Synthesizing Stroke Gestures Across User Populations:
A Case for Users with Visual Impairments
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Figure 1. Examples of stroke gestures produced on touchscreens by people without visual impairments (a), people with visual impairments (b), and
synthetic gestures (c) generated with our method, which automatically computes and employs the gesture articulation characteristics of a target popula-
tion (b) to restyle the visual and kinematic appearance of gesture templates produced by another population (a). This way, we can generate synthetic
gestures that have the same articulation characteristics as the originals (b), even if templates come from people outside that population (a).

ABSTRACT

We introduce a new principled method grounded in the Kine-
matic Theory of Rapid Human Movements to automatically
generate synthetic stroke gestures across user populations in
order to support ability-based design of gesture user inter-
faces. Our method is especially useful when the target user
population is difficult to sample adequately and, consequently,
when there is not enough data to train gesture recognizers to
deliver high levels of accuracy. To showcase the relevance and
usefulness of our method, we collected gestures from people
without visual impairments and successfully synthesized ges-
tures with the articulation characteristics of people with visual
impairments. We also show that gesture recognition accuracy
improves significantly when using our synthetic gesture sam-
ples for training. Our contributions will benefit researchers
and practitioners that wish to design gesture user interfaces
for people with various abilities by helping them prototype,
evaluate, and predict gesture recognition performance without
having to expressly recruit and involve people with disabilities
in long, time-consuming gesture collection experiments.
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INTRODUCTION

The popularity of stroke gesture input for graphical user inter-
faces has vastly increased with the prevalence of touchscreen
devices. Stroke gestures represent fast movements produced
by one or more fingers in contact with a touch-sensitive surface
that reports a temporal sequence of {x, y} coordinates mapped
to a specific action in the user interface [26]. Compared to
traditional interactions based on mouse and keyboard input,
gestures have the potential to reduce users’ cognitive load and
visual attention [6,71] and to increase usability by replacing
standard shortcuts with more accessible function triggers [27].
As touch interfaces become even more ubiquitous, it is crucial
to provide equal access for people with all abilities, such as
people with visual impairments, who face considerable chal-
lenges interacting with touchscreens that expose interfaces
almost exclusively designed for visual input [7,22,23,43].

Previous research has highlighted many differences between
the gesture preferences and articulations of people with and
without visual impairments and, thus, valuable design guide-
lines are available today for practitioners to rely on [11,23].
Nevertheless, designing gesture-based user interfaces for peo-
ple with visual impairments is still challenging because of the
limited understanding in the community regarding users’ ges-
ture articulation and adoption in actual practice. This limited
understanding is caused by little data available in the litera-
ture to inform how people with visual impairments actually
produce touch gestures [11] and how accurately their gesture
articulations can be recognized [23]. This state of things is
exacerbated by the fact that access to participants with visual
impairments to repeatedly collect gesture data and evaluate
touch gesture interfaces as part of the iterative design cycle is
a demanding process. Moreover, to our best knowledge, there
are no public gesture datasets for the community to build on
and to advance knowledge quickly in this direction, despite
the importance of designing for accessible touch input.
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We propose a method to automatically generate synthetic ges-
tures that exhibit the articulation characteristics of a particular
user population by using gesture templates collected from peo-
ple outside that population. To achieve this goal, we use the
Kinematic Theory [45] and its associated Sigma-Lognormal
model (XAM). To showcase our method, we quantify the vari-
ation in gesture articulation produced by people with visual
impairments, which we apply to gesture templates produced
by people without visual impairments. Our greater goal is to
automatically synthesize gesture training sets for any user pop-
ulation starting from a few gesture executions that are readily
available, such as those produced by designers themselves.

This paper makes the following contributions:

1. We show that significant differences exist between gestures
produced by people with and without visual impairments
from the perspective of their velocity profiles.

2. We develop a generic, principled method to estimate dis-
tortions in the Sigma-Lognormal model of gesture velocity
profiles in order to simulate human variability in gesture
articulation for a target user population.

3. We use our method to synthesize stroke gestures for peo-
ple with visual impairments by using gesture samples col-
lected from people without visual impairments, showing
that (i) synthetic gestures possess the same statistical char-
acteristics as the originals produced by people with visual
impairments, and (ii) synthetic gestures do increase recog-
nition accuracy significantly.

Our method and the accompanying software are of special
relevance to practitioners who wish to develop gesture-driven
applications tailored to users with various gesture articula-
tion abilities, without having to expressly recruit and involve
users in preliminary, time-consuming collection experiments.
Ultimately, our results can be used to inform theoretical and
practical developments to synthesize stroke gestures for poten-
tially any user population.

RELATED WORK

We discuss in this section previous work on gesture analysis,
gesture interfaces for people with visual impairments, and
techniques for generating synthetic gesture samples to boost
the classification accuracy of gesture recognizers.

