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Figure 1: A 3-way display is a reconfigurable form factor of a personal computer that features one central display and two
symmetrically expandable lateral sides. In this work, we examine user-defined gesture input for personal 3-way display devices.

ABSTRACT
In the family of personal multi-display devices and environments,

3-way displays conveniently integrate into the conventional form

factors of laptops and tablets, featuring both a central display area

and two symmetrically expandable lateral sides. However, despite

a large body of knowledge on touch input for single-display de-

vices, little is known about users’ gesture preferences for 3-way

displays. We propose a cross-display gesture taxonomy for future

explorations of gesture input for multi-display devices, in which we

position 3-way displays. Using a requirement elicitation, we report

results from two gesture elicitation studies with a total of 48 partic-

ipants, where a 3-way display was used as a remote control panel

for a smart home environment (study #1) and a touchscreen inter-

face for content manipulation performed both within and across

displays (study #2). Based on these findings, we offer two consen-

sus datasets of 3-way-display gestures that are consolidated into a

larger classification of stroke-gesture input for 3-way displays.
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1 INTRODUCTION
Multi-Display Environments (MDEs) distribute interactions over

multiple displays with form factors and contexts of use spanning

from personal mobile devices intended for individual users [52]

to multitouch tabletop computing [8] and wall displays suited for

collaborative tasks involving multiple users [22,32]. MDEs also

include touchscreen displays that customize interactions according

to display size [2], position [31], resolution [2], and mobility [38]

https://orcid.org/0000-0003-3275-3333
https://orcid.org/0000-0002-7631-6445
https://orcid.org/0000-0003-0804-0106
https://doi.org/10.1145/3660515.3661331
https://doi.org/10.1145/3660515.3661331
https://doi.org/10.1145/3660515.3661331


EICS Companion ’24, June 24–28, 2024, Cagliari, Italy Jean Vanderdonckt, Radu-Daniel Vatavu, and Arthur Sluÿters

with many benefits regarding user experience [10]. However, due to

the distribution of the display usage in both space and time, MDEs

pose challenges in synchronizing individual displays [15], initiating

communication [17], transferring applications [7] and data [16]

across displays, and manipulating content [15,17,22], respectively,

in smart and ambient intelligence environments, including smart

rooms and smart buildings. To address such aspects, gesture input

has been examined for interactions with MDEs [32,33], including

on-screen [55] and motion-based [52] gestures.

Personal MDEs, in the form of multi-display devices (MDDs),

take advantage of reconfigurable form factors in both mobile and

stationary contexts of use. For example, 2-way display smartphones,

such as Samsung Galaxy Fold, enable various input modalities, in-

cluding flipping gestures [52], while 3-way monitor configurations,

e.g., Teamgee Triple Monitor Screen Extender, offer customized

content visualization and effective multitasking. However, while

input for large-scale or multi-device MDEs has been extensively

examined before [7,8,13–17,22,32,33], little is known about users’

gesture input preferences for personal MDDs, such as the ones in

the above examples, and about how MDDs with distinctive form

factors can be used to effect commands in a smart environment.

To engineer gesture-based user interfaces for interactive appli-

cations using a 3-way display, we need an appropriate gesture

vocabulary [51] and an efficient recognizer [1]. While the second

problem of recognizing stroke gestures on a touch surface has been

largely resolved thanks to the availability [5] of compact and ef-

ficient recognizers [9], such as template-based ones [19], the first

problem of the gesture vocabulary remains open and unsolved.

To address this problem, we contribute conceptual and empirical

findings for touchscreen input on 3-way displays. We are specifi-

cally interested in the 3-way form factor since it conveniently packs

multiple displays into conventional computer monitors, laptops, or

tablets, featuring both a central display area and two symmetrically

expandable lateral sides (see Fig. 1). Regarding requirements engi-

neering in general and elicitation in particular, a popular method

for uncovering end users’ preferences for gesture input consists of

conducting a Gesture Elicitation Study (GES) [50], a participatory

design method where participants are instructed to propose one

or many gestures in response to a referent materializing an action

or a task (see [45] for a systematic literature review). Using this

method, our contributions are manifold:

• Section 2 revisits Brudy et al.’s [4] cross-device taxonomy of

interactions in the light of gesture input spanning multiple

displays to propose a new cross-display gesture taxonomy,

in which 3-way displays are positioned.

