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Figure 1: Non-congruent, non-hierarchical stroke gestures vs. congruent and hierarchical alternatives (left); The results of our

experiments comparing non-congruent, non-hierarchical gestures and their congruent, hierarchical counterparts (right).

Abstract

The typical approach to gesture set design, which relies on one-

to-one mappings between gestures and system functions, often

presents challenges for users in terms of gesture discoverability,

learnability, and memorability. In this paper, we examine the hy-

pothesis that semantically related system functions can benefit

from the use of congruent gestures, whereas functions structured in

the form of parameterized action may be better supported by hier-
archical gestures.We report the results of a gesture elicitation study

conducted with 𝑛1=24 participants, who proposed stroke gestures

for a multi-display touchscreen to effect file-related manipulation

referents either locally on a central display or remotely on a lateral
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display. In a follow-up study, an original mixed method combining

elicitation and identification, another sample of 𝑛2=24 participants

was instructed to focus on congruent and hierarchical gestures for

the same referents. Our results reveal higher agreement and an

increased perceived goodness of fit between gestures and system

functions in the second study.
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1 Introduction

The number of gestures users can effectively memorize and recall

depends on various human factors, such as cognitive abilities and

learning capacity, as well as on the gesture-to-function mappings

within the context of use of the interactive system featuring the

gesture-based interface. For example, gestures that have meaningful

associations with the functions they trigger, have simple forms, or

replicate physical actions from the real world tend to be more mem-

orable. In the case of touch and stroke gesture input [41], gesture

sets are typically determined by the operating system (e.g., seven

default gestures in Apple iOS and fourteen gestures in Microsoft

Surface) or the sensing and recognition capabilities of the device

(e.g., twelve gestures available when using Kinemic). These limita-

tions can be overcome by implementing applications with custom

gesture recognition solutions [13,15–17,30].

The assignment of gestures to system commands [3,24] deter-

mines key usability factors, such as discoverability [4], memorabil-

ity [6,10,21], articulation performance [8], learning [3,21,22], and

recall [3,6]. Although the design of a gesture set should consider

contextual, cognitive, physical, and system factors [39], the typical

approach, despite some exceptions [9,23], still follows a one-to-one

mapping [6], where a single gesture is assigned to each command.

Consequently, as the size of the command set increases, the ex-

pected benefits tend to decrease. For example, during gesture elici-

tation [38], participants may run out of options, revert to previously

known interactions [19], or create unnecessarily complex gestures

with abstract associations to commands to complete the task. This

can negatively impact gesture set memorability and recall, with the

problem potentially exacerbated in many-to-one mappings.

A potential solution lies in gesture congruency (where related sys-

tem functions are assigned related gestures) and gesture hierarchical
structures (where gestures take the form of action verb-object and

action-qualifier-object). A representative example of non-congruent

gestures occurs when users assign unrelated gestures to opposite,

symmetric, or dichotomous commands, e.g., “draw a circle” and

“draw a cross” in mid-air assigned to “turn TV on” and “turn TV

off”, respectively; see the fourth column in Figure 1. In contrast,

a “clockwise circle” followed by “rectangle” and “cross” followed

by “square“ result in hierarchical gestures that can be meaningfully

decomposed into constituent parts, although they still remain non-

congruent themselves; see the third column in Figure 1. Moreover,

the complexity of the proposed gestures sometimes exceeds the

number of dimensions of the command: e.g., a unistroke and a

multistroke gesture were proposed for a two-state on/off action.

As alternatives to non-congruent, non-hierarchical commands,

we explore in this paper congruent and hierarchical gestures; see
the first column in Figure 1. We believe that gestures with these

characteristics preserve the intuitive quality of gesture input, have

strong cognitive associations to system functions, and enhance both

memorability and recall. Section 2 reviews previous work on the

composition of system commands and gestures. Section 3 reports

findings from a gesture elicitation study that produced a set of non-

congruent, non-hierarchical gestures for specific referents involving

E3Screen, a multi-display device [28,29]. Section 4 presents the

findings of a mixed elicitation study, focusing on both congruent

and hierarchical gestures for the same referents.

