Information Processing Society, Canada, 9 pages. https:
//doi.org/10.20380/GI2019.09

David Mace, Wei Gao, and Ayse Coskun. 2013. Accelerometer-Based Hand
Gesture Recognition Using Feature Weighted Naive Bayesian Classifiers and
Dynamic Time Warping. In Companion Publication of the 2013 International
Conference on Intelligent User Interfaces (IUI 13 Companion). ACM, New York,
NY, USA, 83-84. https://doi.org/10.1145/2451176.2451211

Nathan Magrofuoco, Paolo Roselli, and Jean Vanderdonckt. 2021. Two-
Dimensional Stroke Gesture Recognition: A Survey. ACM Comput. Surv. 54, 7,
Article 155 (jul 2021), 36 pages. https://doi.org/10.1145/3465400

Meethu Malu and Leah Findlater. 2015. Personalized, Wearable Control of
a Head-Mounted Display for Users with Upper Body Motor Impairments. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’'15). ACM, New York, NY, USA, 221-230. https://doi.org/10.1145/
2702123.2702188

Charles E. Matthews, Kong Y. Chen, Patty S. Freedson, Maciej S. Buchowski,
Bettina M. Beech, Russell R. Pate, and Richard P. Troiano. 2008. Amount of Time
Spent in Sedentary Behaviors in the United States, 2003-2004. Am J Epidemiol.
167, 7 (2008), 875-881. https://doi.org/10.1093/aje/kwm390

Slavomir Matuska, Martin Paralic, Robert Hudec, and Ondrej Krejcar. 2020.
A Smart System for Sitting Posture Detection Based on Force Sensors and
Mobile Application. Mobile Information Systems 2020 (jan 2020), 13 pages.
https://doi.org/10.1155/2020/6625797

David McNeill. 1992. Hand and Mind: What Gestures Reveal About Thought.
Vol. 27. University of Chicago Press, Chicago, IL, USA. https://worldcat.org/
en/title/24379126

Daphne Menheere, Ida Damen, Carine Lallemand, and Steven Vos. 2020. Ivy: A
Qualitative Interface to Reduce Sedentary Behavior in the Office Context. In
Companion Publication of the 2020 ACM Designing Interactive Systems Conference
(DIS’ 20 Companion). ACM, New York, NY, USA, 329-332. https://doi.org/10.
1145/3393914.3395822

Sari Merilampi, Kyle Mulholland, Venni Ihanakangas, Jonna Ojala, Pauli Valo,
and Johanna Virkki. 2019. A Smart Chair Physiotherapy Exergame for Fall
Prevention - User Experience Study. In Proceedings of the 7th IEEE International
Conference on Serious Games and Applications for Health (SeGAH ’19). IEEE, USA,
1-5. https://doi.org/10.1109/SeGAH.2019.8882482

Matthew Mosher, David Tinapple, Enrique Tomas, Keina Konno, Richi Owaki,
Yoshito Onishi, Ryo Kanda, Sheep, Akiko Takeshita, Tsubasa Nishi, Naoko

Andrei et al.

Shiomi, Kyle McDonald, Satoru Higa, Kazuhiro Jo, Yoko Ando, Kazunao Abe,
Takayuki Ito, Shannon Cuykendall, Ethan Soutar-Rau, and Thecla Schiphorst.
2016. Demo Hour. Interactions 23, 3 (apr 2016), 8—11. https://doi.org/10.1145/
2904383

Bilge Mutlu, Andreas Krause, Jodi Forlizzi, Carlos Guestrin, and Jessica Hodgins.
2007. Robust, Low-Cost, Non-Intrusive Sensing and Recognition of Seated
Postures. In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST *07). ACM, New York, NY, USA, 149-158. https:
//doi.org/10.1145/1294211.1294237

Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson.
2013. Memorability of Pre-Designed and User-Defined Gesture Sets. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 1099-1108. https://doi.org/10.1145/2470654.2466142
Masashi Okubo and Aya Fujimura. 2009. A Proposal of Estimation System for
Concentration Situation by Using Acceleration Sensor. In Proceedings of the 18th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN °09). IEEE, USA, 498-503. https://doi.org/10.1109/ROMAN.2009.
5326219

