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Figure 1: A 3-way display is a reconfigurable form factor of a personal computer that features one central display and two
symmetrically expandable lateral sides. In this work, we examine user-defined gesture input for personal 3-way display devices.

ABSTRACT

In the family of personal multi-display devices and environments,
3-way displays conveniently integrate into the conventional form
factors of laptops and tablets, featuring both a central display area
and two symmetrically expandable lateral sides. However, despite
a large body of knowledge on touch input for single-display de-
vices, little is known about users’ gesture preferences for 3-way
displays. We propose a cross-display gesture taxonomy for future
explorations of gesture input for multi-display devices, in which we
position 3-way displays. Using a requirement elicitation, we report
results from two gesture elicitation studies with a total of 48 partic-
ipants, where a 3-way display was used as a remote control panel
for a smart home environment (study #1) and a touchscreen inter-
face for content manipulation performed both within and across
displays (study #2). Based on these findings, we offer two consen-
sus datasets of 3-way-display gestures that are consolidated into a
larger classification of stroke-gesture input for 3-way displays.
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1 INTRODUCTION

Multi-Display Environments (MDEs) distribute interactions over
multiple displays with form factors and contexts of use spanning
from personal mobile devices intended for individual users [52]
to multitouch tabletop computing [8] and wall displays suited for
collaborative tasks involving multiple users [22,32]. MDEs also
include touchscreen displays that customize interactions according
to display size [2], position [31], resolution [2], and mobility [38]
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with many benefits regarding user experience [10]. However, due to
the distribution of the display usage in both space and time, MDEs
pose challenges in synchronizing individual displays [15], initiating
communication [17], transferring applications [7] and data [16]
across displays, and manipulating content [15,17,22], respectively,
in smart and ambient intelligence environments, including smart
rooms and smart buildings. To address such aspects, gesture input
has been examined for interactions with MDEs [32,33], including
on-screen [55] and motion-based [52] gestures.

Personal MDEs, in the form of multi-display devices (MDDs),
take advantage of reconfigurable form factors in both mobile and
stationary contexts of use. For example, 2-way display smartphones,
such as Samsung Galaxy Fold, enable various input modalities, in-
cluding flipping gestures [52], while 3-way monitor configurations,
e.g., Teamgee Triple Monitor Screen Extender, offer customized
content visualization and effective multitasking. However, while
input for large-scale or multi-device MDEs has been extensively
examined before [7,8,13-17,22,32,33], little is known about users’
gesture input preferences for personal MDDs, such as the ones in
the above examples, and about how MDDs with distinctive form
factors can be used to effect commands in a smart environment.

To engineer gesture-based user interfaces for interactive appli-
cations using a 3-way display, we need an appropriate gesture
vocabulary [51] and an efficient recognizer [1]. While the second
problem of recognizing stroke gestures on a touch surface has been
largely resolved thanks to the availability [5] of compact and ef-
ficient recognizers [9], such as template-based ones [19], the first
problem of the gesture vocabulary remains open and unsolved.

To address this problem, we contribute conceptual and empirical
findings for touchscreen input on 3-way displays. We are specifi-
cally interested in the 3-way form factor since it conveniently packs
multiple displays into conventional computer monitors, laptops, or
tablets, featuring both a central display area and two symmetrically
expandable lateral sides (see Fig. 1). Regarding requirements engi-
neering in general and elicitation in particular, a popular method
for uncovering end users’ preferences for gesture input consists of
conducting a Gesture Elicitation Study (GES) [50], a participatory
design method where participants are instructed to propose one
or many gestures in response to a referent materializing an action
or a task (see [45] for a systematic literature review). Using this
method, our contributions are manifold:

e Section 2 revisits Brudy et al.’s [4] cross-device taxonomy of
interactions in the light of gesture input spanning multiple
displays to propose a new cross-display gesture taxonomy,
in which 3-way displays are positioned.

e Section 3 reports a first GES using the 3-way display as a
generic remote control panel for a smart environment, uncov-
ering end users’ preferences for taps and directional swipes
performed using the center and right displays, predilection
for input centrality and following participants’ handedness.

e Section 4 reports a second GES for content manipulation
performed both within and across the displays of the 3-way
display for effecting commands in a smart environment.

e Section 5 summarises the gesture datasets resulting from the
two GES, consolidates them into a classification of 3-way
stroke gestures, and discusses these results.
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2 RELATED WORK