2 Related Work

Carroll [5] compared four versions of a 16-command language for

human-robot interaction, based on whether the commands were

congruent (i.e., symmetric for pairs of semantically related com-

mands) and hierarchical (i.e., following a verb-object-qualifier struc-
ture). For example, “advance/retreat” and “right/left” are congruent

commands, while “go/back” and “turn/left” are not. Congruent and

hierarchical commands received the best subjective ratings, the

highest test scores on a problem-solving task, and the fewest errors

and omissions. Carroll [5] conjectured that recall would improve

due to the congruent and hierarchical structure of these commands.

To transpose this design principle to gesture input, we need to

examine the process of gesture composition, for which various ap-

proaches exist, such as chaining primitives [14], spatio-temporal

combination [6], concatenation [24], contiguity [12], and assem-

bly [37]. For example, hierarchical gestures are well-suited for

smartphone control when the number of commands is large, as

they offer better learnability, higher expressiveness, and greater

subjective satisfaction compared to non-hierarchical variants [14].

Another example is the Augmented Letters technique [24], where

commands are formed by composing unistrokes and parameters,

e.g., letter “T” for turn followed by a right flick to indicate the

turning direction. Delamare et al. [6] apply the same principle to

3D mid-air input to derive a vocabulary of hierarchical gestures

with an improved recall rate. User-defined gestures are generally

easier to remember than those created by designers or randommap-

pings [21]. End users prefer gestures proposed by large groups [20].

There are also frameworks for designing gesture-based inter-

faces across various applications. For example, Yao et al. [40] pro-

posed a layered architecture for multi-touch gestures applied to

urban planning, comprising raw data, basic gesture, and application-

specific layers. Similarly, Acuna et al. [1] describe a multilayered

framework for two-handed gestures in 3D software development

environments. [7] introduced a layered gesture recognition frame-

work that provides device independence and extensibility for 3D

gestures captured with gloves. Mo and Neumann [18] present a

framework for automatically producing a gesture interface based on

a simple interface description written in Gelex notation, in which

each hand pose is decomposed into elements in a finger-pose al-

phabet. These frameworks simplify the design and implementation

of gesture interfaces by providing structured approaches to their

recognition and interpretation and by offering flexibility in their

layered architectures for different gesture types.

Prior research suggests that gesture elicitation studies [38], a

specific form of participatory design where participants propose

desirable gestures corresponding to given system functions, can be

an effective method for investigating the congruent and hierarchi-

cal properties of gesture input. Vogiatzidakis and Koutsabasis [37]

showed that prioritizing gestures according to a command-and-

address structure improved their acceptability and usage. Apart

from this study and to the best of our knowledge, no research has

explored the congruent and hierarchical properties in the context

of touch and stroke gesture input. While knowledge in user-defined

gestures has been accumulating [25–27,34–36], there is limited un-

derstanding about gestures that exhibit congruency and hierarchical

properties in relation to the system functions they effect.

https://www.apple.com/ios/ios-17/
https://support.microsoft.com/en-us/windows/touch-gestures-for-windows-a9d28305-4818-a5df-4e2b-e5590f850741
https://support.microsoft.com/en-us/windows/touch-gestures-for-windows-a9d28305-4818-a5df-4e2b-e5590f850741
https://kinemic.com/en/kinemic-band/gestures/
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3 Experiment #1: Gesture Elicitation Study

We conducted a gesture elicitation study, following the method

introduced by Wobbrock et al. [38], to understand the congruent

and hierarchical characteristics of user-defined gestures. We place

this study in the context and application area of interactive multi-

display environments [26], and elicited touch and stroke gesture

input for E3Screen [28,29], a reconfigurable touchscreen display

compatible with tablets, laptops, and desktop monitors.

