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Figure 1: We examine users’ preferences for chair-based input of two distinct and complementary types: on-chair surface

gestures performed on the chair’s structural parts and from-chair mid-air gestures in the user’s peripersonal space, around the

chair. This figure showcases such “hand-chair gestures,” highlighting variations in gesture type, extent, and number of hands.

ABSTRACT

We explore the chair as a referential frame for facilitating hand

gesture input to control interactive systems. First, we conduct a Sys-

tematic Literature Review on the topic of interactions supported by

chairs, and uncover little research on harnessing everyday chairs for

input, limited to chair rotation and tiltingmovements. Subsequently,

to understand end users’ preferences for gestures performed on

the chair’s surface (i.e., on-chair gestures) and in the space around

the chair (i.e., from-chair gestures), we conduct an elicitation study

involving 54 participants, 3 widespread chair variations—armchair,

office-chair, and stool,—and 15 referents encompassing common
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actions, digital content types, and navigation commands for in-

teractive systems. Our findings reveal a preference for unimanual

gestures implemented with strokes, hand poses, and touch input,

with specific nuances and kinematic profiles according to the chair

type. Based on our findings, we propose a range of implications for

interactive systems leveraging on-chair and from-chair gestures.
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1 INTRODUCTION

Chairs are an integral part of our daily lives as they support a signifi-

cant portion of human activities, and numerous studies [57, 92, 110]

have consistently reported that people spend an average of seven

hours a day sitting. Whether it is the office chair at work, seats on

buses, trains, or in waiting rooms, or the cozy armchair at home,

a substantial portion of the day involves activities that require or

benefit from some form of a chair. It is thus little surprise that chairs

have also caught the attention of HCI researchers, who have lever-

aged their form factors for interactive systems. For example, the sim-

ple body movements of tilting or rotating a chair can be harnessed

to control remote devices, from desktop computers [76, 77] and

smartphones [90] to drones [40] and wall displays [18]. At the same

time, a complementary line of work has focused on sensing users’

body postures while seated to enhance work efficiency [58], bolster

comfort and ergonomic support [63], promote driving safety [5],

and facilitate social communication [70], respectively.

However, prior research on chairs for interactive systems has

been limited to simple body movements and poses for tilting, rotat-

ing, rolling, or merely sitting in a chair [18, 40, 76, 77, 90], which

constitute a limited interaction space compared to the richer pos-

sibilities offered by more expressive gesture modalities, such as

touch [14], stroke-gesture [55], andmid-air [36] input. In fact, chairs

offer a remarkably versatile input space, spanning from touch input

on their structural parts, e.g., the armrest or the backseat, to hand

movements performed around the chair, e.g., above the armrest

or under the seat. In this space, the chair stands as a referential

frame for gesture articulation. As we show in this paper, gesture

input has been little examined in reference to chairs, yet it pos-

sesses distinctive nuances by being performed from a comfortable,

seated position and leveraging the chair’s form factor. Thus, we ad-

vocate for the importance of “hand-chair gestures,” a unique blend

of hands’ dexterous movements and chairs’ structural elements.

1.1 Hand-Chair Gestures

Hand-chair gestures are hand movements and poses performed

in relation to the chair’s structural parts or the seated position,

which become the gesture support and reference. Following this

operational definition, we make a key distinction between on-chair
and from-chair gestures, each harnessing complementary aspects

of the chair’s potential for input, as follows.

• On-chair gestures utilize the chair’s surface and structural

elements, enabling touch, stroke, and grasp input, e.g., grasp-

ing the seat of a stool (Figure 1a), touching the backseat

of an office-chair (Figure 1b), or swiping on the armrest of

an armchair (Figure 1c) for fast and always-available tactile

input to control an interactive system.

• From-chair gestures are non-contact, performed around the

chair in the user’s peripersonal space, e.g., turning a knob

in mid-air with the elbow supported (Figure 1d), hovering a

hand above the armrest (Figure 1e), or performing bimanual

input while in the stable, seated position (Figure 1f).

While on-chair gestures transform the chair into an interactive

surface, from-chair gestures extend the interactions beyond the

chair’s boundaries. Unfortunately, a systematic examination of

such hand-chair gestures, where sitting in a chair enables a unique

fusion of the user’s highly dexterous hand movements and the

chair’s referential frame, has been lacking, despite the overall large

interest in gesture input for interactive systems [36, 45, 55, 102].

1.2 Contributions

In this paper, we make the following contributions:

(1) We report results from a Systematic Literature Review (SLR)

about interactions with computer systems supported by

chairs for everyday users, and highlight limited research,

primarily centered on tilting or rotating the chair.

(2) To understand user preferences and perceptions of hand-

chair gestures, we conduct an end-user elicitation study in-

volving 54 participants, 3 commonly encountered chair vari-

ations—the cozy armchair , the ergonomic office-chair , and
the modest stool,—and 15 referents representing common

actions, digital content types, and navigation commands for

interactive systems. Our results highlight a preference for

unimanual gestures involving strokes, poses, and touch input

with specific kinematic profiles per chair type.We also report

high perceived ease of use, recall, and social acceptability of

hand-chair gestures.

(3) Based on our empirical findings, we propose actionable in-

sights for integrating chairs as hand gesture sensing devices

into interactive systems, represented by a set of six design

implications, to unlock the potential of hand-chair gestures

performed on and around the chair. Furthermore, to fos-

ter more work in this direction, we release our extensive

dataset (1,620 numerical gestures with companion source

code) freely available for research purposes.

2 CHAIRS IN INTERACTIVE SYSTEMS: A

SYSTEMATIC LITERATURE REVIEW

A large body of literature exists on gesture interaction, including

examinations of various gesture types [14, 45, 104], recognition

techniques [14, 55, 91], and gesture set designmethods [102, 109], to

which we relate from the perspective offered by hand-chair gestures

and the seated position. With respect to the latter, prior work has

examined mid-air gestures designed to be used when in a relaxed

state [74, 94, 100, 111]. For example, Zaiţi et al. [111] explored users’
preferences for mid-air input during television watching, which

they characterized as low-effort gestures for lean-back interaction.

Veras et al.’s [100] mid-air spherical input space, where forearm

angles are mapped to screen coordinates, fosters restful interaction

from the couch: the arm rested, users are more likely to employ the

forearm and wrist, not the whole arm, for restful mid-air elbow-

anchored motion. Şiean et al. [86] explored locations in a living

room where gesture sensing could be integrated for such restful

input, among which the couch armrest and the coffee table for a

sitting user. Additionally, when the user is sitting at a table, the

surface of the tabletop affords even more ergonomic postures and

resting opportunities for the arm and hand [11]. Such prior work,

centered on the specific context of a user sitting, provides restful

design alternatives to mid-air gesture-based interaction, specifically

addressing movement fatigue [38].

Besides expert design, understanding users’ preferences for intu-

itive and easy to use gesture commands has been primarily based
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on the gesture elicitation method [108]. For example, Vatavu [95]

used the method to compare mid-air gestures with input using

the TV remote control for home entertainment, and found that

familiar point & click and drag & drop interaction models were

preferred. By capitalizing on the gesture elicitation method, Ja-

hani and Kavakli [37] proposed a variation based on descriptive

mid-air gestures, while Lee et al. [48] combined elicitation with

the Wizard-of-Oz approach to enable groups of two people, acting

as performer and recognizer, to develop gestures through mutual

conversation. We refer to Villarreal et al. [101, 102] for reviews of
gesture elicitation studies and Hosseini et al. [36] for an analysis

of mid-air gestures and a consensus gesture set compiled across

different application domains.

