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Abstract

This work introduces Smart-Pockets, a new set of whole-body gesture recognition tech-
niques that enables users to access their personal digital content efficiently for visualiza-
tion on ambient displays. Smart-Pockets works by recognizing users’ body-deictic gestures
entailing access to their pockets, for which associations between specific pockets and per-
sonal digital content anchored to those pockets has been managed a priori. The “pocket
metaphor” that we explore in this work enables links to digital content using physical
personal containers (i.e., pockets) placed at convenient locations on the user’s body, con-
tainers that have been specifically devised over decades of fashion design to store and
carry people’s personal belongings comfortably and conveniently. Consequently, Smart-
Pockets gestures are fast, require absolutely no precision to perform effectively, and are
robustly recognized in user-independent scenarios with absolutely no training required
from the user of the ambient display. Also, the Smart-Pockets technique is flexible and
easily extensible to other physical containers, such as bags and hand-held objects, which
we demonstrate in the form of Smart-Containers. We evaluate the accuracy of several
techniques for recognizing Smart-Pockets access gestures, for which we report +99% ac-
curacy for user-independent classification and explicit segmentation. We discuss users’
kinematic performance with Smart-Pockets and Smart-Containers and show that the av-
erage pocket access time of 2.2 seconds is comparable to the average production time of
touch gestures on smart mobile devices and is much smaller than the time required to
produce other whole-body gestures. Beyond their practical implications for advancing
knowledge in gesture-based interface design for ambient interactions, we believe that the
contributions introduced by the Smart-Pockets concept will also foster new developments
by pointing the community attention toward (i) more examination of the potential of a
new class of whole-body gestures, i.e., body-deictics, (ii) more attention toward how users
access their personal digital content on public displays, an important preliminary step
before actual interaction, and (iii) inspiring work in the community to examine new and
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Figure 1: Our vision for Smart-Pockets: users reach into their pockets (a) to link to personal digital
content (e.g., calendar, email list, etc.) that they wish to access. When pointed toward the ambient
display (b), the content is automatically transferred and visualized. Smart-Pockets act as placeholders
for their users’ personal digital content.

creative associations between users’ physical personal objects and their digital content
visualized on ambient displays.

Keywords: body-deictic gestures, pointing, whole-body gestures, ambient displays,
pockets, containers, gesture interaction, gesture recognition

1. Introduction

Ambient displays have become almost pervasive in public settings, affording their audi-
ence great opportunities to visualize digital content in a large variety of forms, contexts,
and application scenarios (Ardito et al., 2015; Borner et al., 2013). Interactive content
presented on ambient displays enables users to control and share information by tran-
sitioning between various interaction zones and phases (Vogel and Balakrishnan, 2004;
Michelis and Miiller, 2011; Miiller et al., 2010). However, such systems still need ap-
propriate interaction techniques for users to control content in fluent and intuitive ways.
So far, gesture-based interaction has been examined by the research community as one
practical solution to address this need, with focus on making touch, pointing, and whole-
body gestures effective and efficient for controlling content during ambient interactions
(Castellucci et al., 2013; Miiller et al., 2014; Jota et al., 2010; Nancel et al., 2015; Vogel
and Balakrishnan, 2005; Dingler et al., 2015; Vatavu, 2012a; Walter et al., 2013).

However, in the context of public ambient displays, for which interactions are usually
brief and to-the-point, getting to the content one needs (e.g., personal files) represents
an important, frequently occurring task. Depending on how easy it is to retrieve that
content, the efficiency of such a preliminary operation may affect the efficiency and the
user experience of the entire interaction process. In this work, we introduce Smart-
Pockets, a gesture-based technique that implements the “pocket metaphor”: users reach
for their pockets in order to link to and access their personal digital content stored
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elsewhere (e.g., in the cloud), which is transferred to and visualized on the ambient
display. Figure 1 shows a visual illustration of the Smart-Pockets concept. Smart-
Pockets can provide instant access to one’s daily agenda that is relevant to a specific
context, such as the user’s location; retrieve documents that the user wishes to upload
to the display and make public, just like posting or handing out a flyer that was kept
in the pocket; or they can act as links to multimedia content that the user wishes to
resume playing from the small-screen personal device to a large display. Smart-Pockets
can also help users on the go, who cannot afford stopping and reading the information
provided by the public display, with a fast way to retrieve and store that information for
later scrutiny. Various pockets may be associated with different types of digital content,
such as the email input box could be linked to the outer breast pocket, the calendar
with the trousers rear pocket, a menu of additional options to the inner breast pocket,
and so on. By implementing associations to frequently used digital content, the Smart-
Pockets technique comes to address our dependency on carrying mobile technology, such
as smartphones, tablets, etc., which made the fashion industry adjust to fit this need;
see, for example, the SCOTTeVEST vest designs,! some with as many as 18 pockets,
including the “cellphone pocket,” the “tablet pocket,” the “camera pocket,” as well as
bud buckets that come incorporated in the vest.