Techniques and tools for gesture articulation analysis

Users’ stroke gesture articulations have been studied in the
literature in terms of consistency between and within users [5],
gesture preferences of various user populations [23,38,61,70],
and the impact of gesture implementers, such as finger vs.
pen input, or gesture articulation performance [5,59]. Fine-
grained analyses of users’ gesture articulations are also pos-
sible to understand how users vary their gestures relative to
each other and relative to recognizers’ canonical template
forms [64,65]. Also, gesture recognition algorithms have been
using many gesture features, such as path length, articula-
tion time, or average speed [8,51], that can be repurposed
as gesture performance measures to evaluate users’ gesture
articulations [50,67]. However, most of these measures, al-
though useful for gesture classification, lack descriptive power

for gesture analysis because they focus on the global char-
acteristics of a gesture as a whole. In contrast, the Gesture
RElative Accuracy Toolkit (GREAT) [64], which we employ
in this work, enables access to fine-grained measurements on
the gesture path that reveal and help understand the subtleties
of users’ gesture articulations. More specifically, the GREAT
measures describe the many ways in which gestures unfold in
time, space, stroke structure, and appearance, characterizing
gesture articulations in terms of their closeness to a reference
form, analogous to MacKenzie et al.’s accuracy measures for
pointing tasks [31].

Gesture interfaces for people with visual impairments

The literature on designing accessible touch interfaces for
people with visual impairments has focused significantly on
applications and interaction techniques [7,10,43], while stud-
ies on how people with visual impairments use touch input or
articulate gestures have been scarce. Nevertheless, the studies
that exist have reported valuable and useful data. For example,
Kane et al. [23] showed that blind people prefer gestures that
use an edge or a corner of the device and Buzzi et al. [11,12]
reported preferences for round-shaped gestures, one-finger
input, one-stroke gestures, and short trajectories. Detailed ex-
amination of gesture articulation paths [23] showed that blind
people produce touch gestures that are different in size, speed,
number of strokes, and gesture shape than the gestures pro-
duced by sighted people. Our work looks in more depth at the
differences between gestures articulated by people with and
without visual impairments by considering the new perspective
of the velocity profiles of the hand producing touch gestures
in the context of the formalism of the Kinematic Theory [45].

Bootstrapping gestures by automatic synthesis

The amount and quality of training data are key factors for
competitive gesture recognition. For example, the Freehand
Formula Entry System [54] suggests 20-40 examples per sym-
bol per user, and classifiers become more accurate when re-
trained with new samples [2,48]. Consequently, synthesizing
new samples can improve recognition performance effectively.

Several techniques have been proposed in the literature to pro-
duce synthetic gestures with the goal to speed up development
and to increase the accuracy of gesture recognizers. For ex-
ample, Gesture Script [30] allows developers to describe the
structure of a stroke gesture and, by using this information, the
tool can synthesize new gesture samples by varying the relative
scale and rotation of the gesture’s components. Unfortunately,
Gesture Script only works with unistroke gestures articulated
in predefined ways. MAGIC Summoning [24] and Gesture
Follower [13] are other tools that enable designers with means
to generate synthetic gesture samples in 3D. MAGIC Summon-
ing adds local perturbations to a gesture’s resampled points,
whereas Gesture Follower introduces variations into a ges-
ture shape by using Viviani’s 2/3 power law [68]. Both ap-
proaches are promising, although synthetic gestures might
perform poorly for gesture recognition because of insufficient
variation required for high-quality training [48]. However,
this prior work has put forward the importance of increasing
gesture recognition accuracy with large training datasets.



Probably the most relevant prior work for our method are two
compelling approaches to produce synthetic stroke gestures:
GPSR [57] and G3 [27]. GPSR is strongly focused on rapid
UI prototyping, is computationally efficient, and adds mini-
mal coding overhead. However, GPSR does not synthesize
timestamps, which precludes a fine-grained analysis of hand-
writing behavior [33]. In contrast, G3 relies on the Kinematic
Theory and, consequently, takes a more generic approach to
gesture synthesis. G3 creates a model of a user-provided ges-
ture example to which it adds local and global perturbations.
Although resulting gestures are human-like [28], G3 employs a
set of generic X AM parameters acquired from people without
disabilities [18] and, consequently, it is unlikely that these
variability ranges would also account for the actual variability
attributed to people with various gesture articulation abilities.

OVERVIEW OF THE KINEMATIC THEORY

Many models have been proposed to study human movement
production, such as models relying on neural networks [9],
behavioral models [58], and models exploiting minimization
principles [16]. Among these, the Kinematic Theory [45] pro-
vides a solid and well-established framework to study human
movement production [46] and previous work showed that it
outperforms many other approaches [48]. X AM is the latest in-
stantiation of this framework [47], which was recently adopted
for gesture synthesis and recognition. Leiva et al. [27] showed
that synthesized gestures achieve similar recognition accuracy
as their human counterparts and Plamondon et al. [47] showed
that >AM generalizes to any type of human movements, in-
cluding wrist movements and eye saccades.

Mathematical formulation

At a high level, XAM assumes that a complex handwritten
trace (e.g., a character, word, signature, or gesture) is com-
posed of a series of primitives' connecting a sequence of
virtual targets. This series of primitives form the “action plan”
of the user, which is fed through the neuromuscular network
to produce a trajectory that leaves a handwritten trace on the
supporting surface, such as a touchscreen; see Figure 2.
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Figure 2. Top: A gesture stroke (solid green line) is described by a series

of primitives (dotted arcs) that connect virtual targets (numbered dots).
Bottom: each primitive is described by a lognormal velocity profile.