In this rich literature of gesture-based interaction, chairs oc-

cur only sporadically and, when they do, rarely serve an interac-

tive purpose. Nonetheless, prior work did examine interactions

involving chairs, mostly represented by chair titling, rotation, and

rolling [18, 40, 76, 77, 90]. To understand the extent of such contribu-

tions, we conducted a Systematic Literature Review (SLR) centered

on interactions where the chair plays an active role; see next.

2.1 SLR Design and Implementation

We followed Siddaway et al.’s [85] SLR best practice guidelines

to identify, screen, and confirm the eligibility of scientific contri-

butions relevant to our scope of investigation, which we applied

to bibliographic records available from the ACM Digital Library,

the most comprehensive scientific database exclusively dedicated

to computing,
1
and IEEE Xplore, the flagship digital platform for

electrical engineering and computer science.
2
The following query,

"query": {Abstract: ((chair* OR armchair* OR stool*)
AND (interaction OR interface))}

employing common chair type variations [17, 20, 80], yielded a total

of 607 results in ACM DL and 296 in IEEE Xplore.
3
In the initial

screening stage, we excluded a significant proportion (308/903=34.1%)
of these results representing proceedings entries, which ended up

in our list because of the use of the keyword “chair” with a dif-

ferent meaning than in our scope, e.g., Conference Chair. For the

remaining entries, we applied the following eligibility criteria (EC):

EC1. Peer-reviewed contributions only. We exclusively focused on

academic, peer-reviewed conference papers and journal arti-

cles. Additionally, we required that these papers be written

in English and available in full text. Based on this criterion,

we excluded 144 entries (15.9%), such as interviews [2], demo

hours [62], keynote abstracts [25], session introductions [72],

which featured the word “chair,” but with other meanings.

EC2. Specificity to seated users. We excluded papers that did not in-

volve seated users or where sitting in a chair was not at their

core. For example, we excluded a multimodal interface for

querying a database of 3D chair models [26] and a computer

vision technique designed for segmenting the environment

1
Noteworthy, the ACM Digital Library also includes references from other publishers,

such as Springer-Verlag, Elsevier, MIT Press, among others, making it a comprehensive

resource with over 700,000 records in the ACM Full-Text Collection; see details at

https://dl.acm.org/about/content.

2
Over 6 million records in electrical engineering and computers; https://ieeexplore.

ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore

3
We ran the query on April 6, 2023 (ACM DL) and November 7, 2023 (IEEE Xplore).

into object classes, including “floor,” “chair,” and “table” [93].

In total, 229 entries (25.4%) were excluded by this criterion.

EC3. Specificity to standard chairs for general use. Many results

mentioned wheelchairs when discussing accessibility, even

though their focus was not always the wheelchair itself.

To maintain our emphasis on everyday chairs for general

use, we excluded papers on instrumenting wheelchairs with

technology [47, 71] and interactions for wheelchair users [8],

since their scope was a specific user population. Furthermore,

on-wheelchair gesture input has been explored before [4, 8,

56]. Following this criterion, a total number of 138 entries

(15.3%) were excluded.

EC4. Specificity to chair interaction. Lastly, we excluded 56 con-

tributions (6.2%) not portraying interactions between users

and chairs or other systems, supported by chairs. These were

papers where chairs were employed as measurement instru-

ments [19] or papers that met all our previous criteria but

did not address actual user interactions, e.g., Lee et al.’s [51]
kinetic chairs that gradually become unstable to mediate

intimate relationships between partners.

After the eligibility step, we arrived at 28 papers. Out of these, we

excluded five [15, 21, 32, 43, 66] representing extensions or varia-

tions of the same works by the same authors [31, 42, 44, 60, 67]. Our

final dataset comprised 23 papers published between 2006 and 2023,

describing diverse interactive systems leveraging chairs. From these

papers, we extracted information about input and output modalities,

integrated technology, and user studies. Additionally, we utilized

Wobbrock and Kientz’s [107] categories of research contributions

in HCI to categorize previous contributions in chair-based inter-

action. Two researchers independently extracted this information.

The average Gwet’s [29] AC1 coefficient was .900 (SD=.085) with a

cumulative membership probability of 99.6% (SD=1.02%), indicating

an almost perfect level of consensus according to the Landoch-Koch

benchmarking scale [30]. The few discrepancies (accounting for

4.8% of the extracted information) were resolved via discussion

and, when consensus could not be reached by the two coders, by

majority vote with the intervention of a third researcher.

2.2 Results

Table 1 presents a summary of our findings. The most prevalent

contribution type was artifact, present in all the papers, followed

by empirical research (13/23=56.5%). Less commonly encountered

contributions included methodological and theoretical ones, each

present in five papers. The artifacts found many applications, from

smartphones [90] to desktop computers [76, 77], large displays [18],

drones [40], VR [31, 42, 44], entertainment [3, 33, 82, 84, 90], smart

furniture [6, 28, 50, 67, 69], sedentary behavior interventions [60,

61, 65, 76, 87], user monitoring [22, 87], and care homes [3, 16, 61].

We found that a large percentage (56.5%) of the interactions

featured in these papers centered around armchairs, followed by

office-chairs (26.1%) and stools (21.7%). The most prevalent input

modality was body posture adjustment (19/23=82.6%), exemplified

by leaning [31, 40, 42, 44, 61], tilting [31, 40, 44, 61, 76, 77, 90],

rocking [3, 65, 76, 77], or rotating [18, 22, 28, 31, 40, 42, 44, 65, 76, 77,

90] movements while seated. In contrast, touch [6, 84], mid-air [16,

22], pen [33], and hand-held [87] gestures, the norm for modern

https://dl.acm.org/about/content
https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
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Table 1: Summary findings of our Systematic Literature Review on chair-based interaction.

Chair type [%]
∗

Input modality Output modality

Integrated

technology
† Contribution type

‡
Gest.

§

Arm-

chair

[56.5%]

body posture adjustments [3,

16, 18, 22, 31, 40, 60, 61, 69, 90],

touch [6, 84], mid-air [16, 22],

voice input [82]

visual [16], audio [3],

haptic [22, 90], chair

self-adjustments

[6, 16, 60, 69]

sensing

[3, 16, 18, 22, 40, 60, 61,

69, 82, 84, 90],

actuation [6, 22, 60, 90],

other [3, 6, 16, 31]

artifact (all), empirical

[3, 6, 16, 18, 31, 61, 82, 90],

methodological [6, 16, 31,

90], theoretical [82, 84]

1-8

Office

chair

[26.1%]

body posture adjustments

[42, 50, 65, 76, 77, 87],

hand-held device [87]

visual [87], haptic [50],

chair self-adjustments

[50]

sensing [65, 76, 77, 87],

actuation [50],

other [42, 50, 87]

artifact (all), empirical

[42, 65, 77], methodologi-

cal [77], theoretical [50]

1-7

Stool

[21.7%] body posture adjustments

[28, 42, 44, 67], pen input [33]

visual [28, 33], chair

self-adjustments [67]

sensing [28, 33, 67],

actuation [67],

other [28, 33, 42, 44]

artifact (all), empirical

research [42, 44, 67],

theoretical [33, 67]

1-3

Notes: ∗One paper [42] featured both an office chair and a stool and, thus, the percentages in the Chair Type column, calculated out of a total

of 23 papers, do not sum up to 100%.
†Sensing technology included the Leap Motion controller, IMUs, pressure, ultrasonic, light, temperature,

and MEMS sensors, and was used in 78.3% of the artifacts. Actuation technologies, including DC, servo, and stepper motors, were present in

26.1% of the artifacts. Other integrated technology included audio speakers, diffusive optical fibers, fiducial markers, robotic arms, and textile

interfaces, present in 43.5% of the artifacts.
‡
According to the categories in [107] specifying research contribution types in HCI.