Smart-Pockets gestures represent a hybrid between deictic and body-referenced ges-
tures, which are executed in an integrated fashion and posses unique meaning. Such
hybrid deictic and body-deictic gestures have not been examined so far in the literature
of gesture-based interaction. However, as we show in this article, Smart-Pockets gestures
are fast to perform and are robustly recognized with no training required from the user,
i.e., user-independent recognition. Note that we are not interested in this article in user
authentication aspects on public ambient displays, as these topics have been examined
thoroughly elsewhere (Roalter et al., 2013; Wilson and Sarin, 2007; Patel et al., 2004;
Aumi and Kratz, 2014; De Luca et al., 2009); equally, we are not interested in how
people associate content and physical locations in space, as such experiments have been
conducted many times in the mnemonics literature (Angeslevéi et al., 2003; Bellezza,
1996; Guerreiro et al., 2008; Strachan et al., 2007). Instead, our interest in this work is
on providing a new interactive experience to the users of public ambient displays, once
some form of authentication has been established, so that users would be able to access
and visualize their personal digital content fast and intuitively by exploiting the pocket
metaphor. In our vision, Smart-Pockets act as placeholders or links to their users’ per-
sonal digital content, facilitating fast access to that content, similarly to how conventional
pockets facilitate access to one’s personal belongings.

The contributions of this article are as follows: (1) we introduce the concept of Smart-
Pockets that employs body-deictic and deictic gestures to enable fast access to one’s per-
sonal digital content using the “pocket metaphor”; (2) we present three techniques for
detecting and recognizing Smart-Pockets gestures from data streams of whole-body ges-
ture movement, for which we report +99% accuracy for a set of 20 distinct gestures under
user-independent training and explicit segmentation; (3) we extend the Smart-Pockets
concept to generic containers, such as clothing accessories and bags, for which we con-
duct a second evaluation consisting of 28 distinct Smart-Pockets and Smart-Containers

1SCOTTeVEST, Multi-pocket clothing for travelers, gadget lovers, photographers, and people on the
go, http://wuw.scottevest.com
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access actions; and (4) we evaluate the kinematics and users’ perceived experience of
Smart-Pockets and Smart-Containers and we discuss implications for practitioners and
designers of gesture-based user interfaces for interactive public ambient displays.

2. Related work

We discuss in this section prior work on gestures for ambient interaction as well as
techniques for interacting on and around the human body to position our Smart-Pockets
technique in the context of relevant research in the community. We review related work
regarding smart garments that recognize human activity in context and we point to con-
nections between Smart-Pockets and tangible user interfaces. A history of pockets from
the perspective of fashion design and pockets evolution over time in terms of functional-
ity and style, including recently augmented pockets with sensing technology, completes
this section.

2.1. Gesture interaction with ambient displays

Gesture input has been explored extensively by researchers and practitioners for de-
signing interactions for ambient displays; see (Castellucci et al., 2013; Jota et al., 2010;
Nancel et al., 2015; Vogel and Balakrishnan, 2005; Dingler et al., 2015; Haque et al.,
2015; Jurmu et al., 2013; Miiller et al., 2014; Vogel and Balakrishnan, 2005; Vatavu,
2012a; Walter et al., 2013). Previous work has considered gesture commands of many
types, ranging from pointing and close-up touch gestures (Miiller et al., 2014; Vogel and
Balakrishnan, 2005) to elaborate whole-body movements to effect actions on remote dis-
plays (Walter et al., 2013; Vatavu, 2012a). Gestures are appealing for interacting with
ambient displays because (i) gesture input makes supplementary devices superfluous, en-
abling users to interact instantly, without the need to carry and fetch other devices and
(ii) gestures are flexible and adaptable to a wide range of interaction scenarios: from
remote interactions implemented with pointing (Vogel and Balakrishnan, 2005) to inter-
actions performed at medium distance (Miiller et al., 2014; Walter et al., 2013; Vatavu,
2012a), and to close-up interactions supported by touch input (Vogel and Balakrishnan,
2004; Miller et al., 2014). Users’ natural transition between various interaction zones and
gesture input modalities has been remarked and examined in the literature before (Jurmu
et al., 2013; Miiller et al., 2014; Vogel and Balakrishnan, 2004). In this direction, Dingler
et al. (2015) even proposed a technique to adjust the interaction modality based on users’
proximity to the ambient display, and examined four interaction zones corresponding to
touch, fine-grained, general, and coarse gestures.