Takeshi Oozu, Aki Yamada, Yuki Enzaki, and Hiroo Iwata. 2016. Escaping Chair:
Furniture-Shaped Device Art. In ACM SIGGRAPH 2016 Posters (SSIGGRAPH ’16).
ACM, New York, NY, USA, Article 8, 2 pages. https://doi.org/10.1145/2945078.
2945086

Takeshi Oozu, Aki Yamada, Yuki Enzaki, and Hiroo Iwata. 2017. Escaping Chair:
Furniture-Shaped Device Art. In Proceedings of the 11th International Conference
on Tangible, Embedded, and Embodied Interaction (TEI '17). ACM, New York, NY,
USA, 403-407. https://doi.org/10.1145/3024969.3025064

Julius Panero and Martin Zelnik. 1979. Human Dimension & Interior Space: A
Source Book of Design Reference Standards. Watson-Guptill Publications, New
York, NY, USA. https://worldcat.org/title/5411702

Thomas V. Papakostas. 2006. Tactile Sensing in Intelligent Environments. In
Proceedings of the 2nd IET International Conference on Intelligent Environments
(IE °06). IET Digital Library, USA, 321. https://doi.org/10.1049/cp:20060658
Dimitris Papanikolaou, A.J. Bernheim Brush, and Asta Roseway. 2015. Body-
Pods: Designing Posture Sensing Chairs for Capturing and Sharing Implicit
Interactions. In Proceedings of the 9th International Conference on Tangible, Em-
bedded, and Embodied Interaction (TEI ’15). ACM, New York, NY, USA, 375-382.
https://doi.org/10.1145/2677199.2680591

Eva L. Parkhurst, Fernando Montalvo, Aman Behal, and Janan A. Smither. 2018.
Heuristic Evaluation of Compensations for a Wheelchair Mounted Robotic Arm.
In Proceedings of the Technology, Mind, and Society (TechMindSociety '18). ACM,
New York, NY, USA, Article 29, 1 pages. https://doi.org/10.1145/3183654.3183677
Anand Paul, Soon Ki Jung, Awais Ahmad, and Ganesh Kumar. 2019. Session
Details: Theme: Al and Agents: HCI - Smart Human Computer Interaction Track.
In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19). ACM, New York, NY, USA, 1 pages. https://doi.org/10.1145/3329370
Thammathip Piumsomboon, Adrian Clark, Mark Billinghurst, and Andy Cock-
burn. 2013. User-Defined Gestures for Augmented Reality. In Extended Abstracts
on Human Factors in Computing Systems (CHI EA ’13). ACM, New York, NY,
USA, 955-960. https://doi.org/10.1145/2468356.2468527

Katrin Plaumann, David Lehr, and Enrico Rukzio. 2016. Who Has the Force?
Solving Conlflicts for Multi User Mid-Air Gestures for TVs. In Proceedings of the
ACM International Conference on Interactive Experiences for TV and Online Video
(TVX ’16). ACM, New York, NY, USA, 25-29. https://doi.org/10.1145/2932206.
2932208

Stefan Poslad. 2009. Ubiquitous Computing: Smart Devices, Environments and
Interactions. John Wiley & Sons, United Kingdom. https://doi.org/10.1002/
9780470779446

Kathrin Probst, David Lindlbauer, Patrick Greindl, Markus Trapp, Michael Haller,
Bernhard Schwartz, and Andreas Schrempf. 2013. Rotating, Tilting, Bouncing:
Using an Interactive Chair to Promote Activity in Office Environments. In
Extended Abstracts on Human Factors in Computing Systems (CHI EA "13). ACM,
New York, NY, USA, 79-84. https://doi.org/10.1145/2468356.2468372