Nacenta et al. [22] distinguish between spatially-aware and spatially-
agnostic input techniques in their taxonomy of cross-display object
movement in MDEs. In the former case, displays are referenced
in an absolute manner, according to their spatial location in the
MDE [6,27]. In the latter, they are referenced in a relative manner
through specific techniques, such as physical identifiers, lists, hier-
archies, and coding schemes [27]. Due to such differences in how
individual displays can be referenced in MDEs, we expect differ-
ences to also exist in users’ mental models for gesture-based input to
interact with personal MDDs. To structure related work in this area,
we revisit Brudy et al.’s [4] taxonomy for cross-device interaction
with a focus on gesture input for MDEs/MDDs as follows:

(a) Multi-monitor/screen systems foster 2-way display gestures,
such as flipping [52], pulling [26], and gestures performed
across and between screens [26], respectively. For example,
Yang et al. [52] proposed a design space of thirty gestures
consisting of flipping actions for 2-way display smartphones.
They found that flipping gestures performed with the wrist
were the fastest, while bimanual gestures were the most
preferred by the participants in their study. Shen and Harri-
son [34] proposed a design space of pull gestures for 2-way
display laptops, structured according to the location of inter-
action (on screen vs. off-screen) and the number of screens
(one vs. two). Examples of on-screen gestures include drag,
flick, pinch-to-zoom, double tap, click & hold, lasso, pull
apart, dial, and knuckle taps, while cross-screen input is
mainly represented by drag and drag & tap, respectively.
Multi-slate/tablet systems afford both spatially-aware and
spatially-agnostic gesture input [6,27], shortcuts [25], mo-
tion input [30], stitching [14], and dexterous finger-based
gestures [53]. For example, Hinckley et al’s [14] stitching
technique enables pen-based gesture input to be performed
across multiple displays.

Cross-display interactions involve object movement gestures

[22] performed across multiple displays. For example, a GES

conducted for mobile cross-display tasks by Radle et al. [27]

revealed a percentage of 71% of the elicited gestures to be

spatially aware. Overall, spatially-aware gestures are gen-
erally preferred to spatially-agnostic ones as they present

lower mental demand, effort, and frustration [6].

(d) Cross-surface gesture interactions are mostly represented by
the pick & drop technique [29], which implements copy/-
paste and content transfer across surfaces [49] and objects
[40]. Other examples include multitouch [8], swipe-hand
open [26], prevalent gestures [32], mono-surface [21,50],
and multi-surface gestures [33].

(e) Cross-device interactions include gestures for data sharing [7]
and transfer [16], connection gestures [15,17], auxiliary dis-
play input [26], and cross-device drag & drop [35]. Also, syn-
chronous gestures [13] enable individual users to perform
the same gesture on two devices to link them or two users
to perform the gesture simultaneously on their own devices
and achieve the same result. In the context of MDEs, synchro-
nous gestures have been applied to cross-device input [28] to
implement connection-action phrases involving one-to-one
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Figure 2: Left: MDE/MDD gesture taxonomy, based on Brudy et al. [4]’s taxonomy. Right: various non-flat arrangements enabled
by the 3-way display used in our studies, to be leveraged in future work on combined touch and manipulative gesture input.

and one-to-many associations with flexible physical arrange-
ments of devices. Kray et al. [15] examined phone-to-phone,
phone-to-tabletop, and phone-to-public display cross-device
input in a gesture elicitation study conducted to collect users’
preferences for smartphone gestures. In the same area, Seyed
et al. [32] conducted a gesture elicitation study to identify
suitable commands for content transfer across tablets, table-
tops, and wall displays, and reported that directional swipes
were preferred by users. Finally, Soni et al. [37] used gesture
elicitation to understand the characteristics of gesture input
articulated on a spherical device. Their results revealed users
are likely to perform multi-finger and whole-handed input
on the spherical display than on a tabletop.

For other gesture types, we refer to Villarreal et al.’s [45,46] system-
atic literature reviews of GESs, although user-defined gestures for
personal MDEs/MDDs have been little examined compared to cross-
device input. To bridge this gap in both scientific understanding
and design knowledge, we report results from two GESs, conducted
to collect and analyze user-defined gestures for a 3-way display
and two application domains.

3 STUDY #1: 3-WAY DISPLAYS AS REMOTE
CONTROL PANELS

One popular application of gesture input is controlling remote de-
vices in smart Internet-of-Things (IoT) environments, where input
is performed either in mid-air or through a personal, mobile, or
wearable device [11,18,43]. To evaluate 3-way displays as generic
remote control panels for smart environments, we conducted a
GES following the original method [50] and using a set of referents
representative of IoT interactions in such spaces. We justify this
choice for the following reasons: IoT actions are familiar for most
people [43], they are frequently used in GES [45], they range from
0 to 3 dimensions, therefore enabling the participant to express
preferences in a wide spectrum of possibilities.