• Section 3 reports a first GES using the 3-way display as a

generic remote control panel for a smart environment, uncov-

ering end users’ preferences for taps and directional swipes

performed using the center and right displays, predilection

for input centrality and following participants’ handedness.

• Section 4 reports a second GES for content manipulation

performed both within and across the displays of the 3-way

display for effecting commands in a smart environment.

• Section 5 summarises the gesture datasets resulting from the

two GES, consolidates them into a classification of 3-way

stroke gestures, and discusses these results.

2 RELATEDWORK
Nacenta et al. [22] distinguish between spatially-aware and spatially-

agnostic input techniques in their taxonomy of cross-display object

movement in MDEs. In the former case, displays are referenced

in an absolute manner, according to their spatial location in the

MDE [6,27]. In the latter, they are referenced in a relative manner

through specific techniques, such as physical identifiers, lists, hier-

archies, and coding schemes [27]. Due to such differences in how

individual displays can be referenced in MDEs, we expect differ-

ences to also exist in users’ mental models for gesture-based input to

interact with personal MDDs. To structure related work in this area,

we revisit Brudy et al.’s [4] taxonomy for cross-device interaction

with a focus on gesture input for MDEs/MDDs as follows:

(a) Multi-monitor/screen systems foster 2-way display gestures,

such as flipping [52], pulling [26], and gestures performed

across and between screens [26], respectively. For example,

Yang et al. [52] proposed a design space of thirty gestures

consisting of flipping actions for 2-way display smartphones.

They found that flipping gestures performed with the wrist

were the fastest, while bimanual gestures were the most

preferred by the participants in their study. Shen and Harri-

son [34] proposed a design space of pull gestures for 2-way

display laptops, structured according to the location of inter-

action (on screen vs. off-screen) and the number of screens

(one vs. two). Examples of on-screen gestures include drag,

flick, pinch-to-zoom, double tap, click & hold, lasso, pull

apart, dial, and knuckle taps, while cross-screen input is

mainly represented by drag and drag & tap, respectively.

(b) Multi-slate/tablet systems afford both spatially-aware and

spatially-agnostic gesture input [6,27], shortcuts [25], mo-

tion input [30], stitching [14], and dexterous finger-based

gestures [53]. For example, Hinckley et al.’s [14] stitching
technique enables pen-based gesture input to be performed

across multiple displays.

(c) Cross-display interactions involve object movement gestures

[22] performed across multiple displays. For example, a GES

conducted for mobile cross-display tasks by Rädle et al. [27]

revealed a percentage of 71% of the elicited gestures to be

spatially aware. Overall, spatially-aware gestures are gen-

erally preferred to spatially-agnostic ones as they present

lower mental demand, effort, and frustration [6].

(d) Cross-surface gesture interactions are mostly represented by

the pick & drop technique [29], which implements copy/-

paste and content transfer across surfaces [49] and objects

[40]. Other examples include multitouch [8], swipe-hand

open [26], prevalent gestures [32], mono-surface [21,50],

and multi-surface gestures [33].

(e) Cross-device interactions include gestures for data sharing [7]
and transfer [16], connection gestures [15,17], auxiliary dis-

play input [26], and cross-device drag & drop [35]. Also, syn-

chronous gestures [13] enable individual users to perform

the same gesture on two devices to link them or two users

to perform the gesture simultaneously on their own devices

and achieve the same result. In the context of MDEs, synchro-

nous gestures have been applied to cross-device input [28] to

implement connection-action phrases involving one-to-one

https://www.samsung.com/us/smartphones/galaxy-z-fold5/buy/galaxy-z-fold5-1tb-unlocked-sm-f946uzbfxaa/?modelCode=SM-F946UZBFXAA
https://www.amazon.com/TeamGee-Portable-Monitor-Display-Extender/dp/B09NLKWDMP/
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Figure 2: Left:MDE/MDD gesture taxonomy, based on Brudy et al. [4]’s taxonomy. Right: various non-flat arrangements enabled
by the 3-way display used in our studies, to be leveraged in future work on combined touch and manipulative gesture input.

