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Figure 1: Non-congruent, non-hierarchical stroke gestures vs. congruent and hierarchical alternatives (left); The results of our
experiments comparing non-congruent, non-hierarchical gestures and their congruent, hierarchical counterparts (right).

Abstract

The typical approach to gesture set design, which relies on one-
to-one mappings between gestures and system functions, often
presents challenges for users in terms of gesture discoverability,
learnability, and memorability. In this paper, we examine the hy-
pothesis that semantically related system functions can benefit
from the use of congruent gestures, whereas functions structured in
the form of parameterized action may be better supported by hier-
archical gestures. We report the results of a gesture elicitation study
conducted with n;=24 participants, who proposed stroke gestures
for a multi-display touchscreen to effect file-related manipulation
referents either locally on a central display or remotely on a lateral
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display. In a follow-up study, an original mixed method combining
elicitation and identification, another sample of ny=24 participants
was instructed to focus on congruent and hierarchical gestures for
the same referents. Our results reveal higher agreement and an
increased perceived goodness of fit between gestures and system
functions in the second study.
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1 Introduction

The number of gestures users can effectively memorize and recall
depends on various human factors, such as cognitive abilities and
learning capacity, as well as on the gesture-to-function mappings
within the context of use of the interactive system featuring the
gesture-based interface. For example, gestures that have meaningful
associations with the functions they trigger, have simple forms, or
replicate physical actions from the real world tend to be more mem-
orable. In the case of touch and stroke gesture input [41], gesture
sets are typically determined by the operating system (e.g., seven
default gestures in Apple iOS and fourteen gestures in Microsoft
Surface) or the sensing and recognition capabilities of the device
(e.g., twelve gestures available when using Kinemic). These limita-
tions can be overcome by implementing applications with custom
gesture recognition solutions [13,15-17,30].

The assignment of gestures to system commands [3,24] deter-
mines key usability factors, such as discoverability [4], memorabil-
ity [6,10,21], articulation performance [8], learning [3,21,22], and
recall [3,6]. Although the design of a gesture set should consider
contextual, cognitive, physical, and system factors [39], the typical
approach, despite some exceptions [9,23], still follows a one-to-one
mapping [6], where a single gesture is assigned to each command.
Consequently, as the size of the command set increases, the ex-
pected benefits tend to decrease. For example, during gesture elici-
tation [38], participants may run out of options, revert to previously
known interactions [19], or create unnecessarily complex gestures
with abstract associations to commands to complete the task. This
can negatively impact gesture set memorability and recall, with the
problem potentially exacerbated in many-to-one mappings.

A potential solution lies in gesture congruency (where related sys-
tem functions are assigned related gestures) and gesture hierarchical
structures (where gestures take the form of action verb-object and
action-qualifier-object). A representative example of non-congruent
gestures occurs when users assign unrelated gestures to opposite,
symmetric, or dichotomous commands, e.g., “draw a circle” and
“draw a cross” in mid-air assigned to “turn TV on” and “turn TV
off”, respectively; see the fourth column in Figure 1. In contrast,
a “clockwise circle” followed by “rectangle” and “cross” followed
by “square” result in hierarchical gestures that can be meaningfully
decomposed into constituent parts, although they still remain non-
congruent themselves; see the third column in Figure 1. Moreover,
the complexity of the proposed gestures sometimes exceeds the
number of dimensions of the command: e.g., a unistroke and a
multistroke gesture were proposed for a two-state on/off action.

As alternatives to non-congruent, non-hierarchical commands,
we explore in this paper congruent and hierarchical gestures; see
the first column in Figure 1. We believe that gestures with these
characteristics preserve the intuitive quality of gesture input, have
strong cognitive associations to system functions, and enhance both
memorability and recall. Section 2 reviews previous work on the
composition of system commands and gestures. Section 3 reports
findings from a gesture elicitation study that produced a set of non-
congruent, non-hierarchical gestures for specific referents involving
E3ScrEEN, a multi-display device [28,29]. Section 4 presents the
findings of a mixed elicitation study, focusing on both congruent
and hierarchical gestures for the same referents.
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2 Related Work

Carroll [5] compared four versions of a 16-command language for
human-robot interaction, based on whether the commands were
congruent (i.e., symmetric for pairs of semantically related com-
mands) and hierarchical (i.e., following a verb-object-qualifier struc-
ture). For example, “advance/retreat” and “right/left” are congruent
commands, while “go/back” and “turn/left” are not. Congruent and
hierarchical commands received the best subjective ratings, the
highest test scores on a problem-solving task, and the fewest errors
and omissions. Carroll [5] conjectured that recall would improve
due to the congruent and hierarchical structure of these commands.