Deictic gestures (or pointing) have been studied substantially in the literature as they
deliver simple and effective means to perform selections: users simply point with their
hands to the on-screen items they wish to operate (Bolt, 1980; Jota et al., 2010; Vogel
and Balakrishnan, 2005; Haque et al., 2015; Nancel et al., 2015). For instance, Vogel and
Balakrishnan (2005) introduced three techniques for pointing (i.e., finger ray, relative
pointing with clutching, and a hybrid technique combining relative and absolute pointing)
and two techniques for confirming selection with finger gestures (AirTap, a “down and up”
gesture of the index finger, and Thumb Trigger, an “in and out” gesture of the thumb).
Jota et al. (2010) evaluated several variants of ray pointing for large displays (i.e., laser,
arrow, image-plane, and fixed-origin) and reported that techniques that rely on rotational
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control perform better for targeting tasks, while techniques with low visual parallax (i.e.,
the distance between the center of the device and the point of view of the user) perform
better for tracing tasks. In a study that compared ray casting with absolute position
mapping, Castellucci et al. (2013) found that pointer movements were more accurate and
smoother in terms of depth variability, rotation movement ratio, and rotation direction
change. Avellino et al. (2015) examined the accuracy of pointing gestures in terms of
distance and angle errors and reported that eye gaze alone is more accurate than hand
gesture input, and that the relative position between the viewer and the on-screen video
feed has little effect on accuracy. Working with very high resolution displays, Nancel et al.
(2015) showed that traditional pointing techniques are inefficient for precision pointing
on ultra-high resolution and proposed a tunable acceleration function and a framework
for dual-precision input for such displays. Haque et al. (2015) showed that consumer-
level electromyographic and inertial motion unit sensors, such as the Myo armband?, are
practical for free-hand pointing and clicking on a remote display.

Researchers have created design spaces for gestures and ambient interactions. For
instance, Walter et al. (2014) introduced a gesture design space to implement item se-
lection organized across five dimensions: selection gesture, confirmation gesture, input
space, layout, and user representation. The selection gesture enables users to browse
available options on-screen, e.g., a swipe gesture of the hand effects a change in the cur-
rent selection; see (Vatavu, 2012a) for an example. The selection is then committed with
a confirmation gesture implemented as dwell, push, grasp, wave, a second point toward
the selected item (Walter et al., 2014) or with expert-designed hand gestures (Vogel and
Balakrishnan, 2005). The input space designates the specific volume around the user in
which gestures are performed; see (Vatavu, 2012b) for body-referenced gestures proposed
by users during a gesture elicitation study. The layout in which items are arranged on
screen determines the type of gesture input that may be used to access those items. User
representation can be as simple as a hand cursor or can be more elaborate and take the
form of an avatar or of a body silhouette mirroring the actual image of the user (Vatavu,
2012a, 2015; Walter et al., 2013).

Designing gesture input for interacting with remote displays must consider important
aspects that influence user experience, such as the type of feedback provided to users, the
design of the gesture set, and ways to deal with fatigue that may install after repeated
arm movement. Providing appropriate feedback during gesture interaction is important
to let users know that their gestures have been properly detected and understood by the
system. To this end, Vogel and Balakrishnan (2005) proposed visual and auditory cues to
compensate the lack of kinesthetic feedback during free-hand gesture interaction, while
other researchers explored electrical muscle stimulation and vibrotactile feedback (Pfeif-
fer et al., 2014; Schonauer et al., 2015). For instance, Schénauer et al. (2015) found that
people are approximately 80% accurate at recognizing various patterns and amplitudes of
vibrotactile feedback applied to the wrist of the hand when performing mid-air gestures.
Interacting with hands in mid-air becomes fatiguing after some time, so researchers have
also looked at techniques to reduce fatigue. For instance, Bailly et al. (2011) intro-
duced the “Finger-Count” menu that enables users to select items on a remote screen
by mapping the number of raised fingers to menu options. Liu et al. (2015) introduced

2https://waw.myo.com/
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“Gunslinger,” a mid-air gesture interaction technique for interacting with large displays
that keeps the user’s arms in a relaxed position along the body. Vatavu and Zaiti (2014)
examined users’ preferences for low-effort free-hand gestures during a gesture elicitation
study for lean-back gesture input for TV and suggested guidelines for designing low-effort
gestures for generic remote displays.

