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Abstract

Understanding users’ whole-body gesture performance quantitatively requires numerical gesture descriptors or features. However,
the vast majority of gesture features that have been proposed in the literature were specifically designed for machines to recognize
gestures accurately, which makes those features exclusively machine-readable. The complexity of such features makes it difficult
for user interface designers, non-experts in machine learning, to understand and use them effectively (see, for instance, the Hu mo-
ment statistics or the Histogram of Gradients features), which reduces considerably designers’ available options to describe users’
whole-body gesture performance with legible and easily interpretable numerical measures. To address this problem, we introduce
in this work a set of 17 measures that user interface practitioners can readily employ to characterize users’ whole-body gesture
performance with human-readable concepts, such as area, volume, or quantity. Our measures describe (1) spatial characteristics of
body movement, (2) kinematic performance, and (3) body posture appearance for whole-body gestures. We evaluate our measures
on a public dataset composed of 5654 gestures collected from 30 participants, for which we report several gesture findings, e.g.,
participants performed body gestures in an average volume of space of 1.0m?, with an average amount of hands movement of
14.6 m, and a maximum body posture diffusion of 5.8 m. We show the relationship between our gesture measures and recognition
rates delivered by a template-based Nearest-Neighbor whole-body gesture classifier implementing the Dynamic Time Warping dis-
similarity function. We also release BOGART, the Body Gesture Analysis Toolkit, that automatically computes our measures. This
work will empower researchers and practitioners with new numerical tools to reach a better understanding of how users perform
whole-body gestures and, thus, to use this knowledge to inform improved designs of whole-body gesture user interfaces.

Keywords: whole-body gestures; gesture measures; gesture analysis; gesture recognition; Dynamic Time Warping; classification;
Nearest-Neighbor classifier; human movement; human motion; experiments; toolkit.

1. INTRODUCTION

Processing human movement represents a preliminary task
for gesture analysis and gesture user interface design and de-
velopment, tackled by researchers so far with various gesture
features, tools, and techniques (Aslan et al., 2013; Piana et al.,
2013; Vatavu, 2013a; Wang and Suter, 2006). Recently, inex-
pensive, off-the-shelf motion capture sensors, such as the Mi-
crosoft Kinect sensor, have enabled researchers and practition-
ers to capture whole-body gesture movement at decent levels
of sensing resolution and, consequently, to leverage the expres-
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siveness of body movement for intuitive and natural human-
computer interaction (Microsoft, 2014; Fothergill et al., 2012;
Vatavu, 2012a, 2015). However, the existing work has focused
almost exclusively on how fo recognize body gestures in the at-
tempt to provide the community with reliable and robust tech-
niques to classify gestures accurately; see Poppe (2010) for a
survey. These recognition techniques, however, employ ges-
ture representations and gesture features that are difficult for
user interface designers to understand and operate intuitively.
For example, Bobick and Davis (2001) employed Hu moment
statistics (Hu, 1962) to implement a human action classifier,
which received wide adoption. However, the authors acknowl-
edge that “one disadvantage is that the Hu moments are dif-
ficult to reason about intuitively” (pp. 261-262), which ulti-



mately affects the capacity of the practitioner to understand,
debug, and fix potential problems that may arise during system
usage. This situation can be seen over and over for the ges-
ture features currently in use in the community (Aggarwal and
Cai, 1999; Moeslund et al., 2006; Poppe, 2010; Turaga et al.,
2008) that are exclusively machine-readable; see “principal in-
variants” and “gradient tensor features” (Ali and Shah, 2010),
“Hessian matrices” and “eigenvalues” (Gorelick et al., 2006),
or “Fourier features” (Weinland et al., 2006), to name only a
few. On the contrary, the Human-Computer Interaction com-
munity has always valued and promoted the adoption of pattern
recognition and machine learning concepts and techniques that
are easy to understand, even for non-experts; see, for instance,
the $-family of gesture recognizers (Wobbrock et al., 2007; An-
thony and Wobbrock, 2010; Vatavu et al., 2012).

Adversely, there has been considerably less attention in the
community for designing human-readable gesture measures to
understand how users actually perform whole-body gestures,
although such an understanding would greatly benefit gesture
user interface design. For example, knowing how much users
vary their body movements in space can inform about the ef-
fort to perform such movements (Nielsen et al., 2004; Rekik
et al., 2014; Vatavu et al., 2011; Vatavu, 2013a). Or, knowing
the level of precision at which users prefer to perform body ges-
tures can inform the design of sensors’ resolution accuracy lev-
els for cost-effective gesture acquisition (Vatavu, 2013b). Tack-
ling such aspects is important because of the inherent variation
of users’ gestures, which are “spontaneous creations of individ-
ual speakers, unique and personal” (McNeill, 1992, p. 1). In
this work, we focus on the practitioner’s rather on the machine’s
perspective by proposing a set of human-readable gesture mea-
sures that rely on commonly-understood concepts of space and
time for user interface practitioners to evaluate and understand
users’ whole-body gesture performance effectively.

The contributions of this work are as follows:

1. We introduce a set of measures to characterize users’
whole-body gesture performance on three distinct execu-
tion levels: spatial, kinematic, and body appearance.

2. The majority of our measures (e.g., quantity of move-
ment, difference in gesture movement, ratio of movements,
etc.) are customizable, allowing researchers to particu-
larize them to suit their specific investigation goals about
gestures, making our set of whole-body gesture measures
considerably larger through custom expansion.

3. We compute our measures on a public dataset composed
of 5654 whole-body gestures collected from 30 partici-
pants (Fothergill et al., 2012), for which we report several
gesture discoveries, such as the average volume of all ges-
ture executions was 1.0 m*. We discuss our gesture perfor-
mance measures in connection with recognition rates de-
livered by a template-based gesture classifier implement-
ing the Dynamic Time Warping dissimilarity function.

4. We deliver the community with a software toolkit, BOG-
ART, the BOdy Gestures Analysis Toolkit, to automate
computation of our measures in order to encourage further
development in this line of work. BOGART is available as
a compiled .NET library and C# source code files.

It is our hope that our set of measures will benefit researchers
to reach a better understanding of human gesture movement in
general, and to develop better gesture technology and user in-
terfaces for whole-body gestures, in particular.

2. RELATED WORK

We are interested in this section in previous work that em-
ployed features to represent and describe whole-body gestures
and movement; see (Aggarwal and Cai, 1999; Moeslund et al.,
2006; Poppe, 2007, 2010; Rosenhahn et al., 2008; Turaga et al.,
2008) for extensive surveys. Please note that both “human
movement” and “human motion” have been employed in the
technical literature discussing recognition techniques and, for
the purpose of this work, they are synonymous. In this section,
we review gesture representation techniques and features de-
veloped in the Computer Vision and Pattern Recognition com-
munities to recognize whole-body movements and human ac-
tivities. We also review work about describing and interpreting
human movement using non-technical descriptors by connect-
ing to the Performing Arts, and we discuss current methodolo-
gies employed in Human-Computer Interaction to elicit, ana-
lyze, and describe users’ gestures, such as the gesture elicitation
methodology (Vatavu and Wobbrock, 2015; Wobbrock et al.,
2005, 2009). We start with a discussion on the terminology em-
ployed across the disciplines interested in the study of human
movement and gestures.

2.1. The study of human movement across disciplines

Because human movement has been studied by researchers
from various disciplines, it is important to correlate different
terminology and concepts to which we refer in this section. For
example, human movement has been addressed at various lev-
els of abstraction in the Computer Vision community. Gener-
ally, human motion analysis, action detection, action recogni-
tion, and gesture recognition are seen as distinct research goals
in this community, although they share the same image repre-
sentations of human movement (Poppe, 2007, 2010). For in-
stance, Moeslund et al. (2006) employed an hierarchy of con-
cepts for movement, such as action primitives, actions, and ac-
tivities to group research on activity representation and recog-
nition in their survey of the state-of-the-art in techniques for
human motion capture and analysis. For example, an action
primitive is an atomic entity from which actions are composed,
e.g., performing a forehand shot in a tennis match. The corre-
sponding action in this case would be returning the ball, which
might be composed of different action primitives, such as run-
ning toward the ball and hitting it with the forehand; ultimately,
the high-level activity is playing tennis, which assumes differ-
ent actions performed over time (Moeslund et al., 2006, p. 110).
Bobick (1997) referred to movements as the most atomic prim-
itives of human action (which do not require contextual knowl-
edge to be recognized), activities as sequences of movements
(for which knowledge comes from understanding the statistics
of the sequence), and actions as being large-scale events that
typically include interactions with the environment and causal



relationships. Furthermore, Turaga et al. (2008) distinguished
between actions and activities in their survey of techniques for
recognizing human activities. In their view, actions are simple
patterns of motion performed by a single person, while activi-
ties involve coordination of the actions of several people.