§
The number

of gestures used by the artifacts varied, e.g., the armchair interactive prototypes (first row) utilized between one and four gesture types.

interactive systems, were infrequently applied to chairs. Common

output modalities were chair self-adjustments (26.1%), where the
chairs changed shape or moved autonomously; see Table 1.

Our results also revealed that only thirteen of the papers ex-

amined in our SLR [3, 6, 16, 18, 31, 42, 44, 61, 65, 67, 77, 82, 90]

conducted user studies, which involved between 2 and 30 partici-

pants (M=15.1, SD=7.4). For example, Brauner et al. [6] evaluated
three touch-based interactions (touching the fold, bending the fold,

and touching the stitches) performed with the index finger on a

swatch of armchair fabric, and reported a positive user experience

of controlling the armchair. Endert et al. [18] conducted an eval-

uation of chair rotation to facilitate cursor movements on a large

display, a technique designed to complement conventional mouse

input. The findings showed that users significantly reduced their

mouse movements and positively changed the way of accomplish-

ing the interactive task. Merilampi et al. [61] examined sedentary

behavior in the context of a smart chair prototype, which required

users to stand up and move to control a video game, e.g., stand

up, jump, and sit back on the chair. Other studies took a more in-

formal approach to evaluate chair interactions. For instance, Oozu

et al.’s [67] “Escaping Chair,” a stool designed to interact with by-

standers by moving away from them, underwent evaluation during

an exhibition event. Visitors, after interacting with the stool, re-

ported a sense of personified intentions in the chair and expressed

sympathy toward it. Overall, chair interactions evaluated in the

scientific literature have employed a limited range of gestures, from

as few as one [18, 50, 60, 67, 69, 82, 84] to as many as eight [31]

(Mdn=3, M=2.9, SD=2.1).

2.3 Summary

Our findings revealed that interactions with computer systems in-

volving the chair as a key element have been limited in both number

and scope. These interactions have primarily focused on body pos-
ture adjustments, e.g., for chair tilting and rotation-based input, and
leveraged chair self-adjustments in response. Thus, the prospective

interaction possibilities offered by the chair as a referential frame

for more dexterous, expressive, socially acceptable, and restful hand

gestures, in contrast to whole-body pose adjustments while seated,

remain largely untapped. In particular, on-chair gestures, which
transform the chair’s structural elements into interactive surfaces

for input, and from-chair gestures, which extend the interactions

beyond the chair’s physical boundaries, have received little atten-

tion. To understand users’ preferences for such hand-chair gesture

input, we conducted an end-user gesture elicitation study; see next.

3 STUDY

We conducted a study to obtain insights into users’ preferences

of hand-chair gesture input implemented with on-chair and from-
chair gestures. To this end, we utilized the end-user elicitation

method [99, 106, 108] with a mixed experiment design involving

three commonly encountered chair variations [17, 20], i.e., stool,
office-chair , and armchair .

3.1 Participants

Fifty-four people (45 self-identified as male and 9 as female), aged

between 18 and 44 years old (M=23.3, SD=5.6), participated in our

study following recruitment via a technical university mailing list

and convenience sampling. Participants reported regular use of

smartphones and laptops and an average daily sitting time of 7.5

hours (SD=2.2)—a significant portion of their day and in line with

the average sitting time, of approximately 7 hours per day, consis-

tently reported in large studies [57, 92, 110]. We randomly assigned

participants to one of three groups in our study—corresponding to

stool, office-chair , and armchair ,—with identical male-female ratios
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Table 2: The list of referents used in our end-user elicitation study about hand-chair gesture input.

Referent
†

Description of the referents provided to the participants References

A
c
t
i
o
n
s

1. Place/answer call Answer/end an incoming phone call [23, 79]

2. Set/cancel alarm Activate/deactivate the most recent alarm (the alarm is set if off and vice versa) [23]

3. Turn on/off lights Turn on/off the lights (lights turn on if they are off and vice versa) [23, 41]

4. Turn on/off TV Turn on/off the TV (the TV turns on if it is off and vice versa) [23, 41]

5. Turn on/off AC Turn on/off the air conditioner (the air conditioner turns on if off and vice versa) [23]

C
o
n
t
e
n
t

6. Photos and videos Get direct access to photos/videos; the first photo is displayed on a screen [41, 83]

7. Music Get direct access to music; the first file starts playing [23, 83]

8. Messages Get direct access to messages; the most recent message is displayed on a screen [39, 41]

9. Agenda/calendar Get direct access to the agenda/calendar, displayed on a screen [83]

10. Contacts Get direct access to phone contacts, which are displayed on a screen [79]

N
a
v
i
g
a
t
i
o
n

11. Next Go to the next element in a list, e.g., show next photo, go to next TV channel [23, 39, 41, 49, 73, 77, 79, 108]

12. Previous Go to the previous element in a list, e.g., previous photo, previous TV channel [23, 39, 41, 49, 73, 77, 79, 108]

13. Increase Increase the value of a parameter, e.g., audio volume, light intensity, etc. [23, 39, 41, 64, 73, 77, 79]

14. Decrease Decrease the value of a parameter, e.g., audio volume, light intensity, etc. [23, 39, 41, 64, 73, 77, 79]

15. Home screen Go to the home screen of the current application [49, 64, 77, 79]

†
While the names of the referents (first column) may vary across various studies, our primary consideration was their intended effect.

(45/3=15 male and 9/3=3 female per group). Kruskal-Wallis tests re-

vealed our groups well balanced in terms of age (𝜒2(2)=0.624, 𝑝=.732,

𝑛.𝑠.) and daily sitting time (𝜒2(2)=2.282, 𝑝=.320, 𝑛.𝑠.). Seven of the

participants self-reported as left-handed and 38 as right-handed.

3.2 Procedure

According to the end-user elicitation method [108], we collected

gestures in relation to specific referents, e.g., answer an incoming

phone call or access photos. To encompass a diversity of system

functions, we employed 15 commonly used referents from previous

gesture elicitation studies, which we presented on paper with short

descriptions. We selected our referents to be representative of (i)

common system actions, e.g., turning on/off various devices, (ii)

accessing digital content, e.g., music or photos, and (iii) performing

generic navigation in interactive systems, e.g., next/previous, home

screen; see Table 2. To arrive at these referents, we relied on the

top-10 most influential gesture elicitation studies, according to

Villarreal et al.’s [102, p. 860] systematic literature review as well as

elicitation studies focused on digital content type [83], chair-based

interaction [77], and finger instrumentation for gesture input [23].

Participants signed a consent form and filled out a demographic

questionnaire. Subsequently, they received the following instruc-

tions: “For the following list of referents, propose hand gestures on

the chair and in air from the seated position. Your gestures should

be easy to execute and recall, a good fit to the referents, and accept-

able in a public place. You are free to use either hand or both hands

to perform the gestures.” After confirming they understood the task,

participants were given as much time as needed to come up with

suitable gestures. Subsequently, one on-chair and one from-chair
gesture were recorded for each referent using a video camera and

two TapStrap v2 finger-augmentation devices (featuring a 3-axis ac-

celerometer per finger, Bluetooth 4.0, low weight of just 200g) [88]

worn on both hands. Our custom Android software application

stored the gestures as series of 3D linear acceleration points for the

ten fingers. The order of referents was randomized per participant,

while gesture locale, on-chair and from-chair , was randomized per

referent. Participants were not allowed to use the same gesture for

multiple referents within the same gesture locale, but were allowed

to reuse the gesture for the same referent across gesture locales,

e.g., “letter M” drawn in mid-air or on the chair’s seat for “Music.”