In the gesture recognition literature, a “stroke” denotes the trajectory
between two consecutive touch down and touch up events. For the Kinematic
Theory, a “stroke” is what we call a “primitive” in this paper.

The magnitude of the velocity of the i-th primitive is described
by a lognormal function scaled in amplitude by a command
parameter D; and time-shifted by the time occurrence t¢, of
the command:
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where pi; and o; encode the variability of the neuromuscular
execution of the i-th motor command. The trajectory that pro-
duces the human movement ¥(¢) is computed as the temporal
overlap of each primitive’s velocity ¥; (¢):
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where the angular position ¢;(t) is given by:
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with 0, and 6., representing the start and end angles of the i-th
primitive. The reconstruction of the original gesture trajectory
is computed using the following compact notation [44]:

O] <~ D singi(t) — sinf,,
)= e L ] e

Human-like gesture synthesis

Previous work has demonstrated the connection between the
distortion of the ¥ AM parameters and the intra-variability of
human handwriting [14], which enables generation of realistic,
human-like synthetic samples [28]. Once the gesture primi-
tives have been extracted and modeled, perturbations can be
introduced to the model’s parameters [27,34]:

pi =Di+np, &)

where p; = { p;, 04, D;, 05,0, } denote the XAM parame-
ters and n,, = U(—n;,n;) the noise applied to each primitive
according to a uniform distribution centered around that partic-
ular ¥AM parameter (which we discuss later in the ‘Gesture
Synthesis across user populations’ section). Variations in p
and o mimic peripheral noise, like a writer who instantiates
the same gesture intention, but executes it slightly differently
each time. Variations in D, 0, and 6, refer to central fluctu-
ations that occur in the position of the virtual targets of the
action plan from one execution to another. We leave the ¢, pa-
rameter unmodified, because it is very sensitive even to small
perturbations [27].

Until now, researchers have relied on a predefined set of dis-
tortion values for > AM that were estimated from a population
of users without disabilities [18]. However, it is unlikely that
these values can be used to generate accurate samples for users
with various gesture articulation abilities and, therefore, a new
method to estimate distortion values for ¥ AM is needed.



EVALUATION

We conducted three experiments (i) to understand how people
with and without visual impairments articulate stroke gestures
by using concepts and tools from the Kinematic Theory and
(i1) to evaluate how accurately gestures produced by our two
groups of participants can be recognized.

1. Gesture modeling. In the first experiment, we analyze the
motor control aspects of our participants’ gesture articula-
tions (e.g., the velocity of the finger touching the screen) by
using the Kinematic Theory, and we report and discuss sig-
nificant differences between people with and without visual
impairments in terms of their gesture velocity profiles.

2. Gesture articulation and synthesis. In this experiment,
we employ state-of-the-art gesture accuracy measures [64]
to reveal even more differences between the gesture articu-
lations of people with and without visual impairments. We
also generate and analyze synthetic gestures for people with
visual impairments.

3. Gesture recognition. In this final experiment, we compare
the recognition performance of two gesture recognizers and
we show that using training samples from people without
visual impairments increases the accuracy of recognizing
gestures produced by people with visual impairments.

Participants

We recruited a group of 10 participants (3 female) with visual
impairments and another group of 10 participants (7 female)
without visual impairments. Both groups had approximately
the same average age: M =37.4 years (SD =9.6) for partici-
pants with visual impairments and M =33.0 years (SD=12.2)
for participants without impairments. Visual impairments con-
sisted in congenital nystagmus (7 participants), chorioretinal
degeneration (1), astigmatism (2), amblyopia (1), macular dys-
plasia (1), microphthalmus (1), and macular choroiditis (1),
with most of the participants with visual impairments having
more than one eye condition. Nine participants had moder-
ate or severe myopia (diopters ranged from —4.0 to —18.0,
M =—-11.3, SD =4.3) and one participant had severe hyperopia
(4+6.0 diopters in both eyes).

Dataset
We collected gesture samples for the following unistroke and
multistroke gesture types:

e Four directional flicks: left, right, down, and up.

e Six multistroke gestures: spiral, circle, square, star, letter
“M” and the “stick figure” symbol.

We chose these gesture types because they represent a good
mixture of geometrical shapes and symbols of various shape
complexity levels, complexity that ranged from 1 to 11 ac-
cording to Isokoski’s definition [20]. Figure 3 depicts several
gestures performed by our participants.

Each participant was asked to perform 10 repetitions of each
gesture on a Samsung Galaxy Tab 4 with a touchscreen dis-
play of 10.1 inches and resolution of 1280x800 px (149 dpi).
Gestures were shown onscreen in a large size (5x5 cm) and
were communicated verbally to the participants. A training
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Figure 3. Examples of gestures collected from our participants with
visual impairments (top row) and without visual impairments (bottom).

phase took place before the actual experiment so that partic-
ipants would familiarize themselves with the device and the
task. Participants were instructed to draw gestures as fast and
accurately as possible. The order of gestures was randomized
across participants. Overall, we collected 2 groups x 10 par-
ticipants per group x 10 gesture types x 10 repetitions per
gesture type = 2,000 gesture samples.