and one-to-many associations with flexible physical arrange-

ments of devices. Kray et al. [15] examined phone-to-phone,

phone-to-tabletop, and phone-to-public display cross-device

input in a gesture elicitation study conducted to collect users’

preferences for smartphone gestures. In the same area, Seyed

et al. [32] conducted a gesture elicitation study to identify

suitable commands for content transfer across tablets, table-

tops, and wall displays, and reported that directional swipes

were preferred by users. Finally, Soni et al. [37] used gesture

elicitation to understand the characteristics of gesture input

articulated on a spherical device. Their results revealed users

are likely to perform multi-finger and whole-handed input

on the spherical display than on a tabletop.

For other gesture types, we refer to Villarreal et al.’s [45,46] system-

atic literature reviews of GESs, although user-defined gestures for

personal MDEs/MDDs have been little examined compared to cross-

device input. To bridge this gap in both scientific understanding

and design knowledge, we report results from two GESs, conducted

to collect and analyze user-defined gestures for a 3-way display

and two application domains.

3 STUDY #1: 3-WAY DISPLAYS AS REMOTE
CONTROL PANELS

One popular application of gesture input is controlling remote de-

vices in smart Internet-of-Things (IoT) environments, where input

is performed either in mid-air or through a personal, mobile, or

wearable device [11,18,43]. To evaluate 3-way displays as generic

remote control panels for smart environments, we conducted a

GES following the original method [50] and using a set of referents

representative of IoT interactions in such spaces. We justify this

choice for the following reasons: IoT actions are familiar for most

people [43], they are frequently used in GES [45], they range from

0 to 3 dimensions, therefore enabling the participant to express

preferences in a wide spectrum of possibilities.

3.1 Study
3.1.1 Participants. Twenty-four volunteers (14 females and 10

males), aged between 19 and 60 years old (M=31.8, SD=12.1,Mdn=26),

were recruited via contact lists in different organizations. Their

occupations included secretary, clerk, psychologist, physiothera-

pist, and students in law, communication, economics, sports, and

management. All participants reported frequent use of computers

and smartphones, no dexterity impairments, and had normal or

corrected-to-normal vision. None had used a 3-way display before

our study. One participant was left-handed.

3.1.2 Referents. We used a set of 19 referents representative of

frequent IoT interactions performed in smart home environments,

adopted from previous GEs [11,36,43,44,47]: turn TV on, turn TV

off, turn alarm on, turn alarm off, turn heating on, turn heating

off, turn lights on, turn lights off, turn air conditioning on, turn

air conditioning off, start player, volume up, volume down, answer

phone call, end phone call, go to next item in a list, go to previous

item in a list, dim lights, and brighten lights (first column in Fig. 4).

3.1.3 Apparatus. The study took place in a quiet room, where in-

formation about the referents was available to the participants in

visual form on a standard computer monitor. According to the prin-

ciple of visual priming [20], we created visual representations of

the referents as before/after states. Each representation reproduced

a simplified view of our 3-way display device and highlighted the

effect of a specific referent. For the 3-way display, we used a FlexLite

14" configuration composed of a Sony Vaio laptop with two expand-

able lateral 14" touchscreens (Fig. 1). The two panels are attached

to the primary display using two hinges and are connected and

powered via USB 3.0/USB-C. Each display has 1920×1080 resolution
with 60Hz frequency. Participants’ gestures were video recorded.

Participants were instructed to use on-screen gestures (no mid-air

gestures).

https://the-portable-monitor.com/en-eu/products/flex-lite-14
https://the-portable-monitor.com/en-eu/products/flex-lite-14
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15. Collect files locally

Visual priming

E3Screen

Figure 3: Setup of the study: a FlexLite 14" configuration as a
main station, a second laptop showing the referents.