Gesture commands are not self-revelatory, so careful design must be considered to in-
form users about the specific gesture types that the system was trained to recognize. In
this direction, Walter et al. (2013) introduced several strategies to reveal gesture com-
mands on public ambient displays by implementing concepts such as spatial division,
temporal division, and integration. Vatavu (2012a, 2011) addressed the gesture discov-
erability problem by introducing the “nomadic gestures” concept. Nomadic gestures are
gesture sets that reside on their users’ smart devices and are uploaded to the interactive
display just before the interaction. The display performs a best match between users’
gesture descriptions and the available functions in the system, after which users can in-
teract with the display with the gesture commands they already know and have practiced
before.

Researchers also looked at ways to infer users’ intent to interact with public displays by
sensing users’ body postures, actions, and positions relative to the display. For instance,
Huber et al. (2015) examined feet positions as indicators of the intention to interact
with the nearby display. Tanase et al. (2008) and Annett et al. (2011) instrumented
interactive tabletops with proximity sensors to determine when potential users approach
the tabletop, from which side they approach it, and how users move around the tabletop
during actual interaction. Proxemic interactions (Ballendat et al., 2010; Greenberg et al.,
2011) implement a concept and tools that formalize awareness of users and devices at
the level of the environment by operating with distance, orientation, identity, movement,
and location measurements for users and devices to enable intuitive interactions in smart
environments. The proximity toolkit (Marquardt et al., 2011) enables system developers
to access proxemic information from environmental motion detection sensors to design
proxemic user interfaces, while the “gradual engagement design pattern” informs designs
of transparent applications that unveil devices’ connectivity and information exchange
capabilities, according to their proximity to each other (Marquardt et al., 2012).

2.2. Interactions on and around the human body

Prior work has looked at designing user interfaces on and around the human body.
For instance, “Skinput” is a technology leveraged by detecting mechanical vibrations
propagating through the body that enables users to employ the skin as an input sur-
face (Harrison et al., 2010). “OmniTouch” is a wearable, vision-based system that allows
any surface, including the arms and palms, to detect and react to multi-touch input (Har-
rison et al., 2011). Harrison et al. (2012) developed “Armura,” a system that enables
real-time interaction with on-body projected content. Other work focused on user studies
to inform on-body interface design and addressed aspects such as the locations on the
body most suited for wearable displays (Harrison et al., 2009) or the implications of loca-
tion and touch for on-body projected interfaces (Harrison and Faste, 2014). Besides touch
gestures, participatory design studies revealed users’ preferences for body-referenced ges-
tures to effect actions, such as to control the functions of the TV set (Vatavu, 2012b).
Other researchers developed on-body interaction techniques in conjunction with smart
devices. For instance, body mnemonics represent a design concept for portable devices
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that use body locations to execute actions (Angeslevé et al., 2003). As an example,
Strachan et al. (2007) developed “BodySpace,” a system that enables users to control
a music player by placing the device at different locations on the body, e.g., the left
shoulder is for browsing the playlist. Guerreiro et al. (2008) examined mnemonical body
shortcuts in the form of gestures made with a mobile device pointed toward various body
areas. Chen et al. (2012b) developed body-centric interactions with mobile devices, for
which users position and orient the device to navigate and manipulate content in the
space around and on the human body.

Our Smart-Pockets actions represent a hybrid of deictic and body-deictic gestures (Mc-
Neill, 1992; Kendon, 1994, 2004; Lausberg, 2013). Deictic gestures are the familiar “point-
ing” used to indicate objects in the concrete world, although they can also be used to
indicate abstract concepts as well (McNeill, 1992) (p. 18). While deictics generally refer
to pointing to an external loci, body-deictics are pointing gestures to a specific body
part (Lausberg, 2013) (p. 176). Such hybrid gestures and the pocket metaphor have
not been explored so far in the literature of gesture-based interaction and, therefore, we
examine in this work both recognition and performance aspects for body-deictics in order
to evaluate the practical validity of our Smart-Pockets technique.