Kathrin Probst, David Lindlbauer, Michael Haller, Bernhard Schwartz, and
Andreas Schrempf. 2014. A Chair as Ubiquitous Input Device: Exploring
Semaphoric Chair Gestures for Focused and Peripheral Interaction. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 4097-4106. https://doi.org/10.1145/2556288.2557051
Julie Rico and Stephen Brewster. 2010. Usable Gestures for Mobile Interfaces:
Evaluating Social Acceptability. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA,
887-896. https://doi.org/10.1145/1753326.1753458

[79] Jaime Ruiz, Yang Li, and Edward Lank. 2011. User-Defined Motion Gestures for

Mobile Interaction. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’11). ACM, New York, NY, USA, 197-206. https:
//doi.org/10.1145/1978942.1978971
Witold Rybczynski. 2016. Now I Sit Me Down. From Klismos to Plastic Chair:
A Natural History. Farrar, Straus and Giroux, New York, NY, USA. https:
//worldcat.org/en/title/919105882


https://doi.org/10.1080/10447318.2019.1572352
https://doi.org/10.1080/10447318.2019.1572352
https://doi.org/10.1145/2933242.2933261
https://doi.org/10.1145/2945078.2945168
https://doi.org/10.1145/2493432.2493480
https://doi.org/10.1145/2493432.2493480
https://doi.org/10.1145/1753326.1753572
https://doi.org/10.1145/1753326.1753572
https://doi.org/10.1145/3430524.3444639
https://doi.org/10.1145/3430524.3444639
https://doi.org/10.1145/3491101.3519889
https://doi.org/10.1145/3491101.3519889
https://doi.org/10.1145/3173574.3173813
https://doi.org/10.1145/3173574.3173813
https://doi.org/10.20380/GI2019.09
https://doi.org/10.20380/GI2019.09
https://doi.org/10.1145/2451176.2451211
https://doi.org/10.1145/3465400
https://doi.org/10.1145/2702123.2702188
https://doi.org/10.1145/2702123.2702188
https://doi.org/10.1093/aje/kwm390
https://doi.org/10.1155/2020/6625797
https://worldcat.org/en/title/24379126
https://worldcat.org/en/title/24379126
https://doi.org/10.1145/3393914.3395822
https://doi.org/10.1145/3393914.3395822
https://doi.org/10.1109/SeGAH.2019.8882482
https://doi.org/10.1145/2904383
https://doi.org/10.1145/2904383
https://doi.org/10.1145/1294211.1294237
https://doi.org/10.1145/1294211.1294237
https://doi.org/10.1145/2470654.2466142
https://doi.org/10.1109/ROMAN.2009.5326219
https://doi.org/10.1109/ROMAN.2009.5326219
https://doi.org/10.1145/2945078.2945086
https://doi.org/10.1145/2945078.2945086
https://doi.org/10.1145/3024969.3025064
https://worldcat.org/title/5411702
https://doi.org/10.1049/cp:20060658
https://doi.org/10.1145/2677199.2680591
https://doi.org/10.1145/3183654.3183677
https://doi.org/10.1145/3329370
https://doi.org/10.1145/2468356.2468527
https://doi.org/10.1145/2932206.2932208
https://doi.org/10.1145/2932206.2932208
https://doi.org/10.1002/9780470779446
https://doi.org/10.1002/9780470779446
https://doi.org/10.1145/2468356.2468372
https://doi.org/10.1145/2556288.2557051
https://doi.org/10.1145/1753326.1753458
https://doi.org/10.1145/1978942.1978971
https://doi.org/10.1145/1978942.1978971
https://worldcat.org/en/title/919105882
https://worldcat.org/en/title/919105882

Take a Seat, Make a Gesture: Charting User Preferences for On-Chair and From-Chair Gesture Input

(81]

(82]

(83]

oo
=

[85

(86

%
=

(88

[89

[90]

)
2

[92

[93

[95

Samsung. 2023. Change the Screen Orientation on Your Galaxy Watch with Wear
OS. https://www.samsung.com/us/support/answer/ANS00090382. Accessed
Dec. 2023.