To transpose this design principle to gesture input, we need to
examine the process of gesture composition, for which various ap-
proaches exist, such as chaining primitives [14], spatio-temporal
combination [6], concatenation [24], contiguity [12], and assem-
bly [37]. For example, hierarchical gestures are well-suited for
smartphone control when the number of commands is large, as
they offer better learnability, higher expressiveness, and greater
subjective satisfaction compared to non-hierarchical variants [14].
Another example is the Augmented Letters technique [24], where
commands are formed by composing unistrokes and parameters,
e.g., letter “T” for turn followed by a right flick to indicate the
turning direction. Delamare et al. [6] apply the same principle to
3D mid-air input to derive a vocabulary of hierarchical gestures
with an improved recall rate. User-defined gestures are generally
easier to remember than those created by designers or random map-
pings [21]. End users prefer gestures proposed by large groups [20].

There are also frameworks for designing gesture-based inter-
faces across various applications. For example, Yao et al. [40] pro-
posed a layered architecture for multi-touch gestures applied to
urban planning, comprising raw data, basic gesture, and application-
specific layers. Similarly, Acuna et al. [1] describe a multilayered
framework for two-handed gestures in 3D software development
environments. [7] introduced a layered gesture recognition frame-
work that provides device independence and extensibility for 3D
gestures captured with gloves. Mo and Neumann [18] present a
framework for automatically producing a gesture interface based on
a simple interface description written in Gelex notation, in which
each hand pose is decomposed into elements in a finger-pose al-
phabet. These frameworks simplify the design and implementation
of gesture interfaces by providing structured approaches to their
recognition and interpretation and by offering flexibility in their
layered architectures for different gesture types.

Prior research suggests that gesture elicitation studies [38], a
specific form of participatory design where participants propose
desirable gestures corresponding to given system functions, can be
an effective method for investigating the congruent and hierarchi-
cal properties of gesture input. Vogiatzidakis and Koutsabasis [37]
showed that prioritizing gestures according to a command-and-
address structure improved their acceptability and usage. Apart
from this study and to the best of our knowledge, no research has
explored the congruent and hierarchical properties in the context
of touch and stroke gesture input. While knowledge in user-defined
gestures has been accumulating [25-27,34-36], there is limited un-
derstanding about gestures that exhibit congruency and hierarchical
properties in relation to the system functions they effect.


https://www.apple.com/ios/ios-17/
https://support.microsoft.com/en-us/windows/touch-gestures-for-windows-a9d28305-4818-a5df-4e2b-e5590f850741
https://support.microsoft.com/en-us/windows/touch-gestures-for-windows-a9d28305-4818-a5df-4e2b-e5590f850741
https://kinemic.com/en/kinemic-band/gestures/
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3 Experiment #1: Gesture Elicitation Study

We conducted a gesture elicitation study, following the method
introduced by Wobbrock et al. [38], to understand the congruent
and hierarchical characteristics of user-defined gestures. We place
this study in the context and application area of interactive multi-
display environments [26], and elicited touch and stroke gesture
input for E3SCREEN [28,29], a reconfigurable touchscreen display
compatible with tablets, laptops, and desktop monitors.

3.1 Participants

Twenty-four participants (fourteen female and ten male, aged from
12 to 68 years, M=27.9, SD=13.3, Mdn=23), were recruited for the
study through a contact list in different organizations and conve-
nience sampling. The wide age range (a span of 56 years) supported
the exploratory nature of our study, and for the 12-year-old partici-
pant, we obtained the consent of their legal guardian. Participants’
occupations were diverse, including secretary, administrative clerk,
psychologist, physical therapist, and law, communication, econom-
ics, sports, and management students. All participants reported
regular use of computers and smartphones. None had seen or used
an E3SCREEN or other similar multi-display device before.

3.2 Referents

Prior to the experiment, we asked participants to enumerate the
most frequent file-related tasks they used on a regular basis, which
resulted in the following set of twelve referents: open file (16%), close
file (19%), duplicate file (10%), delete file (2%), move file (7%), dock file
(2%), broadcast file (12%), collect files (4%), switch files (5%), permute
files (2%), merge files (13%), and split files (8%). Since E3SCREEN
consists of three displays (see details in [28,29]), participants were
instructed to propose gestures either locally on the central display
or remotely, on the lateral screens. We applied visual priming [20]
in the form of interactive PowerPoint presentations of the 12 tasks
X 2 locations (central vs. lateral) = 24 referents showing before/after
illustrations of successfully completed system function effects.

3.3 Setup

A within-subjects design was implemented where each participant
proposed one gesture per referent. The experiment took place in a
quiet room. [llustrations of the referents were presented on a laptop
next to E3ScREEN (see Figure 2). All gestures were recorded using
both a screen-recording application and a video camera.