In Psychology, gestures have been analyzed in the context of
understanding the way people think and express themselves us-
ing language. For example, McNeill (1992) looked at gestures
as “movements of the hands and arms that we see when people
talk” that “reveal the idiosyncratic imagery of thought” (p. 1),
and Kendon (2000) worked with a definition of gestures as “co-
ordinated movements that achieve some end” (p. 47) to address
the inter-relationships between gesture and language.

In this work, we understand by whole-body gestures any
movement performed at the scale of the body that bears mean-
ing for the purpose of interacting with a computer. This inter-
pretation is in line with other researchers, see for instance the
overview on gesture-based interaction of Buxton (2011). Our
definition of whole-body gestures is in direct correspondence
with the action primitives of Moeslund et al. (2006) and also
with the movements of Bobick (1997) under the assumption of
auniquely-associated identifier for gesture movement in a given
application, i.e., the gesture’s class. However, the measures that
we introduce may also be applied to characterize and evaluate
human movement at higher levels of abstraction, such as ac-
tions and activities as defined in (Bobick, 1997; Moeslund et al.,
2006). Our definition follows a principle illustrated by Kurten-
bach and Hulteen (1990) to discriminate between gestures and
generic movement: “A gesture is a motion of the body that con-
tains information. Waving goodbye is a gesture. Pressing a key
on a keyboard is not a gesture because the motion of a finger on
it’s way to hitting a key is neither observed nor significant. All
that matters is which key was pressed.”

2.2. Numerical features to represent and describe human
movement

Many features have been introduced to represent human ac-
tion and gesture movement for the purpose of efficient recogni-
tion. Frequently employed features rely on edges, body silhou-
ettes and contours, motion, and color extracted from images and
videos. Many of these features are well described in the existing
surveys on the state-of-the-art in the field. For example, Poppe
(2007) overviewed vision-based techniques for human motion
analysis with focus on reliable detection of the configurations
of body parts over time. A follow-up survey (Poppe, 2010) ad-
dressed techniques for recognizing body poses and full-body
movements in images and video. Aggarwal and Cai (1999)
discussed techniques for interpreting human motion including
tracking and recognition. Moeslund et al. (2006) conducted a
survey of vision-based methods to capture and analyze human
movement, which they structured using a taxonomy discussing
model initialization for human capture, segmenting and track-
ing of humans in images, pose estimation, and human action
recognition. Turaga et al. (2008) discussed techniques for rec-
ognizing activities in which more people are involved. Jaimes
and Sebe (2007) examined techniques applied to the design

of multimodal interaction with computing systems using body
movement, gestures, and gaze.

Human movement can be described at the level of the entire
body seen as a single region of interest or at the level of body
parts, which results in a set of local measurements, e.g., a set
of 3-D points tracking various parts of the body over time, as
provided by standard motion capture equipment. Poppe (2010)
discussed both global and local representations of human ac-
tion in his survey of human action recognition techniques. For
example, frequently-employed global representations use the
body silhouette’s area and contour or the optical flow of mo-
tion (Bobick and Davis, 2001; Chen et al., 2006; Howe, 2004).
In turn, local representations compute local descriptors, such as
space-time points (Laptev, 2005) or SURF features (Willems
et al., 2008). In the following, we discuss previous work that
employed representations of human movement for the purpose
of recognition. In doing so, we focus our discussion on the fea-
tures that prior work has introduced as we highlight their strong
machine-readable dimension.

One way to describe body pose is to extract its silhouette,
from which other features can be computed, such as statisti-
cal moments (Ahad et al., 2008; Bobick, 1997; Gorelick et al.,
2006; Hu, 1962). Bobick and Davis (2001) introduced tempo-
ral templates to summarize the spatio-temporal motion proper-
ties of human movement in terms of location (i.e., where mo-
tion has occurred) and recency (i.e., how long since motion
has occurred) at each pixel of the image. For instance, mo-
tion energy images (MEIs) are binary images that encode the
presence of motion accumulated over time at each pixel’s lo-
cation, e.g., pixel (x,y) has value 1 if motion was detected at
that pixel’s location anytime in the last T frames. Motion his-
tory images (MHIs) are more nuanced versions of MEIs as they
employ gray-level intensities to encode the recency of motion
with brighter colors showing more recently detected motion,
i.e., pixel (x,y) has value 7 — ¢ (t < 7) if motion was last de-
tected at that pixel’s location ¢ frames ago. The authors used
the seven statistical moments of Hu (1962) extracted from the
MEI and MHI images to represent human movement, which
they matched against stored templates. However, even though
motion images deliver good synthesized visual descriptions of
action, Hu moments are difficult to interpret by humans; in the
authors’ own words, “One disadvantage is that the Hu moments
are difficult to reason about intuitively” (Bobick and Davis,
2001, pp. 261-262).

The temporal templates of Bobick and Davis (2001) received
great popularity among researchers interested in recognizing
human movement, and follow-up work introduced modified
versions of MEIs and MHIs to represent the spatio-temporal as-
pects of movement in the form of a single image template. For
instance, Bradski and Davis (2002) extended the value range
of pixels from MHIs to more than 256 levels of gray by stor-
ing the actual floating-point timestamps of motion detected at
each pixel’s location; the result was the timed motion-history
image (tMHI). Davis (2001) extended the MHI to an hierarchy
of motion images that compute local motion flow across dif-
ferent directions of motion. Xiang and Gong (2006) proposed
pixel change history images (PCHs), which are parametrized



versions of MHIs that allow the practitioner to control how
the recency of motion is updated at each pixel’s location. An-
other feature representation technique conceptually similar to
the temporal templates of Bobick and Davis (2001) was pro-
posed by Masoud and Papanikolopoulos (2003), which em-
ployed multiple feature images to represent human movement
over time. The feature image at time ¢ is computed by subtract-
ing from the current frame a weighted-average image of the ac-
tion occurring up to time ¢. Motion averaging is controlled by a
decay rate, a € [0..1], which affects the type of motion captured
in the feature image, which may be motion relative to the back-
ground (o = 0), motion relative to the previous frame (@ = 1),
or some other temporal change in the scene (@ € (0..1)). Move-
ment is depicted by feature images as a fading trail correspond-
ing to the parts of the body engaged in motion (Masoud and
Papanikolopoulos, 2003, p. 732). Weinland et al. (2006) ex-
tended 2-D motion-history images to 3-D motion-history vol-
umes (MHVs) that encode in a free-viewpoint manner the hu-
man movement captured from multiple video cameras. The au-
thors employed Fourier-based features to represent movement,
which were found better suited for recognition than the Hu mo-
ments (Bobick and Davis, 2001). Polana and Nelson (1997) de-
fined a periodicity measure working on the spectrum of Fourier-
transformed signal of the movement to detect periodic motion.
However, Fourier features (Weinland et al., 2006, p. 257) are
impossible to decipher by people not trained in interpreting the
frequency spectra of multi-dimensional signals.