Akira Sasou. 2008. Head-Orientation-Estimation-Integrated Speech Recognition
for the Smart-Chair. In Proceedings of the 2nd International Symposium on Univer-
sal Communication. IEEE, USA, 482-489. https://doi.org/10.1109/ISUC.2008.44
Ovidiu-Andrei Schipor and Radu-Daniel Vatavu. 2018. Invisible, Inaudible, and
Impalpable: Users’ Preferences and Memory Performance for Digital Content
in Thin Air. IEEE Pervasive Computing 17, 04 (2018), 76-85. https://doi.org/10.
1109/MPRV.2018.2873856

Seiichi Serikawa and Lifeng Zhang. 2011. Proposal of a Touch Panel Switch
with the Function of Bending and Addition - One of a New User Interface. In
Proceedings of the 2nd International Conference on Instrumentation, Communi-
cations, Information Technology, and Biomedical Engineering. IEEE, USA, 8-13.
https://doi.org/10.1109/ICICI-BME.2011.6108580

Andy P. Siddaway, Alex M. Wood, and Larry V. Hedges. 2019. How to Do a Sys-
tematic Review: A Best Practice Guide for Conducting and Reporting Narrative
Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology 70,
1(2019), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803
Alexandru-Ionut Siean, Cristian Pamparau, Arthur Sluyters, Radu-Daniel
Vatavu, and Jean Vanderdonckt. 2023. Flexible Gesture Input with Radars: Sys-
tematic Literature Review and Taxonomy of Radar Sensing Integration in Ambi-
ent Intelligence Environments. Journal of Ambient Intelligence and Humanized
Computing 14 (2023), 7967-7981. https://doi.org/10.1007/s12652-023-04606-9
Sahil Singh Sodhi, Akash Singh Kunwar, Karan Dhingra, and G Suganya. 2017.
Smart Chair. In Proceedings of the 2017 International Conference on Inventive
Computing and Informatics (ICICI '17). IEEE, USA, 139-148. https://doi.org/10.
1109/ICICL.2017.8365324

Tap Systems, Inc. 2023. https://www.tapwithus.com/product/tap-strap-2. Ac-
cessed Dec. 2023.

Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo,
Corey R. Pittman, and Joseph J. LaViola Jr. 2017. Jackknife: A Reliable Recognizer
with Few Samples and Many Modalities. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA,
5850-5861. https://doi.org/10.1145/3025453.3026002

Shan-Yuan Teng, Da-Yuan Huang, Chi Wang, Jun Gong, Teddy Seyed, Xing-
Dong Yang, and Bing-Yu Chen. 2019. Aarnio: Passive Kinesthetic Force Output
for Foreground Interactions on an Interactive Chair. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 672, 13 pages. https://doi.org/10.1145/3290605.3300902
Reena Tripathi and Bindu Verma. 2023. Survey on Vision-based Dynamic Hand
Gesture Recognition. The Visual Computer (2023), 1-29. https://doi.org/10.
1007/s00371-023-03160-x

Emily N. Ussery, Geoffrey P. Whitfield, Janet E. Fulton, Deborah A. Galuska,
Charles E. Matthews, Peter T. Katzmarzyk, and Susan A. Carlson. 2021. Trends
in Self-Reported Sitting Time by Physical Activity Levels Among US Adults,
NHANES 2007/2008-2017/2018. Journal of Physical Activity and Health 18, S1
(2021), S74-S83. https://doi.org/10.1123/jpah.2021-0221

Julien Valentin, Vibhav Vineet, Ming-Ming Cheng, David Kim, Jamie Shotton,
Pushmeet Kohli, Matthias Niefiner, Antonio Criminisi, Shahram Izadi, and Philip
Torr. 2015. SemanticPaint: Interactive Segmentation and Learning of 3D World.
In ACM SIGGRAPH 2015 Talks (SIGGRAPH ’15). ACM, New York, NY, USA,
Article 75, 1 pages. https://doi.org/10.1145/2775280.2792589