Experiment 1: Gesture modeling

Given that stroke primitives are “hidden” in the gesture shape,
a X AM parameter extractor [35] is required to automatically
detect them. To this end, we used the G3 web service [27],
which computed the lognormal equations (represented by their
3AM parameters) for the gesture samples in our dataset. Then,
we assessed the gesture models with the standard performance
criteria from the Kinematic Theory literature [49], as follows:

1. Signal-to-noise ratio (SNR) between the original and the
reconstructed velocity profiles of a gesture. This measure
accounts for the reconstruction quality of a gesture model.

2. Number of extracted primitives (nbLog), i.e., NV in Equa-
tions (2) and (4). This measure accounts for the user’s
handwriting and gesture articulation abilities.

3. The lognormality principle, measured with the ratio
SNR/nbLog, which acts as a global indicator of a given
user’s motor control skills [49]. The lognormality principle
states that users who are in perfect control of their move-
ments produce the minimum number of ideal lognormals
for their handwriting movement. In contrast, when users ex-
perience difficulties in producing a movement, the resulted
primitives will not be ideal lognormals or their number will
be considerably larger.

Tables 1 to 3 summarize the results of this experiment.

User group Mdn  Mean SD

without visual impairments  25.90  26.28  3.36
with visual impairments  25.50 25.26  2.99

Table 1. Signal-to-noise ratio values (SNR) expressed in dB. Note: larger
values indicate better performance.

User group Mdn  Mean SD

without visual impairments 7.00 10.71 8.61
with visual impairments  12.00 19.32  21.71

Table 2. Number of primitives (nbLog). Note: smaller values indicate
better performance.



User group Mdn  Mean SD

without visual impairments  17.20 17.28 5.53
with visual impairments ~ 14.65 14.22 5.94

Table 3. The lognormality principle (SNR/nbLog). Note: larger values
indicate better performance.

The average SNR values are above 25 dB; see Table 1. This
result indicates that gestures from both groups can be success-
fully modeled using YAM. In practice, the ¥ AM parameters
for stroke gestures are considered to be well estimated when
SNR > 15dB; see [27]. However, Table 2 shows that the aver-
age number of lognormals (nbLog) is higher for participants
with visual impairments, which indicates a larger deviation
from lognormality for this group. This rationale is also evi-
denced by the differences in the SNR /nbLog ratio between
people with and without visual impairments; see Table 3.

Overall, the values of SNR, nbLog, and the SNR/nbLog ratio
indicate better performance for participants without visual im-
pairments: SNR [t (193 39)=4.01, p<.001, d=0.28], nbLog
[t(159_74):73.18, p<.002, d:0.24] , and the SNR/nbLog

ratio [t(196.56=3.73, p<.001, d=0.26]. However, effect
sizes suggest a small to moderate practical importance of
these differences, which shows that gestures produced by the
two user groups are statistically different according to the
Kinematic Theory, but eventually not that different to avoid
reusing gesture samples from people without visual impair-
ments to generate gestures with the articulation characteristics
of people with visual impairments. We rely on these findings
in the next section, when we introduce our gesture synthesis
method that works across user populations.

We also performed a correlation analysis between the quality
of gesture reconstruction and participants’ numbers of diopters,
as an indicator of their visual acuity. We found significant,
yet small correlations for nbLog [r(98)=-0.22, p=.027]
and SNR/nbLog [r(98)=0.19, p=.049]. These results show
that, although a significant association was detected, the ef-
fect size is small, which gives hope that we can generate
gestures for a wide range of visual acuity loss (specifically,
between —4.0 and —18.0 diopters for the case of our par-
ticipants). No significant correlation was found with SNR
[7(98)=0.04, p=.638, n.s.], which corroborates that ZAM
can be used to successfully model gestures produced by people
with visual impairments.

Experiment 2: Gesture articulation

We used GREAT [64] to compute the geometric, kinematic, and
articulation accuracy of the stroke gestures produced by our
two groups of participants. GREAT computes twelve gesture
descriptors relative to a reference template called the “gesture
task axis.” In our experiments, we used the k-medoid as the
reference gesture, i.e., the closest user-articulated sample to
the median gesture.> The GREAT measures are grouped in the
following categories:

1. Geometric measures or shape-related descriptors evaluate
the deviation of a candidate gesture from the task axis in

*We modified GREAT to compute the k-medoid gesture.

terms of the shape distance and capture users’ tendencies to
stretch and bend their gesture strokes during articulation.

2. Kinematic measures or fime-related descriptors evaluate
accuracy in the time domain and capture how fluent or
smooth gestures are in terms of production time and speed.

3. Articulation measures or consistency-related descriptors
measure how consistent users are in producing the individ-
ual strokes of their gestures.