3.3 Design and Measures

Our study was a mixed design with one between-subjects vari-

able, ChairType (nominal with three conditions, stool, office-chair ,
and armchair), and one within-subjects variable, GestureLocale

(nominal with two conditions, on-chair and from-chair). The Chair-
Type conditions cover common chair variations [17, 20, 80] with

increasingly more complex form factors and, thus, richer possibil-

ities for hand-chair gesture input. Although the referents specify

the conditions of another within-subjects variable, Referent, we

are not interested in this effect, since we see the referents as one

sample drawn from all possible system functions. Consequently,

we perform data aggregation on this variable or modeled it as a

random effect, according to the statistical model; see Subsection 3.4.

The dependent variables are the measures used to characterize our

participants’ gesture articulations and preferences, as follows.

3.3.1 Measures of gesture articulation. Weutilized the video record-

ings to extract the following information:

• Handedness indicates the hand(s) employed to articulate

the gesture. Following McNeill [59], we used four categories:

left hand (LH), right hand (RH), two same hands (2SH), and
two different hands (2DH).4 Bimanual gestures, 2SH and 2DH,

specify whether both hands act synchronously, perform the

4
Terminology and abbreviations used by McNeill [59, p. 379] for gesture coding, which

we adopt exactly for consistency purposes.
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same movement, and form the same pose during gesture

articulation, i.e., they are the same (2SH) or different (2DH).

• GestureType with six categories, adopted from [4]: pointing
(the hand points in mid-air or to a specific chair part), touch
input (a tap or variation of a tap on the chair), grasp (the

hand firmly grasps a part of the chair), stroke-gesture (the
hand swipes or draws symbols on the chair’s surface or in

mid-air), hand pose (the hand forms a symbolic pose, such as

“thumbs-down,” or mimics a manipulative pose, e.g., knob

turning), and mixed (any combination of the previous cate-

gories, e.g., draw a letter and subsequently tap twice on the

armrest). These categories expand Wobbrock et al.’s [108]
“form” dimension to both surface and mid-air gesture input.

• GestureExtent delineates the physical reach of the gesture.

We characterize the extent of on-chair gestures with the chair
part they involve by considering three regions—armrests,
seat, and backrest,—corresponding to the principal structural
elements of seating design [68]. We characterize the extent

of from-chair gestures with McNeill’s [59, p. 378] “gesture

space,” a division of concentric squares of the space around

a person while seated, with three regions—center , periphery,
and extreme-periphery;5 see Figure 3, top.

Two researchers independently extracted this information from the

video recordings following a two-stage process. In the initial stage,

both researchers coded the same videos, representing a random

subset of twelve participants (22.2% of the data), which yielded an

average Gwet’s [29] AC1 coefficient of .888 (SD=.097) and a cumu-

lative membership probability of 99.997% (SD=0.01%), indicating an

almost perfect level of consensus according to the Landoch-Koch

benchmarking scale [30]. The few discrepancies (8.24% of the ex-

tracted information) were resolved through discussion and, when

consensus could not be reached by the two coders, by a majority

vote with the intervention of a third researcher. In the second stage,

each of the two researchers coded half of the remaining videos.

We also used the numerical gesture representations provided by

the TapStrap finger-augmentation devices to automatically com-

pute other measures of gesture articulation. Each gesture was rep-

resented as a set of linear accelerations for each of the ten fingers,

𝑔 =
{
𝑎𝑖, 𝑗=(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 , 𝑧𝑖, 𝑗 , 𝑡𝑖 ) | 𝑖=1..𝑛, 𝑗=1..10

}
, where 𝑗 specifies the

finger and 𝑛 is the number of points on the gesture path. During

a preprocessing stage, we removed the influence of the force of

gravity with a high-pass filter [27], left-trimmed the gestures by

300ms (a systematic bias that we observed in the data between the

participants’ and experimenter’s synchronization during gesture

recording), and resampled at 100Hz. Data preprocessing steps such

as these are common for accelerated motion [46, 54, 97]. Subse-

quently, we computed the following measures:

• ProductionTime, expressed in milliseconds, a pivotal factor

in assessing gesture input performance [7, 52].

• NumAxesMovement, dimensionless, represents the number

of axes on which acceleration is detected, adapted from Ruiz

5
To maintain coding simplicity, we treated McNeill’s [59] “center-center” as part of the

“center” region, similar to previous work [4]. For gestures spanning multiple regions,

we considered the largest region encompassing the gesture. For example, a swipe

gesture performed upwards, starting in the center in front of the body, traversing the

periphery, and ending in the extreme-periphery above the user’s head, was coded as an

extreme-periphery gesture.

et al.’s [79] “dimension” category of their taxonomy of user-

elicited motion gestures. We counted the number of axes for

which the MeanAcceleration exceeded 0.1g, a threshold

adopted from [35, 98].

• MeanAcceleration, reports the averagemagnitude, inm/s
2
,

of the linear acceleration of the hands’ movement during

gesture articulation. Adopted from [34, 78, 97], we adapted

the measure to compute for ten fingers:

MeanAcceleration(𝑔) = 1

10𝑛

10∑︁
𝑗=1

𝑛∑︁
𝑖=1

(𝑥2𝑖, 𝑗 + 𝑦
2

𝑖, 𝑗 + 𝑧2𝑖, 𝑗 )
1

2 (1)

Eq. 1 computes a numerical value of the average acceleration

magnitude across all the sampled points 𝑖 on the gesture

paths of each finger 𝑗=1..10. This measure, in its simplified

form involving just one moving object (finger/hand), has

also been referred to in the scientific literature as gesture

strength [34] or energy [78].

3.3.2 Measures of gesture similarity and consensus. To understand

participants’ level of consensus over suitable hand-chair gestures

for the referents used in our study, we adopted the computer analysis
model, recommended in Vatavu and Wobbrock [99], implemented

with the dissimilarity-consensus approach [96]. According to this

approach, the relationship between participants’ consensus (𝐶) over

their gesture articulations and the tolerance (𝜏) under which two

gestures are considered equivalent, given a dissimilarity measure

(𝛿), is modeled with logistic functions:

𝐶 (𝜏) = 𝐶∞ ·𝐶0

𝐶0 + (𝐶∞ −𝐶0) · exp (−𝑟 · 𝜏)
(2)

where 𝐶∞= lim𝜏→∞𝐶 (𝜏) and 𝐶0= lim𝜏→0𝐶 (𝜏) are the upper and
lower bounds of consensus and 𝑟 is the growth rate. Following

recommendations in [96], we implemented 𝛿 with Dynamic Time

Warping (DTW), a robust and versatile approach to gesture recog-

nition [89]. Larger 𝑟 values indicate faster reaching consensus [96].

3.3.3 Measures of gesture preference. We collected participants’

perceptions of their gestures via 7-point Likert scales:

• Ease, adopted from Wobbrock et al. [108], measures the

perceived ease of gesture articulation, in response to the

statement “The gesture I picked is easy to perform,” from 1

(strongly disagree) to 7 (strongly agree).

• Goodness, adopted from Wobbrock et al. [108], measures

the goodness of fit between the proposed gesture and the

corresponding referent, in response to “The gesture I picked

is a good match for its intended purpose.”

• Recall, adapted from Zaiţi et al. [111], measures user percep-

tion of the recall likeliness of the proposed gesture through

the level of agreement with the statement “The gesture I

picked is easy to recall.”