2.8. Access to digital content using physical objects, body-referenced virtual tools, and
smart garments

In the following, we connect our Smart-Pockets concept and recognition techniques
with previous work from the Tangible User Interfaces (TUIs) literature (Ishii, 2008;
Shaer and Hornecker, 2010), which enables us to discuss Smart-Pockets using the broad
perspective of accessing and manipulating digital content with physical objects, e.g.,
physical pockets and accessories in our case. We also discuss Smart-Pockets from the
perspective of recent advances in prototyping smart garments and designing interactions
for smart textiles (Cheng et al., 2013), including gesture-based approaches (Harms et al.,
2009; Profita et al., 2013), which enables us to develop more connections between body-
deictics and gesture-operated wearables.

Smart-Pockets is a concept that connects a physical location on the user’s clothes
or accessories with personal digital content stored in the cloud. Physical movement
in the form of a body-deictic gesture to the physical location of the pocket enables
instant access to digital content, assuming that an association was previously created
between that content and the specific pocket. From this perspective, the Smart-Pockets
concept connects to the paradigm of tangible user interfaces that builds on connections
instantiated between physical objects (e.g., phicons) and digital content that is controlled
by direct manipulation of the physical objects; see Shaer and Hornecker (2010), Fishkin
(2004), and Ishii (2008) for authoritative overviews on designing tangible interactions.
While the community has designed TUIs for various applications and interactive contexts,
such as learning (Markova, 2013; Markova et al., 2012), storytelling (Zhou et al., 2004),
gaming (Vatavu et al., 2007), and even software design (Wu et al., 2011), joint exploration
of tangible user interfaces and public displays has been practically neglected, with only
few investigations performed so far, such as (Claes and Moere, 2015). In this context, we
believe that Smart-Pockets may represent one valuable step in this direction to explore
more intuitive connections between digital content and real-world physical containers in
the context of interacting with public ambient displays.
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Smart-Pockets also connect to recent research in smart garments, i.e., electronics and
textiles operating jointly in one common wearable system (Haladjian et al., 2016; Heller
et al., 2014; Profita et al., 2013; Schneegass et al., 2015) that enable many opportunities
for convenient ambient interactions (Cheng et al., 2013; Harms et al., 2009; Randell
and Muller, 2000). For instance, the “Shopping Jacket” system of Randell and Muller
(2000) alerts its owner of the availability of retail services in nearby shops by exchanging
personal data, e.g., the owner’s shopping list, with servers installed in shops. This sort
of information exchange enabled by connections between wearable and ambient systems
that are performed smoothly and conveniently for the user (Weiser and Brown, 1995),
next to the intuitiveness of mapping objects to pockets, is key for our concept of Smart-
Pockets. The smart garments community has also looked into implementing gesture and
activity recognition with embedded touch and motion sensors. For instance, Harms et al.
(2009) were interested in activity-aware applications and proposed an approach for rapid
prototyping of smart garments. The authors described the SMASH system, a smart
long-sleeve shirt, which enables classification of users’ body postures from motion data
delivered by accelerometers embedded in the garment. The “FabriTouch” touch-sensitive
fabric of Heller et al. (2014) was designed to be easily integrated in garments, such as
to enable fabrication of touch-sensitive pockets. Recent technical advances in gesture
sensing through smart textiles and wearables led Profita et al. (2013) to examine the
implications of using gestures in public contexts to interface smart textiles at different on-
body locations. Results revealed that system location (e.g., the wrist or the waistline) and
interactions at that location represent two distinct dimensions important for how such
gestures are perceived by others in a public context. For instance, one interesting result
observed by Profita et al. (2013) was the “gender effect”: overall, on-body interactions
with wearable interfaces appeared more acceptable by/on male participants, except when
the wearable system was placed on the participants’ waistline. Smart-Pockets connect
to smart garments as they enhance the functionality of physical pockets and accessories
by extending their capacity range to store digital objects. From this perspective, body-
deictic gestures performed on pockets located on clothes and accessories are likely to be
more acceptable to perform in public scenarios than interacting with other gesture types
designed for other on-body or mobile interfaces (Profita et al., 2013; Rico and Brewster,
2009, 2010). Moreover, we estimate that, with careful interaction design, the subtlety of
the gestures entailed by Smart-Pockets operation may even make them pass unnoticed
by public observers (Anderson et al., 2015; Ashbrook, 2010).