3.1 Participants

Twenty-four participants (fourteen female and ten male, aged from

12 to 68 years,𝑀=27.9, SD=13.3, Mdn=23), were recruited for the

study through a contact list in different organizations and conve-

nience sampling. The wide age range (a span of 56 years) supported

the exploratory nature of our study, and for the 12-year-old partici-

pant, we obtained the consent of their legal guardian. Participants’

occupations were diverse, including secretary, administrative clerk,

psychologist, physical therapist, and law, communication, econom-

ics, sports, and management students. All participants reported

regular use of computers and smartphones. None had seen or used

an E3Screen or other similar multi-display device before.

3.2 Referents

Prior to the experiment, we asked participants to enumerate the

most frequent file-related tasks they used on a regular basis, which

resulted in the following set of twelve referents: open file (16%), close
file (19%), duplicate file (10%), delete file (2%),move file (7%), dock file
(2%), broadcast file (12%), collect files (4%), switch files (5%), permute
files (2%), merge files (13%), and split files (8%). Since E3Screen

consists of three displays (see details in [28,29]), participants were

instructed to propose gestures either locally on the central display

or remotely, on the lateral screens. We applied visual priming [20]

in the form of interactive PowerPoint presentations of the 12 tasks

× 2 locations (central vs. lateral) = 24 referents showing before/after

illustrations of successfully completed system function effects.

3.3 Setup

A within-subjects design was implemented where each participant

proposed one gesture per referent. The experiment took place in a

quiet room. Illustrations of the referents were presented on a laptop

next to E3Screen (see Figure 2). All gestures were recorded using

both a screen-recording application and a video camera.

3.4 Procedure and Task

Participants signed an informed consent form, completed a socio-

demographic questionnaire (age, gender, handedness, use of com-

puter technology and digital devices), and performed the NEPSY-II

motor skill test [11] consisting of pinching each finger with the

thumb several times in a row. Subsequently, the participants were

presented with the referents, in randomized order, for which they

proposed suitable gestures to maximize the goodness of fit, ease

of articulation, and ease of recall. The referents were presented in

pairs according to the display location, e.g., duplicate file locally
and duplicate file remotely. Each session lasted about 45 minutes.

We measured the following dependent variables:

• Agreement-Rate (AR), ratio variable, expressing the agree-

ment among participants’ gestures, using AGATe [31].

• Thinking-Time (TT), a ratio variable, defined as the time

(in seconds) elapsed between the moment a referent was

first shown and the participant confirmed having found a

suitable gesture to perform it, measured using a stopwatch.

• Goodness-of-Fit (GoF), an ordinal variable with values

ranging from 1 (low) and 10 (high), indicating the extent to

which participants perceived the gesture they proposed as

suitable for effecting the corresponding referent.

3.5 Results

The gestures were subjected to descriptive labeling [26], following

Nielsen et al.’s [22] procedure, and assigned to a gesture category,

according to the codebook model to gesture analysis in end-user

elicitation studies [32]. A total of 576 gestures were clustered into 26

equivalence classes, as follows: pinch, right arrow, triangle, zigzag,
heartbeat-like pattern, knot, check mark, letter “U,” star, spiral, letter
“L,” curve, stair-like pattern, cross, pinch out, circle, double swap, pinch
in, spread swap, tap, double tap, cloud, press once, square, infinity
symbol, and letter “D.” Since the design space of possible gestures

afforded by multi-screen devices is wide, participants came up with

many different proposals. Figure 3, left shows AR values for each

referent. Overall, they ranged from low agreement (e.g., .08 for open
file remotely) to medium agreement (.388 for move file remotely)
with a mean of .166 on the unit scale (SD=.148). Thinking-Time
ranged from 8.5s for close file locally to 20.7s for permute files locally
(𝑀=13.5, 𝑆𝐷=3.3); see Figure 3, middle. A Wilcoxon signed-rank

test revealed a statistically significant difference between referents

corresponding to the local (𝑀=11.0) and remote (𝑀=15.7) displays

of E3Screen. Goodness-of-Fit ratings, averaged across partici-

pants, ranged from aminimum of 6.2 for switch files locally to 8.0 for
move file locally (𝑀=6.9, 𝑆𝐷=1.4); see Figure 3, right. A Wilcoxon

signed-rank test found a significant difference (𝑍=1.79, 𝑝=.036) for

local (𝑀=7.1, 𝑆𝐷=1.4) vs. remote (𝑀=6.6, 𝑆𝐷=1.6) displays.