Body silhouettes are the basis for computing many other
body descriptors. For example, Chen et al. (2006) introduced
the star skeleton to represent body poses. The contour of the
human body is detected in each frame and the “star” is formed
by joining the contour’s centroid with its most extreme points.
Human movement is then described as a sequence of star skele-
tons. A Hidden Markov Model was employed by Chen et al.
(2006) to recognize body actions with 98% reported accuracy.
Howe (2004) described body contours with turning angles and
employed the Chamfer distance to classify human movement.
Gorelick et al. (2007) represented human actions as 3-D shapes
induced by the silhouette of the body moving in space and time.
Each point in their representation is characterized by the mean
time required for a particle to perform a random walk to the
boundary of the shape, computable as a solution of a Poisson
equation (Gorelick et al., 2006) at each point (x,y,#). Using
that representation, the authors derived local and global fea-
tures that describe human movement, e.g., space-time saliency,
space-time orientations, and statistical moments weighted by
the characteristic function of the space-time shape, which were
then used for detection, recognition, and clustering of human
actions. Although suited for interpretation by a machine, these
features are off-limits for non-experts, as they involve advanced
concepts such as Hessian matrices, eigenvalues, and weighted
moments computed for multi-dimensional signals (Gorelick
et al., 2006, pp. 2248-2259).

When the body silhouette cannot be reliably computed from
the image, motion information, such as optical flow, can be
alternatively used to describe human movement. For exam-
ple, Efros et al. (2003) computed optical flow to represent and

recognize actions of people in low resolution video. Ahad et al.
(2008) computed motion-energy and motion-history images us-
ing optical flow rather than subtracting consecutive frames,
which they found to improve classification accuracy of actions
affected by occlusion. Dalal and Triggs (2005) encoded the
shape of the human body using HOG descriptors (Histogram of
Gradients). To compute HOGs, the image is divided into cells,
and a 1-D histogram is computed for each cell using edges’
orientations at each pixel. The resulted descriptors character-
ize local aspects of the body and contribute to the overall de-
scription of the human movement when performing some ac-
tion captured by a sequence of frames. Batra et al. (2008) de-
fined space-time shapelets to describe human movement as a
histogram over a dictionary of local edge-structures computed
over time. Maes et al. (2013) employed spatio-temporal rep-
resentations and template-based matching for coupled action-
perception processes. Ali and Shah (2010) introduced a set of
kinematic features to describe the dynamics of human motion,
such as divergence, vorticity, and gradient tensor features com-
puted from optical flow. Although suited for interpretation by
a machine for recognition purposes (up to 95% classification
accuracy was reported), these features are impossible to be in-
terpreted by non-experts, as they rely on advanced concepts,
such as derivatives of vector-valued functions and principal in-
variants of gradient tensor matrices (Ali and Shah, 2010).

2.3. Nonnumerical description of human movement

Description of human movement has been examined by
many other disciplines, such as Kinesiology, Physiotherapy,
and the Performing Arts, for which researchers and practition-
ers have devised specific methods to record, store, and analyze
the movement of the human body. For instance, Abbie (1974)
discussed motivations behind inventing systems of movement
notation and provided a review of such systems relevant for
Physiotherapy. The author noted that “The invention of many
notation systems suggests that words have been found inade-
quate to describe movement accurately, and the more complex
or unusual a movement, the less adequate and accurate become
the words.” (p. 61). Sevdalis and Keller (2011) examined re-
lationships between research on dance and embodied cognition
with the purpose of understanding human action and social cog-
nition. In their review of the topic, the authors focused on motor
experience and expertise, learning and memory, action, inten-
tion and emotion understanding and audio-visual synchrony.

The Performing Arts have seen many systems to record and
analyze human movement. Such systems were designed from
as early as the 16th and 17th centuries, such as the Beauchamp-
Feuillet notation used to record steps for Baroque dance (Waite
and Appleby, 2003). Dance notation, or written dance, em-
ploys graphical symbols and figures, numerical systems, and
letters and words to present educated readers with a visual,
symbolic description of human movement during dance. For
instance, one of the first methods to record dance in written
form comes from Thoinot Arbeau’s “Orchésographie” dating
from the 16th century, referenced in Hutchinson (1991) (p.
2), which used codes and word abbreviations to depict dance

steps; for example, “R” means “reverencia”, “re” stands for



“represa”, etc. Written descriptions accompanied by names
and figure illustrations were used to accompany the musical
notation. Names were placed next to corresponding musical
notes to create the connection between music and the steps to be
performed. Visual systems, such as the “Sténochoréographie”
of Arthur Saint-Léon from 1852, referenced in (Hutchinson,
1991), employed stick figures to depict positions of arms, legs,
torso, and head during dance, which were placed under the mu-
sic score to synchronize timings. While discussing systems to
represent human movement in dance, Hutchinson (1991) noted
that “Every few years a new system appears” and that “Most
fall back on one or other of the devices already tried, and most
favor one form of dance. As modern technology develops, the
emphasis is upon mathematical systems which can be adapted
to the computer. It is essential, however, that the human aspect
is not lost.” (p. 4)

One of the best known and employed systems is Labanota-
tion or Kinetography Laban invented by Rudolf Laban to repre-
sent and store human movement (von Laban and Lange, 1975).
Labanotation employs three types of descriptors: motifs, effort-
shape, and structural descriptions. Motif Writing describes the
theme of the movement, its motivation, aim, and intention. The
Effort-Shape description characterizes the quality and the ex-
pression of human movement, where effort relates to energy
and shape describes the form that the movement takes during
dance. Structural description expresses human movement in
terms of the parts of the body involved in movement produc-
tion, space, time, and dynamics, which are abstracted as vi-
sual symbols. These symbols take the form of vertical lines
and staff representing the body divided into its right and left
sides. The shape of the symbols indicates direction, while their
size indicates timing. Secondary symbols (e.g., pins, bows,
hooks) illustrate variations in style. The richness and flexibil-
ity of the Labanotation system in representing human move-
ment determined its adoption beyond choreography in other
fields, such as anthropology (Grim-Feinberg and Santos, 2015;
Waulff, 2001), physiotherapy (Abbie, 1974), sports (Dania et al.,
2013), and gesture and movement representation for interactive
computer applications (Kordts et al., 2015; Laiyang and Jun-
jun, 2014; Hachimura and Ohno, 1987; Loke and Robertson,
2009). The system has even been automated by software that
converts human movement into the visual abstractions of La-
banotation (Guo et al., 2014; Choensawat et al., 2016).

Priel (1974) developed a system for the numerical descrip-
tion of human body postures in the form of “posturegrams”
that report the position and angle of each body joint relative
to a reference level. The Ovako Working Posture Analyzing
System (OWAS) was introduced to identify and evaluate poor
working postures (Karhu et al., 1977, 1981). OWAS consists
of two stages: (1) an observational part, during which working
postures are discovered and (2) a set of criteria for redesigning
working methods and places to increase the comfort of human
body posture during work.

2.4. Methodologies to analyze and describe human movement

In this section, we consider another approach for evaluating
gesture performance by reviewing studies that collected and an-

alyzed users’ gesture preferences for interacting with a com-
puter system. Wobbrock et al. (2005) introduced a methodol-
ogy for computing agreement between users from which pro-
posals were elicited for abstract symbols. The methodology
was applied to reveal users’ preferences for multi-touch interac-
tion and to compile a set of gestures reflective of users’ behavior
for multi-touch surfaces (Wobbrock et al., 2009). Vatavu and
Wobbrock (2015) and Vatavu and Wobbrock (2016) developed
the methodology to include more measures, such as disagree-
ment and coagreement rates, and statistical inference tests.

The agreement rate methodology was applied to study
whole-body gestures as well. For instance, Vatavu (2012b)
found an average agreement rate of .415 (from a maximum
of 1.000) when participants were asked to propose gestures to
control standard functions of the TV set. Follow-up studies re-
vealed more about users’ conceptual models of interacting with
whole-body gestures (Vatavu, 2013a) and high-resolution finger
and hand postures and movements (Vatavu and Zaiti, 2014; Za-
iti et al., 2015). For example, users prefer to associate symmet-
ric gestures to dichotomous tasks, use two hands to increase the
expressiveness of their gestures, employ cultural signs and ges-
tures, and perform gesture movements with reference to specific
body parts, such as covering the ears for lowering down the TV
audio volume (Vatavu, 2013a). Connell et al. (2013) looked at
children’s whole body gestures and reported a potential effect of
contextual cues on spatial interaction and navigation tasks, an
influence of age on the proposed gestures, and some preference
for egocentric (toward the body and body-centered) gestures.
Silpasuwanchai and Ren (2014) investigated body gestures for
video games and reported an average agreement of .370. The
authors discussed the opportunity of transferring gesture com-
mands between different body parts, such as between hands and
legs. Morris (2012) elicited users’ gesture and speech prefer-
ences for controlling a web browser in the living room and re-
ported an influence of participants’ previous WIMP experience
on their proposals for commands (i.e., the “legacy bias™) and
identified common conventions employed by participants, such
as referring links with numbers, e.g., “go to link 2”. Nebeling
et al. (2014) replicated the study and extended the methodology
toward obtaining reproducible user-defined gesture sets.