Our Smart-Pockets concept also connects well to previous work about designing tools
for virtual reality systems as well as with user interfaces employing body-centric visual
representations (Ilmonen and Reunanen, 2005; Shoemaker et al., 2010). For instance, II-
monen and Reunanen (2005) proposed the metaphor of a “virtual pocket user interface”
for interacting in virtual environments, which presents the user with virtual replicas of
real-world pockets for storing virtual tools. Shoemaker et al. (2010) proposed a suite of
body-centric techniques for interacting with large wall displays, which they evaluated for
a map browsing and editing application. Among those techniques, the authors proposed
“body-based tools,” which are virtual tools located on the user’s body, such as around
the waist, that are visualized on the display. The body-based data storage technique cre-
ates a direct connection between the location of the user’s torso and a virtual container,
from which personal files can be accessed and shown on the large display. The work of
Shoemaker et al. (2010) showed that pointing to body parts represents a creative and
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useful way to access virtual content by referring to one’s own body space in the context of
proprioception. Our Smart-Pockets concept connects to Shoemaker et al. (2010) in how
the metaphor of a physical pocket is employed for interacting with a computer system,
yet it also adopts the new perspective of transforming real clothes and accessories (e.g.,
pockets, bags, etc.) into actual placeholders for digital content, facilitating fast access
to that content, similarly to how conventional pockets facilitate access to one’s personal
physical belongings.

2.4. About pockets: history, fashion, and augmenting pockets with technology

It is interesting, for the purpose of informing the design of Smart-Pockets, to take a
look at the history of pockets in women’s and men’s clothing and fashion. Cambridge
Dictionaries Online defines a pocket in relation to clothing as “a small bag for carry-
ing things in, made of cloth and sewn into the inside or onto the outside of a piece of
clothing,” but also more generally as “a container, usually made of cloth, that is sewn
into or onto a bag or attached to a set or door in a vehicle.”® The Victoria and Albert
Museum of Art and Design provides a brief history on the subject®, while a history of
men’s pockets can be found in (McKay and McKay, 2015). For example, we know from
the literature of the 17th to the 19th century that most women had at least one pair
of pockets, which were worn underneath petticoats. Men’s pockets were sewn into the
linings of their coats, waistcoats, and breeches. A variety of objects were kept in pockets,
such as money, jewelry, everyday implements (e.g., knife and scissors, or pincushions),
objects of vanity for personal grooming, and even food and drinks. Although items that
people carry in their pockets change over time, the wide range of personal items that
have once been, are now, or will be relevant in the future for individuals to carry in their
pockets is definitely impressive. This observation is key to our design of Smart-Pockets,
as it informs the generic use and purpose of pockets that will need to extend their capac-
ity range in the ubiquitous computing era to cover personal belongings that go beyond
physical items. To reflect further the wide spectrum of items to store in pockets, we point
readers to Robert D. Abrahams’ “A pocket history of Milton J. Wurtleburtle” (Esquire,
1937, p. 64-65), a satire listing the contents of a man’s pockets over the years, which
shows that the contents of one’s pockets tell a lot about that person. Such premises,
resorting from the evolution of fashion design over time, history reports, and even from
the fictional literature (Esquire, 1937), are informative for our concept of Smart-Pockets
in the way that personal digital content, residing one’s pockets, is reflective to a high
degree of that person’s belongings, interests and, more generally, life events. Moreover,
when one’s possessions involve content pertaining to the digital world, pockets need to
be redesigned to cover the complex physical and digital lives of their owners.

The Victoria and Albert Museum’s history of pockets informs us further that pockets
could be purchased to match clothes, and they were often given as gifts. However,
changes in fashion influenced the use of pockets and the type of objects that could be
carried in pockets. For instance, the line of a dress with a high waistline could not
be ruined by traditional pockets and, consequently, pockets were either re-designed or

3Pocket Meaning in the Cambridge English Dictionary, http://dictionary.cambridge.org/
dictionary/english/pocket

4A history of pockets - Victoria and Albert Museum, http://www.vam.ac.uk/content/articles/a/
history-of-pockets/
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replaced by decorative bags. Modern pockets are tools with various uses and styles, and
can be found in a variety of forms, such as watch-pockets, breast pockets, inner breast
pockets, ticket pockets, coin pockets, cargo pockets, etc. Pocket styles vary greatly as
well, from patch pockets to flap pockets, buttoned-flap patch pockets, jetted, jetted with
zip, welt pockets, tailored pockets, etc. Professional fashion design details on many
design techniques for pockets (Moyes, 1997). In this work, we inspire from fashion design
to select our experimental conditions (e.g., type and locations for modern pockets for
our experimental design) to evaluate body-deictic gestures for accessing digital objects
mediated by Smart-Pockets. We also use this knowledge to reflect on the future of
physical pockets, having seen how tendencies in fashion design evolve so starkly over
time, even for small things, such as pockets. This informs our explorations in this work
to go beyond pockets, which we implement and evaluate in the form of Smart-Containers.