3.1 Study

3.1.1 Participants. Twenty-four volunteers (14 females and 10
males), aged between 19 and 60 years old (M=31.8, SD=12.1, Mdn=26),
were recruited via contact lists in different organizations. Their
occupations included secretary, clerk, psychologist, physiothera-
pist, and students in law, communication, economics, sports, and
management. All participants reported frequent use of computers
and smartphones, no dexterity impairments, and had normal or
corrected-to-normal vision. None had used a 3-way display before
our study. One participant was left-handed.

3.1.2  Referents. We used a set of 19 referents representative of
frequent IoT interactions performed in smart home environments,
adopted from previous GEs [11,36,43,44,47]: turn TV on, turn TV
off, turn alarm on, turn alarm off, turn heating on, turn heating
off, turn lights on, turn lights off, turn air conditioning on, turn
air conditioning off, start player, volume up, volume down, answer
phone call, end phone call, go to next item in a list, go to previous
item in a list, dim lights, and brighten lights (first column in Fig. 4).

3.1.3  Apparatus. The study took place in a quiet room, where in-
formation about the referents was available to the participants in
visual form on a standard computer monitor. According to the prin-
ciple of visual priming [20], we created visual representations of
the referents as before/after states. Each representation reproduced
a simplified view of our 3-way display device and highlighted the
effect of a specific referent. For the 3-way display, we used a FlexLite
14" configuration composed of a Sony Vaio laptop with two expand-
able lateral 14" touchscreens (Fig. 1). The two panels are attached
to the primary display using two hinges and are connected and
powered via USB 3.0/USB-C. Each display has 1920x1080 resolution
with 60 Hz frequency. Participants’ gestures were video recorded.
Participants were instructed to use on-screen gestures (no mid-air
gestures).
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Figure 3: Setup of the study: a FlexLite 14" configuration as a
main station, a second laptop showing the referents.

3.1.4  Procedure. We used a within-subjects design where partic-
ipants were elicited for only one gesture per referent. After sign-
ing a consent form, participants completed a sociodemographic
questionnaire, providing information about their age, gender, and
handedness, as well as their use of computer technology on a 7-
point Likert scale with items ranging from 1 (strongly disagree) to
7 (strongly agree). Subsequently, the participants watched an intro-
ductory video that demonstrated the features of our 3-way display
device. Each session implemented the GES original protocol [50]
(Fig. 3): participants were sitting in front of a 3-way display with
a site laptop presenting randomly 19 referents, i.e., IoT operations
on the E3ScrEEN, for which they proposed suitable gestures to
execute on the 3-way display those operations, i.e., gestures that fit
referents well, are easy to produce and to remember. Participants
were instructed to remain as natural as possible. The order of the
referents was randomized per participant. The dependent variable
was the agreement rate (AR) [41], a measure of the level of con-
sensus between the proposed gestures that computes values in the
[0, 1] interval. We computed ARs with AGATe [41] and interpreted
their magnitudes according to the thresholds of .100, .300, and .500,
corresponding to low, medium, and high agreement levels.

3.2 Results

We report results on a consensus gesture set derived based on de-
scriptive labeling [32] for each of the elicited gestures, according
to Nielsen et al’s [23] procedure, followed by an assignment of
gestures to signs, according to the codebook model [42] of agree-
ment analysis. We collected a total of 456 gestures corresponding
to our 24 participants and set of 19 referents, which we clustered
into classes of equivalence according to the gesture articulation
characteristics, such as tap variations (e.g., tap vs. double tap) and
type of stroke gestures (e.g., directional swipes or symbols), but
also according to the location of the display on which the gestures
were performed (left, right, or center display). Figure 4 shows the
results obtained for our set of referents, in decreasing order of their
corresponding AR values, together with a set of consensus gestures.
Overall, ARs ranged from a maximum of .308 for “start player” to
a minimum of .050 for “turn heating off,” with an average level of
agreement of just .140 (SD=.07, Mdn=.094), representing medium
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to low agreement according to our interpretation rules for ARs.
Overall, we found that a percentage of 42%(=8/19) of all the refer-
ents from our study received medium agreement levels, whereas
53%(=10/19) resulted in low agreement. These findings are simi-
lar to those of previous gesture elicitation studies conducted with
similar referents, e.g., Gheran et al. [11] reported a mean agree-
ment rate of .112 for smart ring gestures to control devices in a
smart home and Zaiti et al. [54] reported .158 for mid-air gestures
acquired with the Leap Motion controller for TV control. We also
found that taps and stroke-gesture input, with several variations,
were the most agreed gestures. Tap gestures were represented by
single taps, double taps, and long/timed taps, the latter involving
keeping the finger in contact with the screen for a longer period
of time compared to a tap. Examples include a double tap on the
right display to “turn lights on” and a timed tap to “turn the air
conditioning on.” The stroke gestures from the consensus set com-
prise of directional swipes, majoritarily performed on the center
display. Although gestures were performed on all three displays,
most of the articulations addressed the center and right displays.
Our participants considered the center as a reference location in
the personal MDD represented by the 3-way display device, while
the right display was convenient to reach with the right hand since
96% of the participants in our study were right-handed.