Stern et al. (2008) looked into hand gestures that would be
intuitive for users to execute and defined the intuitiveness of a
gesture command as the strength of “the cognitive association
between a command or intent, and its physical gestural expres-
sion.” The authors introduced a measure that describes the in-
tuitiveness of the association between a gesture command and
a function as the number of participants in consensus with that
association. In a similar manner, Vatavu (2013a) employed the
confidence value of a referent as the maximum percent of par-
ticipants in agreement for that referent and Morris (2012) used
the max-consensus measure for the percent of participants sug-
gesting the most popular proposal and the consensus-distinct
ratio for the percent of distinct proposals for a given referent.

Beyond elicitation studies, researchers have explored cre-
ative ways for people to effect commands using whole-body
gestures. For instance, Holz and Wilson (2011) introduced
“data miming,” a technique to understand gestures used by peo-



ple to describe concrete physical objects. To inform the devel-
opment of their technique, the authors conducted a study during
which they observed participants describing objects using hand
gestures. Results showed that participants made use of simulta-
neous and symmetric hand movements, different postures of the
hand, and spatial gestures to describe size and shape. Gustafson
et al. (2010) conducted several studies to understand users’ abil-
ity to employ imaginary interfaces by using their hands and
visuo-spatial memory. For example, participants drew charac-
ters and sketches in mid-air with good within-stroke alignment
in the absence of visual feedback, but the alignment of multiple
strokes was more challenging. Also, participants’ accuracy of
pointing to imaginary targets became worse as the target was
farther away from the reference hand. Overall, experimental
findings showed that users’ short-term memory can replace vi-
sual feedback provided by conventional interfaces for mid-air
gesture interaction. Follow-up studies exploited people’s abil-
ity to point, gesture, and perform whole-body movements for a
variety of application scenarios, even in the absence of visual
feedback (Baudisch et al., 2014; Dezfuli et al., 2012; Gustafson
etal., 2011).

2.5. Summary

The literature of human action recognition has proposed
many features that work well to classify whole-body gestures
accurately. However, these features are either too complex or
uninformative to be used by practitioners to describe users’ ges-
ture performance during the design of gesture sets or gesture
user interfaces. Clearly, gradient tensor features (Ali and Shah,
2010), Hessian matrices (Gorelick et al., 2006), or Fourier fea-
tures (Weinland et al., 2006) are off-limits for most user inter-
face designers without advanced training in machine learning,
but who nevertheless wish to describe users’ gesture perfor-
mance numerically. Other systems, such as (von Laban and
Lange, 1975) are purely descriptive and do not provide numer-
ical quantification of human movement. In this work, we are
interested in human-readable measures that can be employed
to characterize users’ whole-body gesture performance to help
researchers and practitioners reach a clear and accurate under-
standing of how users actually perform gestures, a methodolog-
ical aspect of gesture analysis left unattained by previous work.

3. MEASURES FOR WHOLE-BODY GESTURES

In this section, we introduce a set of seventeen (17) measures
for researchers and practitioners to evaluate users’ whole-body
gesture performance by leveraging commonly-understood con-
cepts for describing numerical quantities, such as area, volume,
time, etc., and simple arithmetic operations, such as differences
and ratios. We define our measures with respect to the follow-
ing three dimensions along which whole-body gesture move-
ment unfolds relevant information:

1. The spatial characteristics of body movement capture as-
pects related to the area, volume, and amplitude of gesture
movement performed by the whole body or by individual
body parts inside a 3-D space. Spatial gesture measures

provide answers to questions that start with where (e.g.,
where was movement produced in the room?) and with
how much (e.g., how much movement was produced with
the dominant hand?).

2. The kinematic dimension of gesture performance charac-
terizes the temporal aspects of whole-body gesture pro-
duction, such as the absolute and relative speed of indi-
vidual body parts. Consequently, kinematic measures are
able to provide answers to questions that start with when
and for how long body movement took place.

3. The body appearance dimension describes the particular-
ities of gesture movement that determine expressiveness
and differentiate body movements by their meaning. For
example, the amount of distinct body postures employed
during the articulation of a body gesture is a measure of
expressiveness. Appearance measures answer questions
that start with how (e.g., how was the gesture actually pro-
duced in terms of the body postures adopted by the user?).

Most of the measures that we introduce are general and, con-
sequently, are customizable to capture various aspects of ges-
ture performance, leading to even more measures. We high-
light these measures and the opportunities they provide next
in the paper. By using the three dimensions mentioned above,
our set of whole-body gesture measures is able to characterize
the spatio-temporal-appearance aspects of users’ whole-body
gesture performance for a multitude of experimental situations
and scientific investigation goals. For the rest of the paper, we
consider a whole-body gesture defined as a set of n body pos-
tures P; unfolding in time #;, i = 1..n, with each body posture
composed of J joints that are being tracked and reported by a
motion sensor, such as the Microsoft Kinect sensor or the Vicon
Motion Capture system, for instance:

[Pt P ={pl1ph = (30, 20) . = 1.0} i= L} (1)

For example, in the case of the Microsoft Kinect sensor, the
number of joints tracked in each video frame is /=20 (for SDK
versions up to v1.8) and J=30 joints for Kinect for Windows
SDK v2.0; see (Microsoft, 2016a). Other systems, such as the
Vicon Motion Capture system, allow a configurable number of
joints to be tracked in 3-D using retroreflective markers attached
to the human body.

3.1. Spatial measures

Spatial measures describe the overall amplitude and amount
of users’ whole-body movements in 3-D space as well as of the
individual movements of specific body parts that may be of par-
ticular importance to the researcher, e.g., hands, arms, or head.
Spatial measures are used to characterize general gesture move-
ment in space, e.g., How much are users moving when per-
forming gesture g;?; or What is the difference in the amount of
movement between the dominant and non-dominant hand dur-
ing the performance of gesture g,? Spatial measures can also
serve to inform the design of user interfaces employing whole-
body gesture commands, for instance by determining the exact
volume of space around the body needed by users to perform



gestures safely, in line with current recommendations and op-
erating guidelines accompanying motion-capture sensors, such
as the Microsoft Kinect operating guidelines (Microsoft, 2014).

Our 10 spatial measures for characterizing and analyzing
users’ whole-body gesture performance are as follows:

1. Gesture VoLuMmE (GV) represents the volume of the 3-D
space in which the whole-body gesture is performed:

av= || (H}3x{5§} min{d‘}) @

o€{x.y.z}

where ¢ represents each of the x, y, and z dimensions of gesture
movement, i enumerates all body postures P;, and j enumerates
all the joints tracked by the sensor. Gesture volume values may
be reported in sensor or screen units (e.g., pixels® or voxels)
or in physical units, such as cubic meters, as reported in the
Evaluation section of this paper.

2. GesTURE AREA (GA) represents the 2-D area in front of the
sensor in which the whole-body gesture is performed:

GA = 1_[ (max mm {6‘ }) 3)
oefx.y) "

where ¢ represents each of the x and y dimensions, i enumerates
all body postures P;, and j all the tracked joints. This measure
represents a particularization of GESTURE VOLUME, valuable for
a large majority of whole-body gestures that take place in front
of a display and that consist of movement mostly performed
along the x and y axes. While GESTURE VOLUME can serve to in-
form the design of full 3-D body-centered user interfaces, such
as the SpaceSensor of Hong and Woo (2006), GESTURE AREA
focuses on interactions that are performed in a plane in front of
the user’s body to control content on a remote display; see (Mi-
crosoft, 2016b). In this work, we report GA values in physical
units, such as meters squared.