• SocialAcceptability, adapted from Rico and Brewster [78],

measures the participant’s willingness to perform the pro-

posed gesture in public, as a reaction to the statement “I am

willing to perform this gesture in public.”
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Figure 2: Distribution of Handedness and GestureType for the elicited gestures. Note the large proportion of unimanual vs.
bimanual gestures (left chart) and stroke-gestures, hand poses, and touch input compared to other gesture types (right).

3.4 Statistical Analysis

To analyze categorical and ordinal variables with polytomous re-

sponses in ourmixed design, e.g., Handedness or GestureType, we

employed Cumulative Link Mixed Models [12] with maximum like-

lihood estimates of the parameters provided by the Laplace approx-

imation method [13] with participants nested within ChairType,

and Referent treated as a random effect. To assess the statistical

significance of specific model terms, e.g., the effect of ChairType,

we used likelihood-ratio chi-squared tests for pairs of models of pro-

gressive complexities. Additionally, we applied mixed ANOVA for

the measures automatically computed from numerical gesture de-

scriptions, e.g., MeanAcceleration. For 𝜏−𝐶 analysis of consensus

rates, we employ logistic modeling [96].

4 RESULTS

We present results from an analysis of 1,620 hand-chair gestures

(=54 participants × 2 gesture locales × 15 referents), for which we

extracted a total of 9,720 articulation characteristics, computed

6,885 dissimilarity measurements, and collected 6,480 self-reported

gesture ratings. In total, we report empirical findings based on a

dataset of 23,085 records.

4.1 Gesture Articulation Characteristics

4.1.1 Handedness. The large majority of the gestures (86.3%) was

unimanual (62.9% RH and 23.4% LH), whereas bimanual articu-

lations were characterized by symmetry (11.1% vs. 2.6% for 2SH

and 2DH, respectively); see Figure 2a. This distribution remained

consistent across ChairType, with no significant effect on Hand-

edness (𝜒2(2)=1.289, 𝑝=.525, 𝑛.𝑠.). The proportion of unimanual

and bimanual gestures also remained consistent across on-chair

and from-chair gestures (87.6% and 85.1%), but with notable dif-

ferences within each category, according to a significant effect of

GestureLocale (𝜒2(1)=98.677, 𝑝<.001) confirmed by post-hoc tests

(FDR 𝑝-value adjustments applied) for each chair type (𝑝<.05). For

instance, we observed a stronger preference for RH over LH from-
chair gestures (71.9% vs. 13.2%), but less pronounced for on-chair
(54.0% vs. 33.6%)—a finding revealing that the chair surface encour-

aged a more balanced use of both hands for gesture articulation

compared to the open space around the user.

By following up on a significant ChairType × GestureLocale

interaction (𝜒2(2)=13.656, 𝑝<.005), we noted differences between

the Handedness distributions of armchair × from-chair and stool
× on-chair (𝑝=.004), office-chair × from-chair and stool × on-chair
(𝑝=.005), and armchair × on-chair and stool × from-chair (𝑝=.049)
gestures. The common factor behind these differences was the

stool’s well-balanced distribution of LH and RH on-chair gestures
(45.6% and 41.9%), which can be attributed to the increased im-

portance of hand choice in differentiating among gestures to com-

pensate for the stool’s smallest surface area across all chair types.

Noteworthy, different Handedness distributions were observed

across the specific referents that we examined; see Figure 2a, bot-

tom. For example, “Next” and “Previous” predominantly favored

unimanual gestures (97.2% and 96.3%), while other referents, such

as “Photos and videos” and “Home screen,” exhibited the largest

percentage of bimanual gestures (23.1% and 20.4%). Out of these,

symmetrical from-chair gestures included clapping, swiping, and

extending the arms with synchronized movements, while asymmet-

rical ones primarily involved using one hand as support for writing

or drawing with the other. Bimanual on-chair gestures included
touching, swiping, or grasping various chair parts.
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We also found that participants’ handedness transpired into their

gesture articulations. On average, left-handed participants exhib-

ited an equal percentage of LH and RH gestures (37.1%), whereas

right-handed ones predominantly performed RH (67.3%) than LH

(21.3%) gestures. Additionally, left-handed participants engaged

in bimanual gestures twice as frequently (25.7%) as their right-

handed counterparts (11.9%). These findings were confirmed by

significant Kendall correlations between self-reported handedness

(binary coded, where 0 denotes left-handedness and 1 denotes right-

handedness) and participant preference for RH (𝜏 (54)=.287, 𝑝=.013)
and bimanual gestures (𝜏 (54)=−.319, 𝑝=.007), respectively.

4.1.2 Gesture type. We found that stroke-gestures were overall pre-
ferred by our participants (49.7%), followed by hand poses (24.7%)
and touch input (17.9%), whereas the other gesture categories—grasp,
pointing, and mixed,—were considerably less represented, account-

ing for just 7.7% in total; see Figure 2b. We did not detect a statisti-

cally significant effect of ChairType on GestureType (𝜒2(2)=2.774,
𝑝=.250, 𝑛.𝑠.), but we observed a significant effect of GestureLo-

cale (𝜒2(1)=397.604, 𝑝<.001), reinforced by post-hoc tests (with

FDR 𝑝-value adjustments) across all chair types. The large majority

of from-chair gestures consisted of stroke-gestures and hand poses
(93.3%), while on-chair gestures were primarily composed of stroke-
gestures, hand poses, and touch input (91.2%). Notably, from-chair
articulations favored considerably more hand poses (43.1% vs. 6.3%),

whereas touch input and grasps were used in the on-chair condition
(35.8% and 5.3%, respectively).

Stroke-gestures, hand poses, and touch input, in that order, were

the most preferred gesture types across all chair types, yet with

nuances revealed by a significant ChairType × GestureLocale

interaction (𝜒2(2)=32.495, 𝑝<.001) with post-hoc tests confirming

significant differences (FDR-adjusted 𝑝<.001) across all 3×2 pairs.
For example, the stool exhibited the lowest percentage of touch
input usage (12.0%) in favor of the highest percentage of stroke-
gestures (58.0%) compared to the office-chair (20.2% and 42.0%) and

armchair (21.5% and 49.1%). Participants also proposed more grasp
gestures for stool and office-chair (2.6% and 4.6%) than in the case of

the more expansive armchair (0.7%). Figure 2b, bottom reports the

observed GestureType distributions per referent. Referents with

directional connotations, such as “Next,” “Previous,” “Increase,” and

“Decrease,” had the highest percentage of stroke-gestures (ranging
from 75.0% to 78.7%), whereas referents that mimicked actions

typically performed with remote controls, such as “Turn on/off

lights,” “Turn on/off AC,” and “Turn on/off TV,” favored the highest

percentages of hand pose (32.4% to 38.0%) and touch input (23.1% to

30.6%). Additional insights into the spatial regions encompassing

these gesture types are presented next.

4.1.3 Gesture extent. Figure 3, top presents the spatial regions

where on-chair and from-chair gestures were performed, according

to ChairType. The majority of from-chair gestures were encom-

passed by the periphery (45.8%) and extreme-periphery (42.8%) of

the user’s peripersonal space, while only a small portion (11.4%)

was observed in the center , with no significant effect of Chair-

Type on from-chair GestureExtent (𝜒2(2)=0.862, 𝑝=.650). The ef-
fect was, however, statistically significant for the on-chair gestures
(𝜒2(2)=14.033, 𝑝<.001), most of which being associated with the seat

(70.6%), with articulations performed either on the seat’s surface

(35.2%) or underneath it (35.4%). Our findings show that the arm-

rests, when available, were preferred as the most convenient and

easily accessible surface for input, e.g., 73.3% of the armchair ges-
tures involved them. When the armrests were absent, participants

harnessed other distinctive chair parts, e.g., 10.4% of the office-chair
gestures were performed on the backrest vs. just 4.5% for the arm-
chair . The stool, lacking both armrests and a backrest and featuring

limited surface area, led to on-chair gestures that exclusively used

the seat. Among these, 57.8% were underneath the seat, including

the seat sides and corners.