4 STUDY #2: CONTENT MANIPULATION ON
3-WAY DISPLAYS

Touchscreen devices enable direct content manipulation through
natural touch gesture input [48]. In this context, we expect a 3-way
display device to enable distinctive opportunities for touch input
compared to a conventional 1-way display. To understand users’
preferences for gestures involving interactions with content pre-
sented on a 3-way display, we conducted another end-user gesture
elicitation study. In this study, we operated with the distinction be-
tween interacting with content within the same display and across
the different displays of our 3-way display device.

4.1 Study

4.1.1 Participants. Twenty-four volunteers (14 females and 10
males), aged between 12 and 68 years (M=27.9, SD=13.3, Mdn=23)
were recruited following a procedure identical to that used in our
first study. All of the participants reported frequent use of comput-
ers and smartphones and no dexterity impairments. None of them
participated in the first study. Additionally, none of the participants
had used a 3-way display prior to our study.

4.1.2  Referents. Two weeks before the GES, we asked participants
to provide a list of file operations that they were using the most on
their 1-way display devices. By analyzing the responses, we identi-
fied twelve tasks—“open file” (16%), “close file” (19%), “duplicate file”
(10%), “delete file” (2%), “move file” (7%), “dock file” (2%), “broadcast
file” (12%), “collect files” (4%), “switch files” (5%), “permute files”
(2%), “merge files” (13%), and “split files” (8%),—which we used as
our set of referents. Additionally, since we focused on both within
and across display interactions, we considered each task performed
within the limits of a single display, but also between the different
displays of the 3-way display device. These combinations led to a
set of twenty-four referents in our GES.
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Figure 4: Consensus gesture set for a 3-way display device used as a remote control in a smart home. Error bars show 95% Cls.

4.1.3  Procedure. The apparatus and procedure were identical to
the first study except for the presentation of the referents. While the
referents were still randomized per participant, doubled referents,
e.g., “duplicate file within” and “duplicate file across,” were pre-
sented consecutively. Additionally to AR, we measured (i) THINKING-
TiME, defined as the time elapsed between the moment the referent
was presented and the moment when the participants proposed
the gesture to effect the referent, measured in seconds with a stop-
watch, and (i) GOODNESs-OF-FIT, a rating from 1 (low) to 10 (high),
expressing to what extent the participants considered their gestures
appropriate to effect the referents [11].

4.2 Results

We report results on a consensus gesture set derived using the
same gesture-coding procedure as in the previous study. In total,
we collected 576 gestures corresponding to 24 participants and our
set of 24 referents. Figure 5 shows the referents in decreasing order
of their AR values, together with a consensus gesture set. Overall,
ARs ranged from a maximum value of .388 for “move file across”
to a minimum of .080 for “open file across,” with a mean level of
agreement of just .166 (SD=.148, Mdn=.141). The majority of the
referents (75%=18/24) resulted in medium levels of agreement. A
few exceptions aside, most of the referents received AR values
similar in magnitude to those reported by previous GESs [45,46],
including our first study presented in Section 3; also see [41] for a
summary of AR values compiled from eighteen studies, for which
the smallest level of agreement was .108 for gesture commands