3. QuanTtiTy oF MoVEMENT (Qy), defined as the total amount of
movement performed by the user and computed as the sum of
Euclidean distances between the corresponding joints of time-
consecutive body frames:

ZZ P = 25 @

12]

where H pi. - pfi’1|| represents the Euclidean distance between
two 3-D points denoting the same joint j, j = 1..J, belonging to
time-consecutive body postures P;_; and P;, i = 2..n. The fac-
tor A acts as a normalization factor that controls how the quan-
tity of movement is being interpreted in connection with the
number of joints that are tracked by the sensor. For instance, 1
may take the value 1, case in which Qy; reports the cumulative
movement produced by all the body joints. Or, A can be equal
to the number of joints J, case in which Qy, reports the average
quantity of movement per joint. Alternatively, 4 may take any
other value that the practitioner finds suitable for normalizing
the quantity of human movement with respect to the number of
tracked joints for a specific experiment or application scenario.

In this work, we use 4 = 1 and report Qy values in meters.

4. GEeNERALIZED QUANTITY OF MOVEMENT (Qy) represents the
generalized version of the Qy measure, for which Euclidean
distances are weighted (w;, j = 1..J) to denote their relative
importance in the overall sum:

J

QM=% y Zw,

i=2 j=1

'”pJ_le” &)

The generalized quantity of movement is useful when the prac-
titioner needs to isolate specific parts of the whole-body gesture
movement that may be relevant for answering specific research
questions during gesture analysis, such as how the hands are
moving. In this example, weights corresponding to hand joints
will be set to 1.0, while the rest of the weights to 0.0. The out-
come measure is valuable and informative on its own to con-
sider as a distinct measure by itself, as follows:

5. QuanTtity OF HaNDS MOVEMENT (Qpangs) represents the
amount of movement performed by the user’s hands.

The movement of other body parts can be extracted in the
same way by setting appropriate weight values for body joints.
Another example is assigning weights of different magnitudes
to different body parts, such as 1.0 for the dominant hand, and
a lower value, such as 0.5, for the non-dominant hand for eval-
uating a gesture that was specifically designed as unimanual.

6. DirrereENCE OF MOVEMENT (D) captures the difference be-
tween the amount of movement produced by two different body
parts. We define Dy as the difference between values reported
by the generalized quantity of gesture movement measure com-
puted with different sets of weights:

Dy = Qu(weights,) — Qu(weights,) 6)

There are many interesting combinations of weights corre-
sponding to specific body parts for which movement may be
compared, which we ultimately leave to the researcher to ex-
plore, according to the particular goal of their investigations. In
this work, we evaluate the difference between the movements
produced by the right and left hands, as follows:

7. D1FreRENCE OF HANDS MOVEMENTS (Dyands):

Drandgs = Qu(weights,) — Qu(weights)) 7

where the weights, array has weights equal to 1.0 for the joints
of the right hand and 0.0 otherwise, and weights; is defined sim-
ilarly for the left hand.

Dy can be further customized by the researcher to include
more body parts, resulting in measures that compute sums and
differences of more than two values. Note how the computa-
tion of the Dy; measure resembles that of the Haar-like features
of Papageorgiou et al. (1998), widely used in the Computer Vi-
sion community, which we adopted and adapted in this work to
evaluate whole-body gestures.

8. Rartio oF MoveMENT (Ry) computes the relative amount of
movement performed by one body part with respect to another.
We define Ry as the ratio between two values reported by the



generalized quantity of gesture movement measure computed
with two different sets of weights:

_ Qu(weights))

Ry = —MAWE ST
M Qv (weights,)

(®)
Again, there are many combinations of body parts for which
relative movement may be compared, which we leave to the
researcher’s choice. In this work, we evaluate the ratio of hands
movement relative to the entire movement of the body:

9. Ratio oF HaNDs-10-Bopy MOVEMENT (RHands:Body ):

QM(Wei hts han, X)
RHands:Body = % )

as well as the ratio between the movement of hands and legs:

10. Rario oF HANDS-TO-LEGS MOVEMENT (RHands Legs):

Qu(weights,,, ;)

Qum(weights,,,) (19)

RHands:Legs =

with weights arrays properly defined with 1.0 and 0.0 values.
As we report in the Evaluation section, hand movements repre-
sent an important part of whole-body gestures. Also, knowing
the ratio of movements of body limbs may be used for fatigue
analysis; see the Evaluation section for discussion. Note that all
Ry measures report dimensionless quantities.

3.2. Kinematic measures

Kinematic measures characterize users’ whole-body gesture
performance in the temporal domain by considering the times-
tamps #; associated to each body posture constituting the ges-
ture; see eq. 1. Kinematic measures are employed to understand
how long it takes users to perform gestures, to monitor how
performance improves with practice (e.g., do users get equally
faster with practice for all gesture types?), and to design whole-
body gestures that are performed efficiently (e.g., fast) by users.
We present below performance time and speed, and point the
reader to variations of these measures.

11. PerrormaNcE TiME (T) represents the total duration of the
gesture performance, reported in seconds:

T=1t,-1 (11

where 7, and #; represent the timestamps associated to the last
(P,) and first (P;) body postures of the gesture (eq. 1).

12. AveraGE GESTURE SPEED (S) represents the magnitude of the
average velocity at which body movement is performed. We
compute gesture speed as the ratio between the quantity of ges-
ture movement and performance time:

Qu
T

S = (12)
for which we use 4 = J.

By employing the generalized quantity of gesture movement
measure at the numerator of eq. 12, we can compute the average
speed of specific body parts, such as:

13. AvErRAGE HANDS SPEED (Spangs). We report on this measure
in the Evaluation section of this paper.

The researcher interested in relative differences between the
average speed of different body parts (e.g., the difference in the
speed at which the dominant hand moves compared to the speed
of the non-dominant hand), may compute differences in speed
using different weighting schemes, as shown previously for Dy
and Ry;. For space concerns, we omit actual definitions here,
but we point the reader to the opportunity of exploring such
options as well as to the variety of kinematic data that can be
obtained with various weighting schemes, differences and ratios
of the speed of movements of the various body parts.

3.3. Appearance-based measures

Appearance-based measures characterize the body postures
that compose the whole-body gesture; see eq. 1. They are use-
ful to understand how gestures decompose into simple units of
movement, i.e., body postures, and how units compare to each
other. The importance of characterizing gesture appearance has
been remarked by other researchers. For example, Bobick and
Davis (2001) considered that “The most primitive level, how-
ever, is movement - motion whose execution is consistent and
easily characterized by a definite space-time trajectory in some
feature space. Such consistency of execution implies that for a
given viewing condition there is consistency of appearance. Put
simply, movements can be described by their appearance.”

In this section, we define posture variation, diffusion, density,
and body posture rate:

14. Bopy PosTURE VARrIaTION (BPV) computes the average devi-
ation of body postures from the centroid posture of the whole-
body gesture:

1 n J )
BPV == > 2 llp - 7l a3
i=1 j=1

where 7 is the number of body postures (eq. 1), and p; (j = 1..J)
represent the joints of the average posture P of the gesture. The
average posture is computed by averaging the x, y, and z co-
ordinates of all the joints of all the body postures in the ges-
ture. BPV is a measure of dispersion of the individual units that
make up the movement from the centroid posture. Large val-
ues of this measure inform the practitioner that users adopted
different body postures while they performed the gesture. We
report body posture variation in physical units, such as meters.

15. Bopy PosTture Dirrusion (BPD) represents the maximum
difference (or dissimilarity) between the body postures consti-
tuting the whole-body gesture:

J
BPD = max 1 2,1 - 4 (14

While BPV reports the amount of spread of individual body
postures around a representative average, BPD reports their
maximum dissimilarity with respect to each other. We report
BPD values in physical units as well.
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Figure 1: Body postures extracted from a public dataset (Fothergill et al., 2012) to illustrate each of the 12 whole-body gestures evaluated in this work. From left

LI <

to right: “start music”, “crouch/hide”, “next menu”, “put on goggles”, “wind up music”, “shoot pistol”, “end music (bow)”, “throw”, “protest”,

(L) ” < LTINS

change weapon”,

“move up tempo”, and “kick”. In total, we evaluated 5,654 body gestures collected from 30 participants, consisting in a total number of 581,246 body frames. Note:

the right hand is shown in dark red.