Figure 3, bottom provides a visual summary of the relation-

ships among GestureExtent, Handedness, and GestureType

for each ChairType. Each circular chart highlights the percentage

of gestures within specific pairs of gesture categories, e.g., the RH

category of Handedness and the armrest category of Gesture-

Extent. To this end, the charts employ ribbons whose widths are

proportional to the respective percentages, offering a breakdown of

the overall GestureExtent percentages depicted in Figure 3, top.

For example, in the armchair , office-chair , and stool conditions, 2SH
gestures represented 6.7%, 9.5%, and 10.0% of the seat-referenced

gestures, a series of values that align with the increasing trend

of seat gesture percentages from Figure 3, top. Similarly, stroke-
gestures accounted for 65.1%, 68.5%, and 73.7% of all the articulations

performed in the extreme-periphery, following the increasing trend

observed for that region. These findings reveal consistent partici-

pant preferences regarding the number of hands and gesture type

at various locations on and around the chair, respectively. Next, we

continue our analysis by examining gesture kinematic profiles.

4.2 Kinematic profiles of gesture articulation

On average, hand-chair gestures were produced in 2.4s in the arm-
chair , 2.5s in the office-chair , and 2.6s in the stool condition, with no

significant effect of ChairType (𝐹 (2,51)=0.262, 𝑝=.771, 𝑛.𝑠.); see Fig-
ure 4a. However, we found a significant effect of GestureLocale

(𝐹 (1,51)=34.288, 𝑝<.001) and a ChairType × GestureLocale inter-

action (𝐹 (2,51)=3.596, 𝑝=.035). From-chair gestures were about 10%
faster than on-chair ones (2.4s vs. 2.6s), with the largest difference

in ProductionTime observed for armchair (11.5%) and stool (11.3%)
compared to just 3.2% for office-chair (2.4s vs. 2.5s). We also found

that the elicited gestures required at least two axes of movement,

with no significant effect of ChairType (𝐹 (2,51)=0.246, 𝑝=.783, 𝑛.𝑠.),
but a significant effect of GestureLocale (𝐹 (1,51)=32.633, 𝑝<.001),
revealing more expansive from-chair gestures (2.3 vs. 1.9); see Fig-
ure 4b. Lastly, the mean acceleration of the elicited gestures varied

between 2.8m/s
2
for armchair and 3.4m/s

2
for stool, but with no sig-

nificant effect of ChairType (𝐹 (2,51)=1.197, 𝑝=.310, 𝑛.𝑠.). However,
from-chair articulations required significantly more acceleration

compared to on-chair ones (3.5m/s
2
vs. 2.7m/s

2
, 𝐹 (1,51)=73.650,

𝑝<.001), accounting for a difference of 30%; see Figure 4c.

4.3 Gesture Ratings

Figure 5 presents participants’ self-ratings of their gestures, which

consistently trended towards high scores, i.e., 93.6% of the Good-

ness ratings fell above themidpoint item of the rating scale, and sim-

ilarly for Ease (98.5%), Recall (96.9%), and SocialAcceptability
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Figure 3: Top: distribution of GestureExtent for the elicited on-chair and from-chair gestures for each ChairType. Bottom:

relationships observed between GestureExtent with Handedness and GestureType; also refer to Figure 2 for the latter.
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Figure 4: The kinematic profiles of participants’ on-chair and from-chair gesture articulations, according to ChairType.

(95.1%). Furthermore, more than half of the ratings for Ease, Recall,

and SocialAcceptability (55.8% to 62.7%) as well as 41.0% of the

Goodness ratings were maximal (7, strongly agree). We did not ob-

serve significant effects of ChairType on any of these measures (all

𝑝-values>.05, 𝑛.𝑠.). However, from-chair gestures received slightly,

yet statistically significant, higher ratings than on-chair gestures in
terms of Goodness (Mdn=6, M=6.0 vs. Mdn=6, M=5.7, 𝜒2(1)=40.765,

𝑝<.001), Ease (Mdn=7,M=6.4 vs.Mdn=7,M=6.3, 𝜒2(1)=5.557, 𝑝=.018),

and Recall (Mdn=7,M=6.3 vs. Mdn=7,M=6.1, 𝜒2(1)=26.058, 𝑝<.001),
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Figure 5: Participants’ self-reported ratings of their on-chair and from-chair gestures, according to ChairType.
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Figure 6: Dissimilarity-Consensus curves [96] computed with the DTW dissimilarity function for the fifteen referents in our

study per ChairType and GestureLocale. Notes: larger growth rate 𝑟 values denote faster reaching consensus among the

gestures elicited for the same referent, e.g., 𝑟=0.33 for “Previous” vs. 𝑟=0.24 for “Contacts” in the stool and on-chair conditions.

but not SocialAcceptability (Mdn=7, M=6.2 vs. Mdn=7, M=6.3,

𝜒2(1)=1.314, 𝑝=.252, 𝑛.𝑠.). One possible explanation for these find-

ings may be that from-chair gestures allow for a wider range of

hand movements, not constrained to a limited set of locations,

more or less distinctive, on the chair. Nevertheless, any observed

difference was small in magnitude, amounting to less than 5% in

terms of means, while the medians were identical. Referents with

directional connotations, e.g., “Next,” “Previous,” “Increase,” and

“Decrease,” consistently received high Goodness and Ease ratings,

while referents for which the elicited gestures mimicked physical

interactions, e.g., “Answer call,” “Turn on/off lights,” “Turn on/off

AC,” and “Turn on/off TV,” were rated highly in terms of Recall.

4.4 Consensus Analysis and Representative

Hand-Chair Gestures

So far, we mentioned individual referents and the elicited gestures

for those referents only sporadically as we considered the referents

as random effects in our statistical models, i.e., a sample of all possi-

ble referents, used as a vehicle for collecting possible hand-chair ges-

tures that feel intuitive to end users. In the following, we look more

closely at the elicited gestures as we are interested in participants’

level of consensus (𝐶) over suitable gestures to invoke specific ref-

erents. To this end, we modeled the dissimilarity-consensus curves

of the fifteen referents employed in our study using logistic models

(see Subsection 3.3.2 for details about our analysis method) for each

combination of ChairType × GestureLocale, and analyzed the

growth rates 𝑟 ; see Figure 6. (According to [96], larger 𝑟 values



Take a Seat, Make a Gesture: Charting User Preferences for On-Chair and From-Chair Gesture Input CHI ’24, May 11–16, 2024, Honolulu, HI, USA

indicate faster reaching consensus among participants’ gesture pro-

posals for a specific referent.) We found that the C0 parameters of

the logistic functions (Eq. 2) varied between 0.09 and 0.65 and C∞
between 98.38 and 103.50, showing of a good fit of the derived logis-

tic models; see [96] for details. We did not find a significant effect

of GestureLocale on 𝑟 (0.315 for on-chair vs. 0.328 for from-chair
gestures, 𝐹 (1,14)=0.768, 𝑝=.396, 𝑛.𝑠.), indicating similar consensus

formation for both on-chair and from-chair articulations. However,
we found a significant effect of ChairType (𝐹 (2,28)=68.620, 𝑝<.01),
where stool gestures (mean 𝑟=0.186) exhibited significantly less

consensus compared to the cases of office-chair (0.286) and arm-
chair (0.266) gestures (FDR-adjusted 𝑝’s<.001), but we detected no

difference between the office-chair and armchair (𝑝>.05, 𝑛.𝑠.); see
Figure 6 for all of the growth rates computed per ChairType ×
GestureLocale × Referent categories.