4 Experiment #2: Mixed Elicitation Study

4.1 Method

In our second study, we combined end-user elicitation [38] and iden-

tification [2] by presenting participants with a gesture set, while

also offering them the opportunity to propose alternative gestures.

We started from the consensus gesture set identified in the first

study and employed the same apparatus and task, as described in

Section 3. We recruited a new sample of 24 participants (seventeen

male and seven female, aged from 16 to 60 years,𝑀=32.01, 𝑆𝐷=8.08,

𝑀𝑑𝑛=31). The age range with a span of 44 years was smaller, but

similar to the one in the first study, and the 16-year old participant

had the consent of their legal guardian. None of the participants

were involved in the first study. A set of 30 referents was composed

based on the 24 initial ones, which were expanded with new ref-

erents corresponding to congruent and hierarchical design, e.g.,

undelete file for the delete file referent, undock file for dock file. The
participants could select a gesture from the provided set (identifica-

tion) or propose a new gesture (elicitation). The presentation order

of the referents was randomized. We collected 24 (participants) ×
15 (referents) × 2 (display locations) = 720 gesture proposals.



DIS ’25 Companion, July 5–9, 2025, Funchal, Portugal Arthur Sluÿters et al.

15. Collect files locally

Visual priming
E3Screen

Figure 2: Setup of the design study with the E3Screen as a source for gesture input.

4.2 Results

Figure 3 shows the results obtained in the second study (light colors)

vs. the ones in first study (dark colors) in terms of Agreement-

Rate (left), Thinking-Time (middle), and Goodness-of-Fit (right).

Overall, the average agreement increased from .166 to .281 from

the first to the second study, representing an increase of 69%. A two-

tailed Mann-Whitney test for independent samples showed that

this difference was statistically significant (𝑈=132, 𝑧=3.96, 𝑝<.001)

with a large effect size (𝑟=.54). When restricting the comparison to

the common referents only, the test remained significant (𝑈=114,

𝑧=3.58, 𝑝<.001, 𝑟=.51). The difference in the referents involving

the local, central display was 59% and that between the referents

involving the lateral, remote displays was 81%. These results suggest

that the second study resulted in higher agreement overall when

congruent and hierarchical gestures were involved.

The average Thinking-Time decreased from 13.5 s to 12.5 s, a re-

duction of 8%, not statistically significant (𝑈=396, 𝑧=0.79, 𝑝=.220>.05,

n.s.). Similarly, the decrease in Thinking-Time for local (1%) and

remote (12%) displays was not statistically significant (𝑝=.820 and

𝑝=.070, n.s.). These results reveal that participants spent similar

amounts of thinking time on congruent, hierarchical gestures as

the other sample did on non-congruent, non-hierarchical ones.

The average Goodness-of-Fit increased from 6.9 to 8.2, on the 1

(low) to 10 (high) scale, representing an improvement of 18%. A two-

tailed Mann-Whitney test for independent samples showed that

this difference was statistically significant (𝑈=76, 𝑧=5.52, 𝑝<.001)

with a large effect size (𝑟=.71). When restricting the comparison

to the common referents only, the test remained significant (𝑈=50,

𝑧=4.90, 𝑝<.001, 𝑟=.70). The difference in referents for the local,

central display between the two studies was 19%, which was also

statistically significant (𝑈=2.5, 𝑧 score=4.25, 𝑝<.001∗∗∗) with a large
effect size (𝑟=.81). The difference for the lateral, remote displays was

17%, which was also statistically significant (𝑈=19.5, 𝑧 score=3.42,

𝑝=.00023∗∗∗) with a large effect size (𝑟=.66). These results indicate

that participants expressed greater satisfaction in the mappings

involving gestures exhibiting congruent and hierarchical properties

than with those that did not have these characteristics.