16. Bopy Posture DEensity (BPp) represents the variation of
body postures over the volume of the space in which body
movement was produced and recorded:

We report BPp values in physical units: meters of variation in
body posture per one cubic meter of space.

17. Bopy PosTture RateE (BPR) represents the variation of body
postures over the time duration during which body movement
was produced and recorded:

BPR = BPV (16)
T
We report BPR values in physical units (m/s).

Bopy PosTure DEnsITY and RATE are measures that integrate
information about users’ body appearance during gesture pro-
duction with spatial and kinematic description of the whole-
body gesture. The next section shows how these measures are
able to reveal more findings about users’ whole-body gesture
performance than the measures from which they were derived.

4. EVALUATION: SHOWCASING MEASURES APPLI-
CATION AND REVEALING PRACTICAL ASPECTS
OF WHOLE-BODY GESTURE PERFORMANCE

In this section, we show the usefulness of our set of measures
to characterize users’ whole-body gesture performance by com-
puting and evaluating the measures for the gesture types of the
public dataset of Fothergill et al. (2012). The dataset contains
5,654 records of 12 distinct body gestures (see Figure 1) that
were collected from 30 participants using the Microsoft Kinect
sensor, with a total number of 581,246 body frames!. Please
note that it is not our goal to comprehensively describe users’
performance for this dataset or for these specific gesture types,
but rather we use this section to showcase the convenience of
our measures and their capability to reveal practical aspects of
whole-body gesture performance.

'http://research.microsoft.com/en-us/um/cambridge/
projects/msrcl2/
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Figure 2: Average GesTure VoLUME and GESTURE AREA values reported for the
whole-body gestures dataset of Fothergill et al. (2012). Notes: error bars show
95% Cls; gestures are shown in ascending order of their volume.

4.1. Spatial measures

We found a significant effect of gesture type on both GEs-
TURE VOLUME (y*(11)=1614.070, p<.001) and GESTURE AREA
(¥*(11)=1924.533, p<.001), with “throw” showing the largest
volume (1.68 m?) and “start music” the largest area (2.46 m?);
see Figure 2. At the opposite end of the scale were “put on
goggles” (with a volume of 0.53 m?) and “shoot pistol” (area
of 0.87 m?). The values reported by these two measures con-
firm intuition as “throw” requires the hand to move from back
to front and, likely, the body leaning to the front as well, which
gives large depth to the overall movement. However, users nor-
mally stand still during “put on goggles,” with only the hands
moving toward the eyes, which explains low volume for this
gesture type. Similarly, there is considerably more arm move-
ment along the x and y axes for “start music,” during which
users raised and stretched their arms, see Fothergill et al. (2012)
(p. 1740), than for “shoot pistol” that only requires movements
of hands in front of the body. In average, all the gestures were
contained within a volume of 1.0m? (SD=0.35 m?) with an av-
erage area of 1.5m? (SD=0.52m?). Figure 2 shows average
volume and area values side by side to facilitate easy interpre-
tation of the depth dimension of each gesture type. Note how
these two measures are able to characterize the amplitude of
users’ gesture movements precisely, despite their simple defini-
tions. A correlation analysis showed that GV and GA deliver
distinct information (Pearson’s ry=12)=.386, p>.05, n.s.).

We also found a significant effect of gesture type on the
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Figure 3: Average QuanTiTy and DIFFERENCE OF MOVEMENT values reported for
the whole-body gestures dataset of Fothergill et al. (2012). Notes: error bars
show 95% Cls; gestures are shown in ascending order of Q1.

quantity of gesture movement Qy (y>(11)=1483.394, p<.01);
see Figure 3. The largest amount of movement was generated
when performing the “crouch” and “kick” gestures: 38.9 m and
37.7m, respectively, for which a post-hoc Wilcoxon signed-
rank test did not detect any significant difference (Z=—1.146,
p >.05, n.s.). The “next menu” gesture presented the smallest
amount of body movement (10.7 m), being performed with one
hand only. We also found a significant effect of gesture type
on the quantity of hands movement Q4 (x>(11)=1144.586,
p<.01), with an average movement of 14.6m per gesture
(SD=3.7 m). When compared to the amount of body movement
overall (average 24.7 m, SD=8.5m), we found that hands ac-
counted for more than 60% of all body movement. Analysis of
individual gesture types showed large hand movements occur-
ring for “throw”, “protest”, and “move up tempo”. Gesture type
also affected significantly the difference in the amount of move-
ment performed by the two hands Dyyngs (,\/2(11)=997.273,
p<.01), with the right hand traveling with 1.1 m more on av-
erage than the left hand (SD=2.2m). Out of the 12 gesture
types, only 3 stand out in Figure 3 with large differences in
terms of hand movements, i.e., “throw”, “change weapon”, and
“next menu”, showing participants’ preferences for using the
right hand to perform these gestures. All the remaining Dygpgs
values are below 0.46 m, which shows equal bimanual involve-
ment, which might have been either explicit (i.e., intended by
users during performance) or implicit (i.e., hands move together
with the body because of inertia mechanisms); a finding that the
practitioner can now use as a start point for new investigations
in this direction, e.g., how much does body inertia affect the
appearance of movement?

When analyzing the ratios of movement, we found that hands
account for 65% of the entire body movement of the gestures in
the dataset. Gesture type had a significant effect on the hands-
to-body movement ratio Ryands:ody (x*(11)=1620.288, p<.01).
Some gestures used hands extensively, such as “wind up music”
(ratio value of 0.79), “put on goggles” (0.77) or “shoot pistol”
(0.71), while others required hands less, such as “crouch/hide”
(0.36) or “kick” (0.34); see Figure 4. These results show the
importance of hand movements overall in the production of
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Figure 4: Average Rario or MoveMeNT reported for the whole-body gestures
dataset of Fothergill et al. (2012). Notes: error bars show 95% Cls; gestures are
shown in ascending order of the hands-to-body ratio of movement.

whole-body gestures, function of gesture type. We also found
that “throw,” a gesture defined by a remarkable hand move-
ment, had a value of 0.61, which is generally high, yet lower
than other gesture types and explainable by the general body
movement accompanying the hand, i.e., the body leans back-
ward and forward during the throw. By looking at the ratio of
the movement of hands relative to the movement of legs, we can
characterize gesture performance at even finer levels of detail;
see Figure 4. Overall, gesture type had a significant effect over
this measure as well (y*(11)=1195.233, p<.01). “Shoot pistol”
presented a large value (10.8), showing high relevancy of hands
over legs movement during this gesture, as expected. On the
other hand, “crouch/hide” (1.3) showed an almost equal amount
of movement of hands and legs, while the “kick” ratio was sub-
unitary (0.8), showing more leg than hand movements. The
practitioner can now use these results to inform further analysis
of the fatigue involved by whole-body gesture production. For
instance, gestures that require all limbs to move will likely be
perceived differently in terms of difficulty than gestures involv-
ing only few limbs. Also, different ratios of limb movements
may be perceived differently by users in terms of the relative
difficulty of producing body movements. For some interaction
contexts (e.g., when there is little space available for comfort-
able or safe movement) or for some user categories (e.g., age
groups or motor impairments), gestures with various ratios of
limb movements may be preferred and their performance eval-
uated with our set of measures.

4.2. Kinematic measures

We found a significant effect of gesture type on PERrFOR-
Mance TiME (2(11)=729.154, p<.01) as well as on users’ Av-
ERAGE SPEED (y*(11)=1460.858, p<.01). Gestures took on av-
erage 3.5 seconds to execute (SD=0.6), at an average speed of
0.36 m/s (SD=0.12); see Figure 5. Some gestures were fast,
such as “kick” (0.6 m/s) or “crouch/hide” (0.5 m/s), suggest-
ing action types for which quick response is needed from users
(otherwise, negative consequences may occur, such as loosing
points in a video game). Other gesture types were performed
more slowly when judged at the scale of the whole body, such
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as “put on goggles” (0.26 m/s) or “change weapon” (0.27 m/s),
suggesting more carefulness from users during the performance
of more precise movements. Speed analysis focused on hands
revealed even more findings. For example, hands were two
times faster than the overall speed of the whole body, with an
average of 0.73 m/s (SD=0.18). Even though “put on goggles”
and “change weapon” were evaluated as slow executions when
judging speed at the scale of the body (all joints considered),
they were fast in terms of hands movement (0.67 and 0.64 m/s,
respectively), a finding that we obtained by employing weights
and the generalized quantity of movement Qy; in eq. 12.
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Figure 6: Average Bopy PosTURE VariatioN and Dirrusion values reported for
the set of whole-body gestures of Fothergill et al. (2012). Notes: error bars
show 95% Cls; gestures are shown in ascending order of BPV.