To complement these results, which present the computer per-

spective [96, 99] on our elicited gestures, we performed a frequen-

tial analysis of their qualitative characteristics of Handedness,

GestureType, and GestureExtent. This approach enabled us to

identify representative gesture characteristics for each Referent

and combination of ChairType × GestureLocale, according to

the highest frequency observed across possible mixtures of those

characteristics. For example, 9 out of the 18 participants in the stool
condition (9/18=50%) proposed unimanual (1H) hand poses (P) in

the periphery (Pe) to effect “Place/answer call” with from-chair
gestures; see Figure 7.76 for a gesture with these characteristics rep-

resented by mimicking holding a phone next to the ear and mouth.

The largest frequencies of shared from-chair gesture characteristics
for the same referent, but in the armchair and office-chair condi-
tions, were 6 and 5, representing consensus rates of 33% and 28%,

respectively; see Figures 7.46 and 7.61. An interesting observation is

that, although the winning gesture for “Place/answer call” remained

consistent across ChairType, the level of consensus was notably

higher in the stool condition compared to the more complex form

factors of the office-chair and armchair . This disparity suggests that
the participants envisioned different from-chair gesture articulation
possibilities influenced by the presence of the backrest and armrest,

two parts absent in the stool design. Besides common winning ges-

ture articulation categories across ChairType, we also observed

common categories across GestureLocale, e.g., drawing “letter

M,” either on the seat or in mid-air for “Messages” (7.38 and 7.83)

and drawing a triangular shape for “Music” (7.7 and 7.52).

Stroke gestures, constituting the most frequently occurring cate-

gory for from-chair input, were represented by geometric signs (e.g.,

Figures 7.52, 7.54, 7.59, 7.79), directional swipes (e.g., 7.57, 7.71, 7.58,

7.89), and letters and symbols (e.g., 7.67, 7.68, 7.77, 7.82). Strokes

were also common for on-chair articulations as geometric shapes

(e.g., 7.5, 7.7, 7.9, 7.35), directional swipes (e.g., 7.10, 7.26, 7.31), and

letters and symbols (e.g., 7.24, 7.36, 7.38). Examples of the latter

include drawing “letter P” on the front right side of the stool’s seat
to effect “Photos and videos” (7.36) and drawing the symbol of a

house on the seat’s side for “Home screen” (7.45). Representative on-
chair gestures also included touch input with different variations,

e.g., tapping with two fingers (7.2), four fingers (7.4), the whole

hand (7.3), and tapping multiple times (7.32). The winning on-chair
gesture categories always involved the armrest in the armchair
condition (7.1 to 7.15), and were identical for half of the referents

for the on-chair gestures elicited in the office-chair and stool condi-
tions, which lacked armrests. Notable examples are the directional

referents “Next/Previous” and “Increase/Decrease,” which received

directional swipes performed on the armrest (7.11 to 7.14) and seat

(7.26 to 7.29 and 7.41 to 7.44), according to ChairType. While we

provide the gestures from Figure 7 as a representative set of the

most frequently occurring articulation characteristics of the hand-

chair gestures observed in our study, we also make available a

detailed description of all of the 1,620 elicited gestures as part of

our open-source gesture dataset for further analyses.

To contextualize these findings, we compare them with the ges-

ture characteristics of two corresponding consensus gesture sets

from the literature of end-user elicitation. We contrast our findings

regarding the observed characteristics of on-chair gestures, a sub-
class of surface gestures performed in relation to the chair’s parts,

with the established set of surface gestures reported in Wobbrock et
al.’s seminal paper on end-user elicitation [108, p. 1089]. We further

contrast the characteristics of from-chair gestures, a subclass of

mid-air gestures performed from the seated position in the space

around the chair, with a consensus set of mid-air gestures aggre-

gated across different application domains [36, p. 12]; see Table 3

for details and our results.

Several interesting observations highlight the distinctive nature

of hand-chair gestures in this context. For instance, while the large

surface of a tabletop encourages more opportunities for using both

hands (35.4%), the smaller chair surfaces resulted in none or rare

(6.7%) instances of bimanual on-chair input in our consensus sets.

However, the percentage of bimanual from-chair gestures was both
notably lower (0% for the armchair) and higher (20.0% for the stool)
than the expected norm (9.1%) of bimanual mid-air gestures [36]. In

the context where unimanual gestures are generally preferred due

to less effort, this discovery underscores that the armchair presented
more opportunities for performing from-chair unimanual gestures

when the participants could see and/or refer to more chair parts,

unlike the simpler form factor of a stool, where the participants
resorted to bimanual input more often. In addition to handedness

characteristics, we also noted interesting differences in terms of

gesture type; see the final three rows of Table 3. First, none of the

consensus on-chair gesture characteristics involved hand poses

for manipulative purposes, whereas these poses constituted more

than half (58.3%) of the in-consensus surface gestures [108]. In

contrast, from-chair gestures exhibited hand pose percentages close
to those observed in the literature (54.5%) [36], except for the stool,
where most of the from-chair gestures involved directional swipes

and symbolic strokes. Stroke-gestures were also considerably more

common for on-chair (46.7% to 80.0%) compared to surface (18.8%)

input [108]. To summarize, on-chair gestures are almost exclusively

unimanual, often involve simple tap input where a chair surface

is available to tap on, and involve drawing strokes on accessible

chair parts. As for non-contact input, from-chair gestures exhibit
many similarities to mid-air gestures but, as chair design complexity

increases, they involve fewer strokes and favor more hand poses.

5 DISCUSSION

In this section, we capitalize on our empirical findings to offer

actionable insights for novel hand-chair gesture interactions in the
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Figure 7: Representative on-chair and from-chair gestures per ChairType and Referent. Notes: gesture characteristics (e.g.,
1H) are indicated below each photo; consensus percentages are calculated across groups of gestures with the same characteristics.
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Table 3: Hand-chair gesture characteristics vs. two established surface [108] and mid-air [36] consensus gesture sets.

Criteria

Surface vs. on-chair gestures Mid-air vs. from-chair gestures

Wobbrock

et al. [108]
Arm-

chair

Office-

chair

Stool

Hosseini et
al. [36]

Arm-

chair

Office-

chair

Stool

Number of referents 27 15 15 15 22 15 15 15

Number of gestures in the consensus set 48 15 15 15 22 15 15 15

Percentage of unimanual gestures 64.6% 100% 100% 93.3% 90.9% 100% 93.3% 80.0%

Percentage of bimanual gestures 35.4% − − 6.7% 9.1% − 6.7% 20.0%

Percentage of taps 22.9% 40.0% 53.3% 20.0% − − − −
Percentage of poses/manipulative gestures

†
58.3% − − − 54.5% 60.0% 53.3% 20.0%

Percentage of stroke-gestures 18.8% 60.0% 46.7% 80.0% 45.5% 40.0% 46.7% 80.0%

†
Both [108] and [36] describe manipulative gestures, which we subsume under the hand poses category; see details about our GestureType

measure in Subsection 3.3.

form of six design implications. We also present limitations of our

study and outline next steps to address them.

5.1 Design Implications for Hand-Chair Gesture

Interactions

Before proceedingwith our implications, we briefly set their context.

Chairs that provide a frame for gesture input fit into the ubiquitous

computing paradigm [103], where user sensing is dissimulated into

everyday objects. For instance, when applying Poslad’s [75] user

interface design heuristics for ubicomp environments (italicized
below) to the specific case of chairs, we find that the distinctive

structural elements of a chair favor self exploration, turn the chair

into a user interface proxy to simplify access to multiple individual

devices, while the familiar chair form factor provides a predictable
interaction context. Within this framework, we propose the follow-

ing set of design implications.