3.1.4 Procedure. We used a within-subjects design where partic-

ipants were elicited for only one gesture per referent. After sign-

ing a consent form, participants completed a sociodemographic

questionnaire, providing information about their age, gender, and

handedness, as well as their use of computer technology on a 7-

point Likert scale with items ranging from 1 (strongly disagree) to

7 (strongly agree). Subsequently, the participants watched an intro-

ductory video that demonstrated the features of our 3-way display

device. Each session implemented the GES original protocol [50]

(Fig. 3): participants were sitting in front of a 3-way display with

a site laptop presenting randomly 19 referents, i.e., IoT operations

on the E3Screen, for which they proposed suitable gestures to

execute on the 3-way display those operations, i.e., gestures that fit

referents well, are easy to produce and to remember. Participants

were instructed to remain as natural as possible. The order of the

referents was randomized per participant. The dependent variable

was the agreement rate (AR) [41], a measure of the level of con-

sensus between the proposed gestures that computes values in the

[0, 1] interval. We computed ARs with AGATe [41] and interpreted

their magnitudes according to the thresholds of .100, .300, and .500,

corresponding to low, medium, and high agreement levels.

3.2 Results
We report results on a consensus gesture set derived based on de-

scriptive labeling [32] for each of the elicited gestures, according

to Nielsen et al.’s [23] procedure, followed by an assignment of

gestures to signs, according to the codebook model [42] of agree-

ment analysis. We collected a total of 456 gestures corresponding

to our 24 participants and set of 19 referents, which we clustered

into classes of equivalence according to the gesture articulation

characteristics, such as tap variations (e.g., tap vs. double tap) and
type of stroke gestures (e.g., directional swipes or symbols), but

also according to the location of the display on which the gestures

were performed (left, right, or center display). Figure 4 shows the

results obtained for our set of referents, in decreasing order of their

corresponding AR values, together with a set of consensus gestures.

Overall, ARs ranged from a maximum of .308 for “start player” to

a minimum of .050 for “turn heating off,” with an average level of

agreement of just .140 (SD=.07, Mdn=.094), representing medium

to low agreement according to our interpretation rules for ARs.

Overall, we found that a percentage of 42%(=8/19) of all the refer-
ents from our study received medium agreement levels, whereas

53%(=10/19) resulted in low agreement. These findings are simi-

lar to those of previous gesture elicitation studies conducted with

similar referents, e.g., Gheran et al. [11] reported a mean agree-

ment rate of .112 for smart ring gestures to control devices in a

smart home and Zaiţi et al. [54] reported .158 for mid-air gestures

acquired with the Leap Motion controller for TV control. We also

found that taps and stroke-gesture input, with several variations,

were the most agreed gestures. Tap gestures were represented by

single taps, double taps, and long/timed taps, the latter involving

keeping the finger in contact with the screen for a longer period

of time compared to a tap. Examples include a double tap on the

right display to “turn lights on” and a timed tap to “turn the air

conditioning on.” The stroke gestures from the consensus set com-

prise of directional swipes, majoritarily performed on the center

display. Although gestures were performed on all three displays,

most of the articulations addressed the center and right displays.

Our participants considered the center as a reference location in

the personal MDD represented by the 3-way display device, while

the right display was convenient to reach with the right hand since

96% of the participants in our study were right-handed.

4 STUDY #2: CONTENT MANIPULATION ON
3-WAY DISPLAYS

Touchscreen devices enable direct content manipulation through

natural touch gesture input [48]. In this context, we expect a 3-way

display device to enable distinctive opportunities for touch input

compared to a conventional 1-way display. To understand users’

preferences for gestures involving interactions with content pre-

sented on a 3-way display, we conducted another end-user gesture

elicitation study. In this study, we operated with the distinction be-

tween interacting with content within the same display and across
the different displays of our 3-way display device.

4.1 Study
4.1.1 Participants. Twenty-four volunteers (14 females and 10

males), aged between 12 and 68 years (M=27.9, SD=13.3, Mdn=23)

were recruited following a procedure identical to that used in our

first study. All of the participants reported frequent use of comput-

ers and smartphones and no dexterity impairments. None of them

participated in the first study. Additionally, none of the participants

had used a 3-way display prior to our study.