4.3. Appearance-based measures

We found a significant effect of gesture type on both Bopy
PosTURE VARIATION (y2(11)=1694.525, p<.01) and Bopy Pos-
TUuRE DirrusioN (y2(11)=1738.918, p<.01). Body postures var-
ied from their centroids with 2.2m on average (SD=0.8 m),
with an average PosTure DirrusioN of 5.8 m (SD=2.4 m); see
Figure 6. Some gestures were more dynamic in appearance, as
indicated by larger BPV values. For example, “crouch/hide”
and “kick” are movements composed of body postures that are
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more different from their centroid than are the postures of “next
menu” or “shoot pistol” (4.0 and 3.3 m versus 0.9 and 1.7 m);
see Figure 6. When analyzing Bopy PosTure DIFFusioN, we
found that individual body postures may vary greatly for some
gesture types (e.g., 10.8 m for “crouch/hide,” all joints consid-
ered), suggesting more joint movements required to perform
those gesture types and, consequently, more ways for users to
perform them. The practitioner can use these results for further
investigations on what caused such variations that, ultimately,
may impact negatively users’ adoption of such gesture types.

The Bopy PosTure DEnsiTY (BPp) and Bopy PosTURE RATE
(BPR) measures revealed more findings about the appearance of
the body during gesture production with respect to the volume
of space and the duration of the gesture. For instance, we found
that DensITY varied between 1.1 m per cubic meter for the “next
menu” gesture and 6.8 m per cubic meter for “crouch/hide”.
On average, the variation in how body postures changed with
respect to the volume of space in which those variations oc-
curred was of 2.7 m for each cubic meter of volume encom-
passing movement; see Figure 7. Gestures with equal variation
in body posture, such as “change weapon”, “wind up music”,
“shoot pistol”, and “put on goggles” (ranks 2, 3, 4, and 5 in the
ordered list of gestures shown in Figure 6) are better differen-
tiable by their DensITY values (ranks 2, 6, 8, and 11 in Figure 7),
even when they are performed in similar volumes of space (see
Figure 2). A Friedman test showed a statistically significant ef-
fect of gesture type on BPp (y*(11)=1738.918, p<.01). Body
postures varied in their appearance at a rate of 0.69 m/s, with
the slowest rate obtained for “next menu” (0.30 m/s) and the
highest for “crouch/hide” (1.15 m/s); see Figure 7. Gesture type
had a significant effect on BPR (y%(11)=1738.918, p<.01). Just
like DEnsITY, RATE is able to differentiate between gestures with
similar variation in body posture: “change weapon”, “wind up
music”, “shoot pistol”, and “put on goggles” are now ranked
second, fourth, fifth, and tenth by their rate; see Figure 7. Fur-
thermore, a correlation analysis showed that BPp and BPR de-
liver distinct information (Pearson’s r(y=12)=.466, p>.05, n.s.).



4.4. Relationship to gesture recognition performance

The gesture measures that we propose in this paper were de-
signed to help the practitioner develop a better understanding
of how users actually perform whole-body gestures in terms
of their spatial, kinematic, and appearance characteristics. The
previous sections showed how evaluating these measures on ac-
tual gestures reveals interesting aspects of human gesture per-
formance, such as computing the lower and upper margins for
the volume of space in which movement takes place, the overall
quantity of movement produced, or the relationships between
the movement of body parts, such as hands and legs, and the
overall movement of the whole body. However, it is also inter-
esting to understand how our measures relate to gesture recog-
nition performance. To this end, we conducted a recognition ex-
periment for the gesture dataset of Fothergill et al. (2012) that
we employed in the previous sections to evaluate our gesture
performance measures. For this experiment, we implemented
the Nearest-Neighbor (1-NN) classifier (Webb, 2002) and the
Dynamic Time Warping (DTW) function (Myers and Rabiner,
1981; Bodiroza et al., 2013; Ferguson et al., 2014; Jiang et al.,
2015; Lou et al., 2017) to evaluate the dissimilarity between
whole-body gestures following Vatavu (2012a) (p. 87):

candidate C € Class(T) if T; = argmin {DTW(C, T;)} (17)
T,€T

where T; are gesture templates from the training set 7 and the
DTW function between gesture candidate C and template T is
iteratively computed using a cost matrix £ that optimally aligns
points C; to T; to minimize the overall Euclidean distance be-
tween the two gestures, as follows:

DTW(C,T) = {c 1, where

G =NC =T

{1 =G +|[Cr =T

Gi1=Gimn +IC =Tl

gi,j = min {é’i—1,j—1,§i_1,j,§i,j—1} +|Ci -

where |C| and |T| represent the number of points of the can-
didate and template gestures. Prior to classification, gestures
were normalized as follows: (1) all gestures were uniformly re-
sampled in the time domain into a fixed number of n = 32 body
postures, (2) they were scaled down to the unit box, and (3)
translated to the origin so that the centroid of all sequences of
movement was zero. We applied these normalization steps by
following previous practices of gesture preprocessing from the
literature (Anthony and Wobbrock, 2010; Vatavu et al., 2012;
Wobbrock et al., 2007). Recognition rates were computed for
each gesture type in a user-independent training scenario by
varying the number of participants employed for training, as
follows. P participants were randomly selected for training
from the available 30 participants of the dataset of Fothergill
et al. (2012) and their gesture samples were added to the train-
ing set. Another participant, different from the first P, was ran-
domly selected for testing and his/her gestures were submitted
to classification. This procedure was repeated for 100 times for
each value of P, where P varied from 1 to 2, 4, 8, and 16 train-
ing participants. This procedure follows the standard practice

(18)
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of evaluating gesture recognizers; see (Anthony and Wobbrock,
2010; Vatavu et al., 2012; Wobbrock et al., 2007).

Figure 8, left illustrates the user-independent recognition
rates obtained for the whole-body gesture dataset of (Fothergill
et al., 2012), function of the number of participants em-
ployed for training. On average, recognition rate was 90.4%
(SD=29.5%) for all gesture types and all training conditions,
computed from a total number of 94,500 classification trials.
Recognition rate increased from 83.5% (SD=37.2%) when us-
ing training data from one participant only (P=1) to 95.2%
(SD=21.4%) with training data collected from P=16 partici-
pants (representing +11.7% more accuracy on average). A
Cochran’s Q test conducted on classification results inter-
preted as success rates confirmed a statistically significant ef-
fect of the number of training participants P on recognition
rate (y>(4)=147.416, p<.001). Post-hoc Wilcoxon signed-rank
tests (Bonferroni corrected at p=.05/4=.0125) showed signifi-
cant differences between training conditions with 1 and 2 par-
ticipants, 2 and 4, and 8 and 16 training participants. Fig-
ure 8, right shows the recognition rates obtained for each ges-
ture type, which varied from a minimum of 75.8% (SD=42.8%)
for “move up tempo” to 99.8% (SD=4.8%) for “crouch/hide”.
A Cochran’s Q test revealed a statistically significant effect
of gesture type on recognition rate (y*(11)=500.726, p<.001).
Overall, eight out of the twelve gesture types were recog-
nized with over 90% accuracy, out of which four gesture types
(“crouch/hide”, “kick”, “put on goggles”, and “end music
(bow)” were classified with over 95% accuracy.