Jeroen Vanattenhoven, David Geerts, Jean Vanderdonckt, and Jorge-Luis Pérez-
Medina. 2019. The Impact of Comfortable Viewing Positions on Smart TV
Gestures. In Proceedings of the 2019 International Conference on Information
Systems and Computer Science (INCISCOS ’19). IEEE, USA, 296-303. https:
//doi.org/10.1109/INCISCOS49368.2019.00054

Radu-Daniel Vatavu. 2013. A Comparative Study of User-Defined Handheld vs.
Freehand Gestures for Home Entertainment Environments. Journal of Ambient
Intelligence and Smart Environments 5, 2 (2013), 187-211. https://doi.org/10.
3233/AIS-130200

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

[96] Radu-Daniel Vatavu. 2019. The Dissimilarity-Consensus Approach to Agree-

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[110

[111

]

]

]

ment Analysis in Gesture Elicitation Studies. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI '19). ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3290605.3300454

Radu-Daniel Vatavu. 2023. IFAD Gestures: Understanding Users’ Gesture Input
Performance with Index-Finger Augmentation Devices. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI ’23). ACM, New
York, NY, USA, Article 576, 17 pages. https://doi.org/10.1145/3544548.3580928
Radu-Daniel Vatavu and Ovidiu-Ciprian Ungurean. 2022. Understanding Ges-
ture Input Articulation with Upper-Body Wearables for Users with Upper-Body
Motor Impairments. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems (CHI °22). ACM, New York, NY, USA, Article 2, 16 pages.
https://doi.org/10.1145/3491102.3501964

Radu-Daniel Vatavu and Jacob O. Wobbrock. 2022. Clarifying Agreement Calcu-
lations and Analysis for End-User Elicitation Studies. ACM Trans. Comput.-Hum.
Interact. 29, 1, Article 5 (jan 2022), 70 pages. https://doi.org/10.1145/3476101
Rafael Veras, Gaganpreet Singh, Farzin Farhadi-Niaki, Ritesh Udhani,
Parth Pradeep Patekar, Wei Zhou, Pourang Irani, and Wei Li. 2021. Elbow-
Anchored Interaction: Designing Restful Mid-Air Input. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (CHI °21). ACM, New
York, NY, USA, Article 737, 15 pages. https://doi.org/10.1145/3411764.3445546
Santiago Villarreal-Narvaez, Arthur Sluyters, Jean Vanderdonckt, and Radu-
Daniel Vatavu. 2024. Brave New GES World: A Systematic Literature Review of
Gestures and Referents in Gesture Elicitation Studies. ACM Comput. Surv. 56, 5,
Article 128 (jan 2024), 55 pages. https://doi.org/10.1145/3636458

Santiago Villarreal-Narvaez, Jean Vanderdonckt, Radu-Daniel Vatavu, and Ja-
cob O. Wobbrock. 2020. A Systematic Review of Gesture Elicitation Studies:
What Can We Learn from 216 Studies?. In Proceedings of the 2020 ACM Designing
Interactive Systems Conference (DIS "20). ACM, New York, NY, USA, 855-872.
https://doi.org/10.1145/3357236.3395511

Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob.
Comput. Commun. Rev. 3, 3 (jul 1999), 3-11. https://doi.org/10.1145/329124.
329126

Daniel Wigdor and Dennis Wixon. 2011. Brave NUI World: Designing Natural
User Interfaces for Touch and Gesture (1st ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. https://dl.acm.org/doi/10.5555/1995309

Andrew D. Wilson and Aaron F. Bobick. 1999. Parametric Hidden Markov
Models for Gesture Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 21, 9 (1999), 884-900. https://doi.org/10.1109/34.790429
Jacob O. Wobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A. Myers. 2005.
Maximizing the Guessability of Symbolic Input. In CHI 05 Extended Abstracts
on Human Factors in Computing Systems (CHI EA ’05). ACM, New York, NY,
USA, 1869-1872. https://doi.org/10.1145/1056808.1057043

Jacob O. Wobbrock and Julie A. Kientz. 2016. Research Contributions in Human-
Computer Interaction. Interactions 23, 3 (April 2016), 38-44. https://doi.org/10.
1145/2907069

Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009.
User-Defined Gestures for Surface Computing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI *09). ACM, New York,
NY, USA, 1083-1092. https://doi.org/10.1145/1518701.1518866

Haijun Xia, Michael Glueck, Michelle Annett, Michael Wang, and Daniel Wigdor.
2022. Iteratively Designing Gesture Vocabularies: A Survey and Analysis of
Best Practices in the HCI Literature. ACM Trans. Comput.-Hum. Interact. 29, 4,
Article 37 (2022), 54 pages. https://doi.org/10.1145/3503537

Lin Yang, Chao Cao, Elizabeth D. Kantor, Long H. Nguyen, Xiaobin Zheng,
Yikyung Park, Edward L. Giovannucci, Charles E. Matthews, Graham A. Colditz,
and Yin Cao. 2019. Trends in Sedentary Behavior Among the US Population,
2001-2016. JAMA 321, 16 (04 2019), 1587-1597. https://doi.org/10.1001/jama.
2019.3636

Tonut-Alexandru Zaiti, Stefan Gheorghe Pentiuc, and Radu-Daniel Vatavu. 2015.
On Free-Hand TV Control: Experimental Results on User-Elicited Gestures
with Leap Motion. Personal and Ubiquitous Computing 19, 5-6 (2015), 821-838.
https://doi.org/10.1007/s00779-015-0863-y


https://www.samsung.com/us/support/answer/ANS00090382
https://doi.org/10.1109/ISUC.2008.44
https://doi.org/10.1109/MPRV.2018.2873856
https://doi.org/10.1109/MPRV.2018.2873856
https://doi.org/10.1109/ICICI-BME.2011.6108580
https://doi.org/10.1146/annurev-psych-010418-102803
https://doi.org/10.1007/s12652-023-04606-9
https://doi.org/10.1109/ICICI.2017.8365324
https://doi.org/10.1109/ICICI.2017.8365324
https://www.tapwithus.com/product/tap-strap-2
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/3290605.3300902
https://doi.org/10.1007/s00371-023-03160-x
https://doi.org/10.1007/s00371-023-03160-x
https://doi.org/10.1123/jpah.2021-0221
https://doi.org/10.1145/2775280.2792589
https://doi.org/10.1109/INCISCOS49368.2019.00054
https://doi.org/10.1109/INCISCOS49368.2019.00054
https://doi.org/10.3233/AIS-130200
https://doi.org/10.3233/AIS-130200
https://doi.org/10.1145/3290605.3300454
https://doi.org/10.1145/3544548.3580928
https://doi.org/10.1145/3491102.3501964
https://doi.org/10.1145/3476101
https://doi.org/10.1145/3411764.3445546
https://doi.org/10.1145/3636458
https://doi.org/10.1145/3357236.3395511
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/329124.329126
https://dl.acm.org/doi/10.5555/1995309
https://doi.org/10.1109/34.790429
https://doi.org/10.1145/1056808.1057043
https://doi.org/10.1145/2907069
https://doi.org/10.1145/2907069
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/3503537
https://doi.org/10.1001/jama.2019.3636
https://doi.org/10.1001/jama.2019.3636
https://doi.org/10.1007/s00779-015-0863-y

	Abstract
	1 Introduction
	1.1 Hand-Chair Gestures
	1.2 Contributions

	2 Chairs in Interactive Systems: A Systematic Literature Review
	2.1 SLR Design and Implementation
	2.2 Results
	2.3 Summary

	3 Study
	3.1 Participants
	3.2 Procedure
	3.3 Design and Measures
	3.4 Statistical Analysis

	4 Results
	4.1 Gesture Articulation Characteristics
	4.2 Kinematic profiles of gesture articulation
	4.3 Gesture Ratings
	4.4 Consensus Analysis and Representative Hand-Chair Gestures

	5 Discussion
	5.1 Design Implications for Hand-Chair Gesture Interactions
	5.2 Limitations and Next Steps

	6 Conclusion
	Acknowledgments
	References