4.1.2 Referents. Two weeks before the GES, we asked participants

to provide a list of file operations that they were using the most on

their 1-way display devices. By analyzing the responses, we identi-

fied twelve tasks—“open file” (16%), “close file” (19%), “duplicate file”

(10%), “delete file” (2%), “move file” (7%), “dock file” (2%), “broadcast

file” (12%), “collect files” (4%), “switch files” (5%), “permute files”

(2%), “merge files” (13%), and “split files” (8%),—which we used as

our set of referents. Additionally, since we focused on both within
and across display interactions, we considered each task performed

within the limits of a single display, but also between the different

displays of the 3-way display device. These combinations led to a

set of twenty-four referents in our GES.
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Figure 4: Consensus gesture set for a 3-way display device used as a remote control in a smart home. Error bars show 95% CIs.

4.1.3 Procedure. The apparatus and procedure were identical to

the first study except for the presentation of the referents. While the

referents were still randomized per participant, doubled referents,

e.g., “duplicate file within” and “duplicate file across,” were pre-

sented consecutively. Additionally to AR,wemeasured (i) Thinking-

Time, defined as the time elapsed between the moment the referent

was presented and the moment when the participants proposed

the gesture to effect the referent, measured in seconds with a stop-

watch, and (ii) Goodness-of-Fit, a rating from 1 (low) to 10 (high),

expressing to what extent the participants considered their gestures

appropriate to effect the referents [11].

4.2 Results
We report results on a consensus gesture set derived using the

same gesture-coding procedure as in the previous study. In total,

we collected 576 gestures corresponding to 24 participants and our

set of 24 referents. Figure 5 shows the referents in decreasing order

of their AR values, together with a consensus gesture set. Overall,

ARs ranged from a maximum value of .388 for “move file across”

to a minimum of .080 for “open file across,” with a mean level of

agreement of just .166 (SD=.148, Mdn=.141). The majority of the

referents (75%=18/24) resulted in medium levels of agreement. A

few exceptions aside, most of the referents received AR values

similar in magnitude to those reported by previous GESs [45,46],

including our first study presented in Section 3; also see [41] for a

summary of AR values compiled from eighteen studies, for which

the smallest level of agreement was .108 for gesture commands

elicited for a MDE [32]. Unlike in our first study, however, the

gesture types that constituted the consensus set were majoritarily

represented by stroke gestures, such as geometrical shapes, letters,

and symbols. Examples include letters “L” and “V” for merging and

switching files within and across displays, and drawing a curly

line symbol to close a file presented within the same display; see

Figure 5 for more examples. The additional measures employed

in this study led to other insights. For example, Thinking-Time

measurements revealed between 8 and 20 seconds for participants

to propose gestures in response to the various referents in our

set, with an average of 13.4 seconds (SD=2.8, Mdn=12.9). These

results indicate more time needed to propose a gesture on the 3-

way display compared, for example, to mid-air gestures performed

with smart rings (4.6 s) [11] and less time compared to proposing

mid-air gestures for lean back interaction with the TV (20.5 s) [54].

Goodness-of-Fit measurements revealed overall high values on

the 1 (low) to 10 (high) scale with a mean of 7.0 (SD=0.6, Mdn=8.3),

varying between a minimum of 6.2 for “switch files within” and a

maximum of 8.0 for “move file within”; see Figure 5. Furthermore,

we found that most of the elicited gestures were articulated using

one finger only (56% in the within and 49% in the across condition),

followed by gestures performed with two fingers (28% and 30%).