3.4 Procedure and Task

Participants signed an informed consent form, completed a socio-
demographic questionnaire (age, gender, handedness, use of com-
puter technology and digital devices), and performed the NEPSY-II
motor skill test [11] consisting of pinching each finger with the
thumb several times in a row. Subsequently, the participants were
presented with the referents, in randomized order, for which they
proposed suitable gestures to maximize the goodness of fit, ease
of articulation, and ease of recall. The referents were presented in
pairs according to the display location, e.g., duplicate file locally
and duplicate file remotely. Each session lasted about 45 minutes.
We measured the following dependent variables:
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o AGREEMENT-RATE (AR), ratio variable, expressing the agree-
ment among participants’ gestures, using AGATe [31].

e THINKING-TIME (TT), a ratio variable, defined as the time
(in seconds) elapsed between the moment a referent was
first shown and the participant confirmed having found a
suitable gesture to perform it, measured using a stopwatch.

e GooDNEss-OF-FIT (GoF), an ordinal variable with values
ranging from 1 (low) and 10 (high), indicating the extent to
which participants perceived the gesture they proposed as
suitable for effecting the corresponding referent.

3.5 Results

The gestures were subjected to descriptive labeling [26], following
Nielsen et al.’s [22] procedure, and assigned to a gesture category,
according to the codebook model to gesture analysis in end-user
elicitation studies [32]. A total of 576 gestures were clustered into 26
equivalence classes, as follows: pinch, right arrow, triangle, zigzag,
heartbeat-like pattern, knot, check mark, letter “U,” star, spiral, letter
“L,” curve, stair-like pattern, cross, pinch out, circle, double swap, pinch
in, spread swap, tap, double tap, cloud, press once, square, infinity
symbol, and letter “D.” Since the design space of possible gestures
afforded by multi-screen devices is wide, participants came up with
many different proposals. Figure 3, left shows AR values for each
referent. Overall, they ranged from low agreement (e.g., .08 for open
file remotely) to medium agreement (.388 for move file remotely)
with a mean of .166 on the unit scale (SD=.148). THINKING-TIME
ranged from 8.5s for close file locally to 20.7s for permute files locally
(M=13.5, SD=3.3); see Figure 3, middle. A Wilcoxon signed-rank
test revealed a statistically significant difference between referents
corresponding to the local (M=11.0) and remote (M=15.7) displays
of E3ScREEN. GOODNESS-OF-FIT ratings, averaged across partici-
pants, ranged from a minimum of 6.2 for switch files locally to 8.0 for
move file locally (M=6.9, SD=1.4); see Figure 3, right. A Wilcoxon
signed-rank test found a significant difference (Z=1.79, p=.036) for
local (M=7.1, SD=1.4) vs. remote (M=6.6, SD=1.6) displays.

4 Experiment #2: Mixed Elicitation Study
4.1 Method

In our second study, we combined end-user elicitation [38] and iden-
tification [2] by presenting participants with a gesture set, while
also offering them the opportunity to propose alternative gestures.
We started from the consensus gesture set identified in the first
study and employed the same apparatus and task, as described in
Section 3. We recruited a new sample of 24 participants (seventeen
male and seven female, aged from 16 to 60 years, M=32.01, SD=8.08,
Mdn=31). The age range with a span of 44 years was smaller, but
similar to the one in the first study, and the 16-year old participant
had the consent of their legal guardian. None of the participants
were involved in the first study. A set of 30 referents was composed
based on the 24 initial ones, which were expanded with new ref-
erents corresponding to congruent and hierarchical design, e.g.,
undelete file for the delete file referent, undock file for dock file. The
participants could select a gesture from the provided set (identifica-
tion) or propose a new gesture (elicitation). The presentation order
of the referents was randomized. We collected 24 (participants) X
15 (referents) X 2 (display locations) = 720 gesture proposals.
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Figure 2: Setup of the design study with the E3ScCREEN as a source for gesture input.

4.2 Results

Figure 3 shows the results obtained in the second study (light colors)
vs. the ones in first study (dark colors) in terms of AGREEMENT-
RATE (left), THINKING-TIME (middle), and GoopNEss-oOF-FIT (right).
Overall, the average agreement increased from .166 to .281 from
the first to the second study, representing an increase of 69%. A two-
tailed Mann-Whitney test for independent samples showed that
this difference was statistically significant (U=132, z=3.96, p<.001)
with a large effect size (r=.54). When restricting the comparison to
the common referents only, the test remained significant (U=114,
z=3.58, p<.001, r=.51). The difference in the referents involving
the local, central display was 59% and that between the referents
involving the lateral, remote displays was 81%. These results suggest
that the second study resulted in higher agreement overall when
congruent and hierarchical gestures were involved.