Pockets have also been considered by researchers in Human-Computer Interaction,
but cases are extremely few. For instance, “PocketTouch” (Saponas et al., 2011) rep-
resents a capacitive sensor that, when connected to a mobile device and placed inside
a pocket, enables multi-touch input on the device directly through the garment of the
pocket. PocketTouch enables eyes-free touch gesture interaction with mobile devices
without users having to remove those devices from their pockets. As we show later in
the article, the PocketTouch technology represents a good option for implementing ex-
plicit segmentation of Smart-Pockets access actions. Related research also includes smart
fabrics (Orth et al., 1998; Karrer et al., 2011; Heller et al., 2014). For instance, “Pin-
stripe” (Karrer et al., 2011) represents a textile user interface element made of parallel
conductive lines sewn onto the fabric that enables user input by pinching and rolling the
fabric. “FabriTouch” (Heller et al., 2014) is another example of touch-sensitive fabric
that retains the flexible properties of the fabric. Researchers have also looked at pockets
from a different perspective. For instance, Shimozuru et al. (2015) implemented a device
for recognizing objects put into pockets by using a matrix of infrared sensors, and Ja-
didian and Katabi (2014) created systems for wireless charging mobile devices while still
in the pockets of their users. However, there has been very little attention devoted over-
all to pockets, which were largely overlooked by the research community, despite their
intuitive use as physical containers to store and carry personal objects.

2.5. Summary

The Smart-Pockets technique that we introduce in this work goes beyond prior work on
ambient interactions in several ways. First, Smart-Pockets gestures represent a distinct
class of gesture types that involve, in a short period of time, pointing to two different
locations: to a specific area on the body and toward the display. From this perspective,
Smart-Pockets access actions represent a hybrid between pointing to external loci and
body-deictics, never examined before. Second, Smart-Pockets link physical objects (e.g.,
a pocket or a generic container, such as a bag) to digital content and, consequently, they
create the premises for exploring a specific form of tangible user interfaces for ambient
interactions. The Smart-Pockets concept emerged from the increased interest manifested
in the community for designing interaction techniques for ambient displays that rely on
whole-body and deictic gestures (Miiller et al., 2014; Vogel and Balakrishnan, 2005; Wal-
ter et al., 2013; Vatavu, 2012a), the recent focus on on-body interactions (Harrison et al.,
2010; Harrison and Faste, 2014; Harrison et al., 2012), and our idea to associate personal
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digital content to physical pockets, similarly to how conventional pockets facilitate access
to one’s personal belongings.

3. Techniques for detecting Smart-Pockets access actions in whole-body data
streams

In the following, we present the techniques that we use in this work to recognize
Smart-Pockets access actions in continuous streams of whole-body gesture movement.
First, we make the distinction between segmentation and recognition of Smart-Pockets
actions. Segmentation refers to spotting a pocket action in a continuous stream of whole-
body movement, while recognition is the process of identifying the specific pocket, hand,
and action type (i.e., take out content from the pocket or put content into the pocket)
involved by the specific Smart-Pockets access action. Overall, we consider and evaluate
techniques that fall into two distinct classes of approaches:

1. Ezplicit segmentation of Smart-Pockets access actions followed by action recognition.
In this approach, users segment pocket access actions themselves during actual inter-
action with the system by mimicking a form of “click”-like input. Click-like events
can be implemented with a secondary, worn sensor or with a hand-held input device,
or by performing a specific hand posture that acts as a delimiter for Smart-Pockets
gestures. For instance, through-fabric capacitive touch input (Saponas et al., 2011;
Heller et al., 2014), mid-air devices (Baudisch et al., 2006; Wilson and Shafer, 2003)
or specific postures that delimit meaningful motion (Haque et al., 2015; Malik et al.,
2005; Vatavu et al., 2009) represent good candidates of techniques for click-like events
to segment Smart-Pockets access actions in continuous whole-body movement.