We refer the reader to Vatavu et al. [64] for a detailed descrip-
tion of these measures. All gestures were uniformly resampled
into 32 points to speed up computation time without sacrificing
accuracy [60]. We also generated synthetic gestures for par-
ticipants with visual impairments by following the traditional
synthesis approach; see ‘Overview of the Kinematic Theory’
and [27,28]. Figure 4 shows the results of this experiment.

To understand the differences between our three experimental
conditions (i.e., gestures produced by people with visual im-
pairments, gestures produced by people without visual impair-
ments, and synthesized gestures for people with visual impair-
ments), we ran a one-way ANOVA test (Greenhouse-Geisser
corrected to control for deviations in sphericity), followed by
pairwise comparisons (Bonferroni corrected) as post-hoc tests
of significance, if applicable. We observed statistically signifi-
cant differences for most of the GREAT measures, marked with
an asterisk in Figure 4 [F(27177) >4, p<.001, n§<0.2].

Post-hoc tests revealed that gestures produced by people with
visual impairments were less accurate than those produced
by people without visual impairments (p < .01). However,
we found no significant difference between gestures produced
by people with visual impairments and synthesized gestures
(p > .05,n.s.). This result confirms previous findings that ges-
tures synthesized with X AM look similar to gestures produced
by humans [18,27,28].

Experiment 3: Gesture recognition

In this experiment, we evaluated the recognition performance
of the popular Nearest-Neighbor classification approach work-
ing with the $P recognizer [63] and Dynamic Time Warping
(DTW) [56]. $P represents gestures as clouds of 2D points
to achieve articulation-invariant gesture recognition. DTW
performs an elastic matching between two gestures, regardless
their number of strokes, by computing a warping matrix of
point-wise Euclidean distances.

We computed user-independent recognition rates by following
a k-fold leave-one-out procedure: for each participant, we
created a testing set containing all their gesture samples, which
were classified against a training set composed of T’ training
samples for each gesture type that were selected at random
from all the remaining participants. The number of training
samples 7" was varied from 1 to 5 and 10. Each gesture from
the dataset was treated as a candidate gesture at least once. All
gestures were resampled into 32 points prior to recognition.
Figure 5 shows the results of this experiment.

We found that training recognizers with gestures produced
by people with visual impairments did not achieve sufficient
levels of recognition accuracy for practical use; for example,
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Figure 4.  Articulation performance of gestures performed by people with (VI) and without (!VI) visual impairments and synthetic gestures (S)

generated from people with visual impairments. Error bars denote 95% confidence intervals. An asterisk denotes statistically significant differences.

the average classification error for DTW was above 40%. In
contrast, selecting training samples from the gestures produced
by people without visual impairments decreased classification
error on average, from 45% to 36% for DTW and from 36% to
27% for $P. The traditional approach to synthesizing gestures
within the same population [18] by using examples collected
from people with visual impairments achieved better results
for both recognizers, and this was so when using any number
of training samples.
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Figure 5. Recognition error rates for gestures produced by participants
with visual impairments using different training sets composed of ges-
tures from people with (VI) and without (!VI) visual impairments and
synthetic gestures (S). Error bars show 95% confidence intervals.

We used the y? test to attempt rejection of the null hypoth-
esis that “the three training conditions lead to equal recog-
nition performance.” The test revealed statistical signifi-
cance [X%27N:1000):13.99, p<.001, gf):().ll}, showing that
at least one training condition was significantly different from
the others. Post-hoc tests showed that training with gesture
samples from people without visual impairments (VI in Fig-
ure 5) significantly improved recognition performance for both
recognizers using any number of templates (p < .001).

Evaluation summary

Our first experiment showed that gestures produced by people
with and without visual impairments are different in terms of
their velocity profiles, but the small effect sizes indicate that
gesture synthesis across the two user groups may be possi-
ble. In the second experiment, we found that synthetic ges-
tures generated for people with visual impairments have the
same articulation characteristics as original, human-generated
gestures. These results support our motivation to introduce
gesture synthesis across user populations. We also know that
recognition error rates are higher when using training samples
from people with visual impairments, but they decrease when
training across populations. Consequently, we expect that by
synthesizing gestures for people with visual impairments using
templates collected from people without visual impairments
will result in a boost of recognition accuracy.

GESTURE SYNTHESIS ACROSS USER POPULATIONS
Informed by the results of our evaluation, we introduce a
new method to estimate the human variability of XAM val-
ues for different user populations. According to previous
work [19,37], when a human produces a very rapid stroke, the
trajectory is nearly straight and there might be up to two rever-
sals in the direction of the motion (known as “glitches”), either
at the beginning or at the end of the trajectory. Therefore, the
velocity profile can have up to three primitives (each described
with a lognormal), with one dominating the others in terms
of amplitude. Moreover, when a user repeats the same rapid
movement many times, some variability is expected and ob-
served, although each individual trajectory still has a dominant
primitive as long as there is no trembling or hesitation. These
observations are key to our method.

To delve into the principle of our approach, we focus on di-
rectional flick gestures (which are very rapid movements) to
determine the expected variability ranges of a given user pop-
ulation. Flick gestures can be easily aligned at the stroke level
since they are performed similarly by all users.