➊ Use the chair’s structural elements to inform customized
on-chair gesture input. Our discoveries showed that when arm-

rests are present, they are the preferred choice for on-chair input
(73.3%). In their absence, the seat becomes the primary choice, ac-

counting for 89.6% in chairs with a backrest and 100% otherwise

(Figure 3). Thus, the structural elements of chairs can be leveraged

for (i) gesture vocabulary designs that ensure consistency across

various chair types by centering on input on the seat—available

on all chairs—at the intersection of the consensus sets in Figure 7,

but also (ii) designs specific to chair form factors, e.g., armrest ges-

tures, for applications leveraging the convenience of such elements,

such as in lean-back interaction [111] when using the armrest as a

metaphorical remote control. Additionally, we recommend (iii) ex-

ploration of gesture sets that are both chair- and user-dependent, as

our dissimilarity-consensus analysis (Figure 6) revealed differences

between users’ gesture articulations.

➋ Leverage the seated position for fast, expressive, and rest-
ful from-chair gesture input. Our findings revealed that mid-air

hand gestures performed from the seated position are fast with

an average production time of just 2.4s (Figure 4). Moreover, they

utilize the peripersonal space, located in between the center region

(closest to the body) and the extreme periphery (farthest away from

the body; see Figure 3). In this easily reachable space, from-chair
gestures predominantly consist of symbolic stroke-gestures and ex-

pressive hand poses (93.3%, Figure 2) in a ratio that depends on the

chair type (Table 3). In the light of these findings, we recommend

capitalizing on the rich literature of mid-air gesture design [45] to

pinpoint high consensus [36] stroke-gestures and hand poses with
articulations that peak in the peripheral region and leverage chairs’

parts for restful mid-air interactions [100, 111].

➌ Harness the high perceived social acceptability of hand-
chair gestures for interactions in public contexts. Hand-chair
gestures can be used to mitigate concerns [77] regarding the social

acceptability of whole-body gestures for chair-based input, such as

chair tilting and rotating, as we found high social acceptability for

both on-chair (6.3 out of 7) and from-chair (6.2) gestures (Figure 5).
This implication suggests future work where hand-chair gesture

UIs are conveniently available in seated public settings, e.g., public

transportation, lecture halls, waiting rooms, etc.

➍ Play on the complementarity between on-chair and from-
chair gestures. On-chair and from-chair gestures exhibit a com-

plementarity that should be exploited for gesture set design. While

on-chair gestures turn the chair’s structural elements into a tangible

interface for always-available surface input, from-chair gestures add
a supplementary layer of interaction beyond the chair’s boundaries.

This complementarity should be explored for gesture set designs

that favor seamless interchangeability of input on the chair and

around it. To provide support for this implication, it is worth noting

an interesting insight, where 30.2% of the pairs of on-chair and
from-chair gestures elicited for the same referents shared identical

Handedness and GestureType characteristics. This implication

aligns with Poslad’s [75] design heuristics for streamlined input,

self exploration, and using predictable contexts in ubicomp envi-

ronments, which in our case imply that on-chair and from-chair
input could be used interchangeably. We also recommend explor-

ing the combination of touch and stroke-gesture hybrid input [1]

for on-chair gestures as well as combined on-chair and from-chair
input, following prior air+touch interaction techniques [10].

➎ Conceptualize chairs as always-available input sensing
devices. Despite prevalent, most current chairs lack user sensing
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technology, a seamless integration that could significantly enhance

their functionality. For example, based on our findings that stroke-
gesture and touch input dominate users’ preferences for on-chair
input (84.9%), we suggest integration of touch sensing into the arm-

rests of everyday chairs, similar to accessible input technology for

wheelchair users [8, 56], and into the lateral sides and corners of

the seat (Figure 3). Chair designers should consider enlarging these

structural elements, without compromising user comfort [68], to

accommodate an expanded gesture input area. New chair materials

could also be leveraged for touch sensing, such as textile inter-

faces [6]. Additionally, from-chair gestures could be detected with

video cameras in armrests to capture gestures above them [111],

but also with users’ own devices, such as smartwatches for wrist

gestures [53] or rings for stroke-gestures [23].

➏ Design for multimodal input including hand-chair ges-
tures. Our findings revealed a strong preference for unimanual vs.

bimanual gestures (86.3% and 13.7%, see Figure 2). An implication

of this result is that the other hand, not involved in gesture articu-

lation, is free to operate another device, such as a desktop mouse,

a smartphone in mobile contexts of use, or a smartwatch through

wrist and motion gestures, which opens up interesting possibilities

for multimodal input. In contrast, bimanual gestures (13.7%, with

11.1% being symmetrical 2SH gestures) should be reserved for less

frequent tasks where movement symmetry can provide valuable in-

formation to the system. Examples include touching both armrests

to confirm an important action for the system, directional swiping

with both hands to fast-forward while browsing a list, or lever-

aging the physical distance between the hands of identical poses

to control a system parameter, i.e., parameterized gestures [105].

Furthermore, the observed correlation between users’ handedness

and their preferred gestures suggests the potential for customizing

chair input to individual users, similar to how smartwatch UIs can

be configured to match the hand they are worn on [81].

5.2 Limitations and Next Steps

While our study has yielded valuable first insights into hand-chair

gestures, we acknowledge its limitations, and propose next-step

examinations to address them. First, since we focused on standard

chairs for everyday users, we made the decision of omitting ac-

cessibility research on instrumenting wheelchairs. Although this

decision delineated a clear scope for various chair designs and

everyday users, we see interesting follow-up investigations con-

necting our scope with accessible input for wheelchair users, e.g.,

comparing on-wheelchair gestures [4, 8] performed by people with

mobility impairments with the on-chair gestures from our study.

Second, our participant sample consisted mostly of males. While

females were equally distributed across the three ChairType con-

ditions, their overall representation was low (17%) since we did not

intend Gender as an analysis factor in our study. Unfortunately,

female representation tends to be low in elicitation studies, with

males often outnumbering female participants in a ratio of 2:1 [102,

p. 859]. To explore potential gender effects on hand-chair gestures,

we recommend replicating our study using a type-7 replication [24]

with a balanced representation of genders, and, possibly, a type-8

replication [24] involving an unsupervised context [9]. To support

this, we provide our gesture dataset, together with .NET C# code

that computes the measures reported in this paper, freely avail-

able at http://www.eed.usv.ro/~vatavu/projects/2024-GESTURES-

CHAIR. Third, future explorations of other chair designs, e.g., with

varying leg configurations, alternative structural elements, and

range of materials [20], as well as involving other user popula-

tions, e.g., children’s playful interactions with computer systems

applied to the case of chairs, are recommended to further expand

our understanding of hand-chair gesture input.

6 CONCLUSION

We conducted an extensive examination of users’ preferences and

articulation characteristics of hand-chair gestures, which are ges-

tures performed in the chair’s space to control interactive sys-

tems. Our study, involving 54 participants, yielded very high self-

perceived gesture ratings, fast execution times, and insightful find-

ings about users’ preferences to articulate hand-chair gestures ac-

cording to the distinctive structural elements of the chair.We believe

that hand-chair gestures have the potential to seamlessly integrate

in our daily interactions with computer systems, given the ubiquity

of chairs and their multifaceted cultural significance. As we have

just started to explore the vast potential of hand-chair gesture input,

we look forward to exciting further developments in this direction,

while our dataset and resources are readily available to pave the

way for other researchers who wish to embark on this journey.
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