elicited for a MDE [32]. Unlike in our first study, however, the
gesture types that constituted the consensus set were majoritarily
represented by stroke gestures, such as geometrical shapes, letters,
and symbols. Examples include letters “L” and “V” for merging and
switching files within and across displays, and drawing a curly
line symbol to close a file presented within the same display; see
Figure 5 for more examples. The additional measures employed
in this study led to other insights. For example, THINKING-TIME
measurements revealed between 8 and 20 seconds for participants
to propose gestures in response to the various referents in our
set, with an average of 13.4 seconds (SD=2.8, Mdn=12.9). These
results indicate more time needed to propose a gesture on the 3-
way display compared, for example, to mid-air gestures performed
with smart rings (4.6 s) [11] and less time compared to proposing
mid-air gestures for lean back interaction with the TV (20.5s) [54].
GOODNESs-OF-FIT measurements revealed overall high values on
the 1 (low) to 10 (high) scale with a mean of 7.0 (SD=0.6, Mdn=8.3),
varying between a minimum of 6.2 for “switch files within” and a
maximum of 8.0 for “move file within”; see Figure 5. Furthermore,
we found that most of the elicited gestures were articulated using
one finger only (56% in the within and 49% in the across condition),
followed by gestures performed with two fingers (28% and 30%).
We also found that unistroke gestures dominated the articulations
with 73% and 64%, respectively, followed by 2-stroke gestures with
20% and 27%. These findings confirm end users’ preferences for
simple, one-finger and unistroke touch gestures for 3-way display
devices, similar to the preferences identified for other contexts of
use [45,46].
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Figure 5: Consensus gesture set for content manipulation on a 3-way display device. Notes: error bars show 95% Cls; the “within”
term at the end of a referent name, e.g., “merge files within,” denotes an interaction taking place within the physical boundaries
of the same display, while the term “across” denotes an interaction spanning across multiple displays.

5 DISCUSSION AND FUTURE WORK

Based on the findings from our two end-user gesture elicitation
studies, we compiled a visual representation of typical gesture in-
put for 3-way display devices; see Figure 6. This representation
includes a total number of twenty gesture-based interactions, dis-
tributed across the three displays. For example, type-1 gestures
are single-finger taps performed on any of the displays, type-2
gestures are single-finger multi-taps on the central display, while
type-3 gestures include multi-taps on either lateral display. Cross-
display gestures include type-11 consisting of horizontal swipes
from the central display to the lateral ones, while type-12 includes
single-finger swipes in the opposite direction. Starting from this
basic set of gesture types, we recommend future explorations for
other application domains than those considered in our two stud-
ies. To support such future work, including for personal MDDs
with different numbers of displays, we also propose a taxonomy of
MDE/MDD gestures, adapted from Brudy et al.’s [4] cross-device
taxonomy; see Figure 2, left. Based on Brudy et al.’s possible types
of cross-device systems and interactions (Figure 2a to Figure 2e), we
position in this taxonomy our 3-way display gesture set as well as
MDD/MDE gestures from prior work. Regarding the latter, please
revisit Section 2, where we structured our discussion of related
work according to the (a) to () categories portrayed in Figure 2.
Furthermore, interesting future work opportunities are enabled

by the gesture types in this space used in combination with the
distinctive qualities of 3-way display form factors. For instance, the
touchscreen gestures identified in our elicitation studies could be
combined with manipulative gestures acting on the configurable
lateral sides of a 3-way display [39] for various application domains,
number of users, user categories, and contexts of use. To this end,
Figure 2, right shows several opportunities for 3-way displays to
be customized in terms of non-flat displays.

6 CONCLUSION

We reported findings about using 3-way display devices in two
specific application scenarios: remote control of devices in a smart
home environment, where the 3-way display acts as a control panel,
and manipulating content on the 3-way display by leveraging its
multi-display form factor for within and cross-display input. Our re-
sults revealed end users’ preferences for tap gestures in the former
application scenario and stroke-gesture input in the latter as well
as preferences for the specific displays where gestures were articu-
lated based on display centrality and users’ handedness. To extend
our preliminary findings with new discoveries, we recommend
future exploration of gesture input for personal MDDs in other
application domains, including augmented reality [24], in-vehicle
interaction [3], and specific living environments [12].
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Engineering Touchscreen Input for 3-Way Displays

A CLASSIFICATION OF TOUCHSCREEN
GESTURES FOR A 3-WAY DISPLAY

This appendix shows the classification resulting from the studies.

Single-finger single-tap on either display Horizontal swipe from the central to a lateral display
Single-finger multi-tap on either display Horizontal swipe from a lateral display to the central display
Multi-finger single-tap on either display Single-finger directional swipe from an edge to the center

(4] single-finger horizontal swipe on either display Single-finger directional swipe from the center to an edge

Multi-finger horizontal swipe on either display Single-finger directional swipe from an edge

(6 single-finger vertical swipe on either display Single-finger directional swipe from the center

Multi-finger vertical swipe on either display Multi-finger pinch in/out on the central display

Long/timed single tap on either display Multi-finger pinch in/out extended from the center to a lateral display
(9] single-finger geometrical shape on either display Multi-finger pinch in/out from center to right

Single-finger symbol on either display Multi-finger pinch in/out from center to left

Figure 6: Our classification of possible touchscreen gesture interactions for 3-way display.
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