Estimating gesture variability
We start with the 3AM reconstruction of each directional flick
gesture using the G3 web service [27]. We discard all ges-



ture reconstructions that contain more than three primitives
(16% of the gestures in the dataset), given that those cannot
be considered rapid movements, according to the previous
discussion. Next, we normalize the 3> AM parameters of each
reconstructed gesture to make them scale and orientation inde-
pendent [14], as follows:

Di — Di/Dmax

0, — 05, — 0,
0., — 0., — 0,

L v ©)
i H= = i
pi = fi N;u
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O’Z‘—>5'=NZO'Z'

=1

Each control parameter D; is normalized by the maximum
amplitude of all gestures (Dpmax). The start and end angles (6s,,
0.,) are normalized by the initial angle 6,,. The peripheral
parameters (u;, 0;) are reduced to their mean values (f, 7).
Then, to measure the variability of the X AM parameters, we
focus on the dominant primitive of each gesture and, conse-
quently, we discard the parameters pertaining to the glitches,
which are potentially noisy. We identify the dominant primi-
tive as the one with largest amplitude. Finally, we aggregate
the parameters and compute their distributions.

I -

[
D K 0 0, 6.

[ [
D K O 9; 0.

IVl users VI users

Figure 6. Distributions of the 3 AM parameters for participants with
(VI) and without (!VI) visual impairments. Error bars show 95% Cls.

Figure 6 shows the estimated > AM parameter distributions
for our two user populations. Among all ¥AM parame-
ters, differences between medians are mostly important for
@ (VI Mdn=—-0.32 vs. VI Mdn=-—0.17). With respect to
o, we observed that medians were approximately the same
(!VI Mdn=0.33 vs. VI Mdn=0.36). An increase in either
w or o reflects slowing down caused by the neuromuscular
units generating the response. After all, the generation of hu-
man movements is a complex neuromotor skill requiring the
interaction of many cognitive processes, among which eye-
sight plays an important role. We also found that the control

parameter D (associated with the command amplitude) was af-
fected by the presence of visual impairments (VI Mdn=0.16
vs. VI Mdn=0.12). This effect is more obvious if we re-
move the normalization (!VI Mdn =67 vs. VI Mdn=43). The
decrease in D was compensated by participants with visual
impairments by an increase in the nbLog measure; see Ta-
ble 2. In fact, visual impairments may cause hesitation during
handwriting, which eventually leads to a larger number of
small lognormals (larger nbLog values, smaller D’s). We
also observed that the distributions of 6, and 6. do not differ
greatly. These parameters represent the start and end angles of
each primitive and, as long as the execution of a directional
flick remains the same, so will the values of these parame-
ters. The unpaired ¢-test (two-tailed) revealed a statistically
significant difference between the two user populations for
D [t(75.50)=2.445, p=.017, d=0.27] and for both periph-

eral parameters: p [t(g9.43)=—2.863, p=.006, d=0.32] and
o [t(rr.01=—3.243, p=.002, d=0.34].

Synthesizing human-like gesture samples

Once the empirical distributions of the ¥ AM parameters are
available, we can estimate the appropriate range in which they
vary for a particular user population. Concretely, we estimated
the range for each parameter as half of the interquartile range
(IQR). We used this statistic because it is robust and resilient
to outliers (see Figure 6) in contrast to other options, such as
the mean or the variance. Table 4 shows the amount of noise
(Equation 5) to apply to the >AM parameters to synthesize
gestures for people with and without visual impairments.

User group D " o 05 O

without visual impairments 0.01 047 0.14 0.05 0.08
with visual impairments  0.03  0.19 0.09 0.04 0.06

Table 4. Range of the 3 AM parameters for both user populations.

Now we can synthesize gestures with the expected variability
of a particular user population. We do this with the same
procedure as described in the ‘Human-like gesture synthesis’
section, but this time using our specific set of distortions for
the 2 AM parameters. The next section validates this approach.

VALIDATION

We validate our method by synthesizing and evaluating gesture
samples for people with visual impairments using gesture
templates from people without visual impairments. To this
end, we conducted two validation experiments:

1. Gesture articulation. In this experiment, we show that the
cross-population synthetic gestures generated from samples
produced by people without visual impairments are similar
to the gestures produced by people with visual impairments.

2. Gesture recognition. In this experiment, we show that us-

ing our new synthetic gesture samples for training improves
gesture recognition accuracy significantly.

Note that the four directional flick gestures were not con-
sidered for validation, as they were used for estimation and
fine-tuning of the ¥ AM parameter distributions. Therefore,
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Figure 7. Articulation performance of gestures performed by people with visual impairments (VI) and samples synthesized with both the traditional
approach (0S) and our new method (nS). Error bars denote 95% confidence intervals. An asterisk denotes statistically significant differences.

only six multistroke gesture types from our set (see the Dataset
section) were considered for evaluation.