5 Application

We should prefer congruent, hierarchical gestures when dealing

with a large number of commands or referents that are related to

each other or connected between them, that is, when the gesture-

based user interface involves many objects, functions, or categories

sharing a common meaning. This is particularly the case in am-

bient intelligence when many functions (e.g., "Turn on", "Turn

off") are similar across many objects (e.g., "lamp") or devices (e.g.,

"TV", "media player", "heating system"), such as in multi-device or

multi-platform contexts of use. Indeed, these contexts intrinsically

manipulate many devices (e.g., a smartphone, a tablet, a laptop, a

desktop, a tabletop) sharing many similar functions that are equally

applicable to any device. So, instead of repeating the same function

on different devices through a different gesture each time, it is more

beneficial to highlight the common areas to determine the gestures

and to map a gesture to one common function or device. Hierar-

chical gestures allow end users to navigate or recall commands by

breaking them into meaningful groups, reducing cognitive load.

Congruent gestures, where the gesture resembles the referent (e.g.,

a pinch-out gesture to "zoom in") further aids memorability and
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Figure 3: Comparison between the results obtained during the two gesture studies: Agreement-Rate (left), Thinking-Time

(middle), and Goodness-of-Fit (right). Note: error bars show 95% confidence intervals.
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Decrease
Turn
Turn
Turn
Turn

TV On
TV Off
Volume
Volume
AC On
AC Off
Light On
Light Off
Light
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Heat On
Heat Off
Heat
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Alarm On
Alarm Off
Shutters On
Shutters Off

12 Turn
3 Increase, Decrease 

6 On, Off
4 Light, Heat
2 TV, Volume, AC, Alarm, 

Shutters

3 Gestures 9 Gestures

18 referents  11 cong./hier. gestures

Figure 4: Three cases of application of congruent, hierarchical gestures.

intuitiveness, making it easier to learn and retain a large set of

commands and their associated gestures.

Conversely, when the number of commands or referents is small,

non-congruent, non-hierarchical gestures may suffice or even be

preferable. Simpler gesture-based user interfaces do not require

extensive categorization, and individual gestures can be efficient

once learned. However, we do not know today the threshold beyond

which the decision in favor of congruent, hierarchical gestures

should be taken.

Figure 4 shows three application cases: when the number of

referents is smaller than the number of congruent/hierarchical

gestures, based on Vatavu and Zaiti [33] (left), when the number of

referents is equal to the number of gestures, based on Magrofuoco

et al. [15] (center), and when the number of referents is larger than

the number of gestures (right).

Figure 4-left shows a case of application with 21 referents, rang-

ing from "Open TV" to "Open Browser". An analysis of the frequency

of appearance of each symbol in the vocabulary of these 21 refer-

ents reveals which are the most frequent (e.g., 9 times "Channel"

and 8 times "Go to", which are good candidates), which are less

frequent (e.g., 2 times "Close"), and which appear only once (e.g.,

"Increase", "Decrease", which are not good candidates since they are

not repeated or associated). In this case, the number of individual

gestures associated with each symbol of the vocabulary exceeds the

initial number of referents (23 vs. 21). Conversely, Figure 4-right

exhibits less symbols with higher frequency (e.g., 12 times "Turn", 6

times "on, off", which are semantically related), thus resulting in a

number of individual gestures smaller than the number of referents

(11 vs. 18). Applying the congruent-hierarchical gestures therefore

depends on the vocabulary configuration.

6 Conclusion

We reported insights into the congruent and hierarchical character-

istics of user-defined gestures based on two studies involving 48

participants. We noted a 69% increase in agreement rate, similar

thinking times, and an 18% improvement in the perceived goodness-

of-fit between gestures and their corresponding functions when

gestures exhibited congruency and hierarchical structure. Although

these findings are specific to the multi-display environment eval-

uated in our studies, we believe that congruent and hierarchical

gestures have the potential to enhance user performance and expe-

rience across other application domains as well. We recommend

future studies to replicate our findings in new contexts of use and an

experimental study to determine an actionable guideline specifying

when the congruent-hierarchical gestures are applicable. This could

be determined by a quantitative measure based on the vocabulary

tree.
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