We also found that unistroke gestures dominated the articulations

with 73% and 64%, respectively, followed by 2-stroke gestures with

20% and 27%. These findings confirm end users’ preferences for

simple, one-finger and unistroke touch gestures for 3-way display

devices, similar to the preferences identified for other contexts of

use [45,46].
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8.93  3.43

 18.95  7.66
12.03  7.10

15.76  11.47
18.93  9.82
11.59  5.51

9.88  4.82
17.88  12.35

11.65  5.05
10.03  5.04
17.69  8.05
14.44  4.91

15.27  11.35
12.51  6.00

15.85  7. 87
15.23  9.02

9.34  5.97
 8.46  4.23
12.09  5.40
11.03  2.09
15.70  3.45
13.36  2.77

7.00  1.12
 7.96  1.10

7.54  1.26
6.96  1.14
6.42  1.50

 7.92  1.15
6.75  1.33
6.96  1.59

 6.33  1.72
6.54  1.04
6.92  1.58
7.21  1.26

 6.21  2.27
6.46  1.08
7.17  1.60
7.04  1.37
6.54  1.50
7.21  1.29
7.21  1.00
7.04  1.27
6.42  1.63
7.63  1.60
7.54  1.26
6.92  1.53
7.27  0.51
6.72  0.59
6.99  0.55

*** **
*

single tapstroke
gestures

Legend

Figure 5: Consensus gesture set for content manipulation on a 3-way display device. Notes: error bars show 95% CIs; the “within”
term at the end of a referent name, e.g., “merge files within,” denotes an interaction taking place within the physical boundaries
of the same display, while the term “across” denotes an interaction spanning across multiple displays.

5 DISCUSSION AND FUTUREWORK
Based on the findings from our two end-user gesture elicitation

studies, we compiled a visual representation of typical gesture in-

put for 3-way display devices; see Figure 6. This representation

includes a total number of twenty gesture-based interactions, dis-

tributed across the three displays. For example, type-1 gestures

are single-finger taps performed on any of the displays, type-2

gestures are single-finger multi-taps on the central display, while

type-3 gestures include multi-taps on either lateral display. Cross-

display gestures include type-11 consisting of horizontal swipes

from the central display to the lateral ones, while type-12 includes

single-finger swipes in the opposite direction. Starting from this

basic set of gesture types, we recommend future explorations for

other application domains than those considered in our two stud-

ies. To support such future work, including for personal MDDs

with different numbers of displays, we also propose a taxonomy of

MDE/MDD gestures, adapted from Brudy et al.’s [4] cross-device
taxonomy; see Figure 2, left. Based on Brudy et al.’s possible types
of cross-device systems and interactions (Figure 2a to Figure 2e), we

position in this taxonomy our 3-way display gesture set as well as

MDD/MDE gestures from prior work. Regarding the latter, please

revisit Section 2, where we structured our discussion of related

work according to the (a) to (e) categories portrayed in Figure 2.

Furthermore, interesting future work opportunities are enabled

by the gesture types in this space used in combination with the

distinctive qualities of 3-way display form factors. For instance, the

touchscreen gestures identified in our elicitation studies could be

combined with manipulative gestures acting on the configurable

lateral sides of a 3-way display [39] for various application domains,

number of users, user categories, and contexts of use. To this end,

Figure 2, right shows several opportunities for 3-way displays to

be customized in terms of non-flat displays.

6 CONCLUSION
We reported findings about using 3-way display devices in two

specific application scenarios: remote control of devices in a smart

home environment, where the 3-way display acts as a control panel,

and manipulating content on the 3-way display by leveraging its

multi-display form factor for within and cross-display input. Our re-

sults revealed end users’ preferences for tap gestures in the former

application scenario and stroke-gesture input in the latter as well

as preferences for the specific displays where gestures were articu-

lated based on display centrality and users’ handedness. To extend

our preliminary findings with new discoveries, we recommend

future exploration of gesture input for personal MDDs in other

application domains, including augmented reality [24], in-vehicle

interaction [3], and specific living environments [12].
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A CLASSIFICATION OF TOUCHSCREEN
GESTURES FOR A 3-WAY DISPLAY

This appendix shows the classification resulting from the studies.
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Single-finger multi-tap on either display
Multi-finger single-tap on either display
Single-finger horizontal swipe on either display
Multi-finger horizontal swipe on either display
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Multi-finger vertical swipe on either display
Long/timed single tap on either display
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Figure 6: Our classification of possible touchscreen gesture interactions for 3-way display.
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