Experiment 4: Gesture articulation

We used the same experimental design as in the ‘Experiment 2:
Gesture articulation’ section to analyze gestures produced by
people with visual impairments and their synthetic, cross-
population counterparts. We compared the traditional ap-
proach to synthesizing gestures [18,27] against our method,
which transfers the variability ranges of people with visual
impairments to the gesture templates of people without visual
impairments. Figure 7 shows the results of this experiment.

We conducted a one-way ANOVA (Greenhouse-Geisser cor-
rected to control for deviations in sphericity) to understand
the differences between our three conditions (i.e., gestures
produced by people with visual impairments, synthetic ges-
tures generated from gesture examples produced by people
with visual impairments, and synthetic gestures generated
from gesture examples produced by people without visual
impairments). Out of the twelve gesture articulation accu-
racy measures that we used for evaluation (Figure 7), we
observed statistically significant differences only for the Time
Error [F(o,177)=4.32, p=.014, 2=0.05] and Time Variabil-
ity measures [F(2,177):6.397 p<.01, nf,:0.0?]. However,
because effect sizes show small practical importance, we can
conclude that our method successfully transfers the articula-
tion characteristics of people with visual impairments (VI)
to the gesture templates performed by people without impair-
ments (!VI) and that synthetic samples produced with our
method (nS) look the same as their human counterparts (VI).

Experiment 5: Gesture recognition

In this experiment, we evaluated the effect of synthetic train-
ing samples generated with our method on the recognition
accuracy of gestures produced by people with visual impair-
ments. We used the same recognizers and setup described in
the ‘Experiment 3: Gesture recognition’ section. The results
of this experiment are shown in Figure 8.

Results confirmed that training samples either from people
with visual impairments or using the traditional synthesizing

approach [18] does not achieve sufficient accuracy for practi-
cal use. Actually, results were similar to those achieved in the
previous evaluation; see Figure 5. Our approach was on par
with the other training conditions for the DTW recognizer, but
delivered much better results for $P. For example, the recogni-
tion errors decreased from 31% to 17% when using 5 training
templates and to 15% when using 10 training templates.

DTW $P
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c
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Figure 8. Recognition errors for gestures produced by people with

visual impairments under different training conditions: human gestures
from people with visual impairments (VI), synthetic gestures generated
using the traditional approach (0S), and synthetic gestures generated
with our new method (nS). Error bars denote 95% confidence intervals.

As in the previous evaluation, we used the x?2 test to assess the
differences between the three training conditions. The test did
not reveal statistical significance for the DTW recognizer, but
it was so for $P [X%2,N:600):37'137 p<.001, $=0.24]. Post-
hoc tests confirmed that training with 5 or 10 gesture samples
synthesized with our approach significantly improved recog-
nition performance (p < .001). In other words, our method
produces synthetic gestures for people with visual impairments
that are sufficiently similar to explain their human variability,
but not too similar to degrade recognition rates.



DISCUSSION

Our results showed that gesture synthesis across user popu-
lations is viable and, moreover, that gestures possess similar
articulation characteristics as actual gestures created by users
of the target population. We should note that our approach
requires some examples of the target population in order to
generate synthetic gestures. However, once a particular user
population has been analyzed, their models can be reused for
future studies. In fact, all the previous research on X AM ges-
ture synthesis have relied on the results of just one study [18],
which calculated the expected human variability ranges for
people without disabilities. In short, our technique can be the
seed to understand and create models of specific populations,
which enables many application scenarios to assist the design
of gesture user interfaces. In this section, we discuss such
application scenarios and we point to opportunities for future
work, directed at researchers and practitioners who wish to
apply our method to other user populations.

Application scenarios

Our method enables free access to virtually unlimited ges-
ture data for a specific user population by starting with an
estimation of the gesture articulation parameters of the target
population and just a few gesture examples produced by a
person outside that population, e.g., the user interface designer.
Specifically, we only need to collect one or two gesture ex-
amples from the user, as it has been shown to be enough for
synthesizing samples that account for the variation required
for high-quality training [27,34].

Cross-population gesture synthesis with G3

Informed by previous results on gesture synthesis and the
3AM model of the Kinematic Theory, we estimate that the G3
web application [27] can generate about 100 unique synthetic
gesture samples starting from just one example. Such gesture
examples are available to generate and download from the
G3 home page: https://g3.prhlt.upv.es. Our mehod has
been implemented in G3, under the ‘advanced options’ menu
(Figure 9). Therefore, the user only has to follow the usual
procedure (see [27] for a guided example) and select a desired
target population. At the moment, only two target populations
are available for selection (generic and visual impairments),
but other populations will be added in the future.

Set synthesis options here and click on synthesize below.
No. samples 50

# Toggle advanced options

Generic v

Generic EL

Figure 9. The G3 web application [27] now can generate gesture samples
reflective of the gesture articulation characteristics of users with visual
impairments.

Target Population

Shape variability

Improving gesture recognition accuracy

More training templates increase the accuracy of gesture rec-
ognizers by providing them access to a much larger selection
of gesture examples to cope with the variation in gesture artic-
ulation of the target user population. We know from previous
work that template-based recognizers fare very well with as
few as 5 samples per gesture type [40,63], either human or
synthetic [27]. Overall, high recognition rates make users
more effective with touchscreen input, increasing their task
performance (less errors) and, potentially, user satisfaction
with the interface.