To understand the relationship between our gesture perfor-
mance measures and the recognition rates obtained with the
DTW 1-NN gesture classifier, we computed Pearson’s r cor-
relation coefficients; see Table 1 for coefficients listed in de-
creasing order of their absolute magnitude. We found that the
QuanTiTY OF HANDS MOVEMENT (Qp,ngs) @nd the two ratio mea-
sures involving hands movement (Ryands:Body aNd Rpands:Legs)
had the highest correlations with the average recognition rate
(riv=12y==.701, —.678, and —.616, all p<.05), but also with
recognition rates obtained for specific training conditions, from
P=2to P=16 (at p<.05 and p<.01). These results reveal the im-
portance of hands’ movements to discriminate between the var-
ious whole-body gesture types of the dataset that we evaluated.
The results can be confidently generalized to other whole-body
gesture types, knowing the importance of hand movements as
principal motor implementers of the imagery of thought (Mc-
Neill, 1992) and hand gestures providing the imagistic content
for speech in the context of a unitary human language sys-
tem (Xiong and Quek, 2006). All the three measures correlated
negatively with recognition rate: more hand movement (mea-
sured individually with Qg4 O in relation to other body parts
using Ruands:Body aNd Rpands:1egs) Made gestures less recogniz-
able. This result is explained by our preprocessing steps (e.g.,
resampling all gestures into the same number of body postures)
and the specific functionality of the DTW algorithm that strives
to optimize alignments between two time series. We also found
that GESTURE AREA (GA) also correlated highly with the average
recognition rate (r=12=—.576, p<.05), but GESTURE VOLUME
(GV) did not (r(y=12=-.106, p>.05, n.s.). This result shows



100

95.2% 100 - — |
92.6% 92.9% » —#- Change weapon
? 88.1% Iy % 1 i M ~- Crouch/hide
90 X 90 ¢ —— Kick
— et
) 83.5% o /’,’4’,/ —B- Move up tempo
- -
© © 85 7 I — Next menu
< c —o- Protest
2 & 8 80 1 ~ rongorges
< ‘c 75 — Shoot pistol
gn g" Start music
g 70 o 70 —+— End music (bow)
«© o« Throw
65 Wind up music
60 60
1 2 4 8 16 1 2 4 8 16

Number of training participants (P)

Number of training participants (P)

Figure 8: User-independent recognition rates for the set of whole-body gestures of Fothergill et al. (2012): average recognition rates across all gesture types and
training conditions (left) and recognition rates per gesture type (right). Notes: error bars show 95% Cls.

Measures of Recognition rate’

whole-body gesture performance average (all P) P=1 P=2 P=4 P=8 P=16
Quantity of Hands Movement (Qgangs) -.701* -.505 —-.692* —.663* -.736"* —.784**
Ratio of Hands to Body Movement (RHands:Body) -.678* -.531 -.613* —.680* —.748** —.692*
Ratio of Hands to Legs Movement (Ryands:Legs) -.616* -.503 -.502 —.622* —.682* —.678*
Gesture Area (GA) -.576* -.337 -473 —.638" —.733"* —.763**
Body Posture Rate (BPR) 512 415 .593* .503 475 362
Body Posture Density (BPp) 487 .584* 444 408 403 .305
Performance Time (T) —.450 —.145 -.536 —-.497 -.537 —-.563
Average Speed (S) 435 .302 479 442 474 379
Body Posture Diffusion (BPD) 410 .366 .396 426 410 302
Body Posture Variation (BPV) .387 375 375 .392 364 252
Hands Speed (Shands) —.348 -.337 —-.200 -.323 -.393 —.447
Quantity of Movement (Qyy) 243 239 206 250 265 172
Gesture Volume (GV) —-.106 -.251 -.059 -.011 —-.040 —-.030
Difference of Hands Movement (Dyangs) .000 —.149 -.091 107 077 255

 Recognition rates are reported function of the number of training participants P from which gesture samples were collected; see Figure 8.

* Correlation is significant at p = .05.
** Correlation is significant at p = .01.

Table 1: Pearson correlation coefficients (N = 12) computed between our set of whole-body gesture performance measures and gesture recognition rates, function
of the number of training participants P. Note: gesture measures are listed in descending order of the absolute magnitude of the correlation coefficient.

that gestures were performed with preponderance in the plane
facing the sensor and that the z dimension (movements forward
and backward in front of the sensor) had little importance for
discriminating between gesture types. This result rewards our
intuition to consider GESTURE AREA as a distinct spatial measure
next to GESTURE VOLUME (see the spatial measures section), as
a large majority of whole-body gestures are performed in front
of a display with movement mostly taking place along the x
and y axes; see for instance the standard gesture types imple-
mented for the XBox 360 console (Microsoft, 2016b). Never-
theless, other gesture types, such as walking toward the display,
will need the depth information to be discriminated from other
gestures, and GEsTURE VoLUME will most likely catch the differ-
ences in depth between various gesture types.

Other gesture measures correlated moderately (although not
statistically significant) with recognition rate, such as Bobpy
Posture RATE (.512), Bopy PosTurE DEnsiTY (.487), PERFOR-
MANCE TIME (—.450) and AveraGE SpeeD (.435). It is interest-
ing to note that only spatial measures correlated significantly
with recognition rate (at either p<.01 or p<.05), a result that is
explained by the specifics of our gesture classifier: the DTW

function employs exclusively the spatial characteristics of ges-
ture points to compute the dissimilarity between gestures; see
eq. 19. However, it is likely that significant correlations will
be observed between our kinematic and appearance-based mea-
sures and recognition rates obtained with other gesture clas-
sifiers, such as statistical classifiers that rely on gesture fea-
tures computed from timestamps or the appearance of the body,
such as the features from (Bobick and Davis, 2001; Masoud
and Papanikolopoulos, 2003; Weinland et al., 2006; Chen et al.,
2006; Howe, 2004). While our goal in this section was simply
to showcase the relationships between our measures of whole-
body gesture performance and gesture recognition results, fu-
ture work will likely reveal more interesting findings in this di-
rection. Toward this goal, we offer practitioners a large palette
of whole-body gesture measures that they can select from and
even particularize for their specific evaluation scenarios or ac-
cording to the specifics of their gesture classifiers.

4.5. Summary

We showcased in this section how to apply our set of mea-
sures in practice to characterize users’ whole-body gesture
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movement on a public dataset (Fothergill et al., 2012), for
which our results can be easily reproduced. We evaluated hu-
man movement and gestures using human-readable concepts,
such as area, volume, and quantity, for which we reported sev-
eral gesture findings. While it was not our goal to comprehen-
sively describe users’ performance in this dataset or for these
specific gesture types, we used the opportunity provided by this
section to showcase the convenience of our measures and their
capability to reveal practical aspects of whole-body gesture per-
formance. We also showed that spatial measures correlated
highly with the recognition rates delivered by a gesture classi-
fier implementing a dissimilarity function based on the spatial
characteristics of human movement. Researchers and practi-
tioners can employ our set of measures in a similar manner to
examine their users’ whole-body gestures and they can even
adapt our measures to suit their particular analysis needs; e.g.,
quantity of movement, difference in gesture movement, ratio
of movements, etc. represent customizable measures that al-
low for particularization to suit specific scientific investigation
goals about whole-body gestures.

S. CONCLUSION

We introduced in this paper a set of measures to evaluate
users’ whole-body gesture performance. We showed how our
measures can be employed to characterize whole-body ges-
tures by reporting and analyzing their values on a large gesture
dataset. To assist with computing the measures, we release in
the community BOGART, the Body Gestures Analysis Toolkit,
freely available to download from http://www.eed.usv.ro/
~vatavu. BOGART computes all our measures and exports re-
sults into . csv files, supported by mostly all data visualization
and statistical analysis software. It is important to see this work
as a first step toward designing human-readable gesture mea-
sures. Obviously, our set of measures is not exhaustive, and
future work and practice with the measures will expand it fur-
ther. For this reason, we also provide the source code for BOG-
ART (C#, NET Framework 4.5, project built in Visual Stu-
dio Community 2015) to foster further development and explo-
ration of new whole-body gesture measures in the community.
We believe that the contributions of this work will empower
researchers and practitioners with new numerical tools to un-
derstand users’ gesture performance better and, consequently,
to inform improved designs of whole-body gesture interfaces.
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