The average THINKING-TIME decreased from 13.5s to 12.55, a re-
duction of 8%, not statistically significant (U=396, z=0.79, p=.220>.05,
n.s.). Similarly, the decrease in THINKING-TIME for local (1%) and
remote (12%) displays was not statistically significant (p=.820 and
p=.070, n.s.). These results reveal that participants spent similar
amounts of thinking time on congruent, hierarchical gestures as
the other sample did on non-congruent, non-hierarchical ones.

The average GOODNESssS-OF-FIT increased from 6.9 to 8.2, on the 1
(low) to 10 (high) scale, representing an improvement of 18%. A two-
tailed Mann-Whitney test for independent samples showed that
this difference was statistically significant (U=76, z=5.52, p<.001)
with a large effect size (r=.71). When restricting the comparison
to the common referents only, the test remained significant (U=50,
z=4.90, p<.001, r=.70). The difference in referents for the local,

central display between the two studies was 19%, which was also
statistically significant (U=2.5, z score=4.25, p<.001***) with a large
effect size (r=.81). The difference for the lateral, remote displays was
17%, which was also statistically significant (U=19.5, z score=3.42,
Pp=.00023***) with a large effect size (r=.66). These results indicate
that participants expressed greater satisfaction in the mappings
involving gestures exhibiting congruent and hierarchical properties
than with those that did not have these characteristics.

5 Application

We should prefer congruent, hierarchical gestures when dealing
with a large number of commands or referents that are related to
each other or connected between them, that is, when the gesture-
based user interface involves many objects, functions, or categories
sharing a common meaning. This is particularly the case in am-
bient intelligence when many functions (e.g., "Turn on", "Turn
off") are similar across many objects (e.g., "lamp") or devices (e.g.,
"TV", "media player", "heating system"), such as in multi-device or
multi-platform contexts of use. Indeed, these contexts intrinsically
manipulate many devices (e.g., a smartphone, a tablet, a laptop, a
desktop, a tabletop) sharing many similar functions that are equally
applicable to any device. So, instead of repeating the same function
on different devices through a different gesture each time, it is more
beneficial to highlight the common areas to determine the gestures
and to map a gesture to one common function or device. Hierar-
chical gestures allow end users to navigate or recall commands by
breaking them into meaningful groups, reducing cognitive load.
Congruent gestures, where the gesture resembles the referent (e.g.,
a pinch-out gesture to "zoom in") further aids memorability and
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Figure 4: Three cases of application of congruent, hierarchical gestures.

intuitiveness, making it easier to learn and retain a large set of
commands and their associated gestures.

Conversely, when the number of commands or referents is small,
non-congruent, non-hierarchical gestures may suffice or even be
preferable. Simpler gesture-based user interfaces do not require
extensive categorization, and individual gestures can be efficient
once learned. However, we do not know today the threshold beyond
which the decision in favor of congruent, hierarchical gestures
should be taken.

Figure 4 shows three application cases: when the number of
referents is smaller than the number of congruent/hierarchical
gestures, based on Vatavu and Zaiti [33] (left), when the number of
referents is equal to the number of gestures, based on Magrofuoco
et al. [15] (center), and when the number of referents is larger than
the number of gestures (right).

Figure 4-left shows a case of application with 21 referents, rang-
ing from "Open TV" to "Open Browser". An analysis of the frequency
of appearance of each symbol in the vocabulary of these 21 refer-
ents reveals which are the most frequent (e.g., 9 times "Channel”
and 8 times "Go to", which are good candidates), which are less
frequent (e.g., 2 times "Close"), and which appear only once (e.g.,
"Increase”, "Decrease”, which are not good candidates since they are
not repeated or associated). In this case, the number of individual
gestures associated with each symbol of the vocabulary exceeds the
initial number of referents (23 vs. 21). Conversely, Figure 4-right
exhibits less symbols with higher frequency (e.g., 12 times "Turn", 6
times "on, oft", which are semantically related), thus resulting in a
number of individual gestures smaller than the number of referents
(11 vs. 18). Applying the congruent-hierarchical gestures therefore
depends on the vocabulary configuration.

6 Conclusion

We reported insights into the congruent and hierarchical character-
istics of user-defined gestures based on two studies involving 48
participants. We noted a 69% increase in agreement rate, similar
thinking times, and an 18% improvement in the perceived goodness-
of-fit between gestures and their corresponding functions when
gestures exhibited congruency and hierarchical structure. Although
these findings are specific to the multi-display environment eval-
uated in our studies, we believe that congruent and hierarchical
gestures have the potential to enhance user performance and expe-
rience across other application domains as well. We recommend
future studies to replicate our findings in new contexts of use and an
experimental study to determine an actionable guideline specifying
when the congruent-hierarchical gestures are applicable. This could
be determined by a quantitative measure based on the vocabulary
tree.
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