Making gesture recognizers more robust

For user populations with considerable variability in gesture
articulation, gestures that are more generic provide a better
template for recognition, possibly because they are more rep-
resentative or prototypical. Actually, the gestures that we syn-
thesized in our experiments by using templates from people
without disabilities provided better “average” training samples
for the two gesture recognizers that we evaluated.

Another important aspect that affects recognition accuracy is
the within-group variability in gesture articulation, which in
our case was higher for participants with visual impairments
than for participants without impairments. Higher within-
group variability for gestures articulated by people with visual
impairments may also explain why using synthetic gestures
or gestures from people without visual impairments for train-
ing delivers better recognition performance than the actual
gestures captured from people with visual impairments.

Designing gesture sets

The process of designing gesture sets is complex, as it in-
volves many motor and cognitive aspects that the designer
must consider, such as good discriminability with respect to
other gestures in the set [1], ease of execution [42,67], ease of
learning and memorability [41], good fit to application func-
tions [38,70], etc. This process usually involves a lot of trial
and error, where gestures go in and out of the gesture set while
the designer optimizes the structure of the set with respect to
the above criteria. Having fast access to actual gesture samples
for new gestures that the designer might come up with during
this process, without actually collecting them from the target
user population, would have a positive effect on the designer’s
work, saving considerable time.

Supporting ability-based design

Our method connects with the concept of ability-based design
that consists in “focusing on ability throughout the design
process in an effort to create systems that leverage the full
range of human potential” [69]. Fitting the gesture training set
of a recognizer to the gesture articulation abilities of a specific
user or user population is an implementation of ability-based
design for gesture recognition. Furthermore, this process can
now be fully automatized and launched by the application
when needed, e.g., when the user adds a new gesture type to
the gesture set. Consequently, new gesture samples with the
particularities of the gesture articulation of that specific user
will be automatically available at no cost.


https://g3.prhlt.upv.es

Addressing other user populations

In this work, we focused specifically on people with visual
impairments, for which touch interaction pose many chal-
lenges, because touchscreens rely almost exclusively on visual
input [22,23,53]. However, we formalized our method in a
way that is independent of the characteristics of the target
population so that it would be easy to apply for synthesizing
gesture sets for other user populations as well. For example,
touch input remains largely inaccessible to people with motor
impairments who need to adopt workaround strategies to be
able to access content on touchscreen devices [4,36] and who
need specific touch interaction techniques [39]. We also know
from the literature of touch interaction for children that small
children between 3 and 6 years old experience difficulties with
touch and multitouch input [66] and that the touch gestures of
children between 7 and 10 years old are recognized with lower
accuracy rates than the same gestures produced by adults [3].
Because our method is able to transfer the articulation char-
acteristics of gestures produced by a few users to a particular
user population, we believe that addressing other user groups,
such as those mentioned above, is viable and we leave these
interesting exploration opportunities for future work.

Further application areas

In this work, we touched on a subject that may have implica-
tions in HCI and accessibility research beyond touch gesture
input, and we would like to take this opportunity to mention
a few of these future work opportunities. By doing this, we
hope to draw the community’s attention to an exciting line of
work: transferring the characteristics of one user population
to the input data generated by another population in order to
e.g. synthesize practical templates, test cases, and accurate
simulation results representative of the target user population.
This approach is particularly useful and relevant when design-
ing for people with disabilities, because it removes the need to
expressly recruit and involve people with disabilities in long,
time-consuming data collection experiments.

Interesting future work directions may look at the applicabil-
ity of synthesizing data across user populations for mouse
input [15,17,32], voice input [21,29], whole-body move-
ment [52,61,62], and even EEG input [25,55]. While all these
directions are definitely interesting, they are nevertheless chal-
lenging, but worth exploring in order to advance our theoret-
ical and practical knowledge of simulating input data across
different user populations toward better interface designs for
users will all abilities. Looking forward, we believe that our
work already forms a good demonstration of how simulation
can be used to refine the gesture design process within HCI
and accessibility research and we are eager to see how the
community will pick up these ideas and use them for other
application areas.

CONCLUSION

We presented a principled method to generate gesture samples
for people with visual impairments using gestures collected
from people without visual impairments. Our method is based
on the foundations of the Kinematic Theory of Rapid Human
Movements and its associated Sigma-Lognormal model. The
software implementing our method is publicly available at

https://g3.prhlt.upv.es, While the gestures dataset can be
downloaded from http://www.eed.usv.ro/~vatavu.

We showed that our method can synthesize gestures across
user populations that hold the same statistical characteris-
tics as human gestures while improving recognition accuracy.
Our method will benefit UI designers who wish to prototype
gesture-driven applications tailored to users with different ges-
ture articulation abilities, without having to expressly recruit
them. Altogether, these are valuable advancements that open
new opportunities for future efforts in this direction, and we
look forward to see our method applied to other user popula-
tions as well. It is our hope that this work will enable better
user interface designs, making touch gesture interaction more
accessible to people with all abilities.
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