2. Implicit segmentation of Smart-Pockets access actions followed by action recognition.
In this approach, a detection algorithm analyzes the continuous stream of whole-
body movement delivered by the sensor, in which it searches for Smart-Pockets
gestures. In this work, we present and evaluate two techniques that follow this
approach. The first technique relies on detection of specific events, such as the
moment when the hand reaches a specific pocket; we call this technique event-wise
detection. The second technique is a brute-force approach that considers all the
possible subsequences of body movement from the continuous stream of whole-body
data as potential candidates of Smart-Pockets access actions, which are filtered
according to their similarity with Smart-Pockets samples from a training set.

We use the terms explicit and implicit in relation to how Smart-Pockets access actions
are segmented. While explicit segmentation actively involves the users, which have to
specifically delimit their commands, implicit segmentation automatically extracts Smart-
Pockets access actions from the continuous stream of whole-body movement. We will
come back later to discuss the pros and cons of explicit and implicit segmentation for
Smart-Pockets access actions in the Discussion section of this article.

In the following, let S be a stream of whole-body movement data captured by some
given motion tracking equipment, such as the Microsoft Kinect depth sensor® or a Vicon

Shttp://kinectforwindows.org/
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Figure 2: Two examples of Smart-Pockets actions (frontal view): putting content into the outer breast
left pocket (top) and taking content out of the trousers front left pocket (bottom). NOTE: the dominant
hand performing the Smart-Pockets gesture is shown in dark red; for clarity purposes, only six frames
per gesture are shown in this figure.

motion tracker®. For convenience, we assume in the following that each data frame,
i.e., each body posture reported by the sensor at any timestamp %, consists of a fixed
number n of 3-D joints tracked on the user’s body; for example, n=20 joints are reported
by the Kinect sensor (SDK versions up to 1.8), n=30 joints are reported by Kinect for
Windows SDK »2, and the number of tracked joints can be customized to practically any
value for marker-based motion capture systems, such as Vicon. Figure 2 illustrates two
examples of Smart-Pockets access actions captured with the Kinect sensor. We denote
by P, = {pi; = (X4, Y14, 2¢.i) | = 1..n} the set of n joints representing the user’s body
posture at time t. With these notations, the data stream S can be expressed as the
discrete set of postures S = {P; | t = 1,2,...}. Also, let C represent the whole-body
gesture candidate that we wish to classify into one of predefined Smart-Pockets access
actions.

3.1. Ezxplicit segmentation

Explicit segmentation is implemented by employing a delimiter provided by the user in
the form of a “click” event. The technique has been successfully implemented before (Ruiz
and Li, 2011; Vatavu and Pentiuc, 2008) and various technology can be employed for this
purpose (Saponas et al., 2011; Heller et al., 2014; Haque et al., 2015; Malik et al., 2005;
Vatavu et al., 2009). Actually, how the delimiter is implemented is irrelevant for the

Shttps://www.vicon.com/
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moment; all that matters is that clear “click”-like events are available for the system
to segment Smart-Pockets actions. In the Discussion section, we elaborate on several
techniques that can be used to generate “click”-like events in practice. In our experiments
(see next in the paper), delimiters were already available from the gesture logs that
specifically marked the timestamps for the moment when participants were prompted
to execute a whole-body gesture and they initiated movement up to the moment when
movement stopped (timestamps were marked by the experimenter during the gesture
acquisition experiment with the press of a key). For an actual system deployed in real-
world conditions, the “click” would implement the users’ option to be in control of when
their actions should be interpreted by the system. Let ¢; and ¢35 be two consecutive
timestamps at which such events are produced. The sequence of body postures captured
between t; and tq, i.e., C = {P;,, ..., P, }, represents the candidate input for our whole-
body action recognizer, described later in this article.

3.2. Implicit segmentation

During implicit segmentation, the system automatically detects candidates for Smart-
Pockets access actions in the continuous data stream of users’ whole-body movement. In
this work, we introduce and evaluate two techniques that implement implicit segmenta-
tion:

1. Brute-force segmentation. The brute-force technique considers all the subsequences
of stream S as potential candidates for Smart-Pockets access actions. Each subse-
quence is fed into the recognizer and, according to the degree of similarity to known
templates, that subsequence may be reported as a valid Smart-Pockets access action.

2. Bvent-wise segmentation. This technique searches for specific body posture events in
stream S, which filter the set of all possible subsequences considered for processing
by the brute-force implementation. The specifics of our interaction scenario (i.e.,
the hand either points in front of the body toward the display or the hand reaches
for some pocket on the body) informs an efficient solution for this segmentation
problem based on two key events that are easy to spot using simple arithmetics on
z coordinates, as follows:

(a) POINTED-HAND represents the event occurring when the user’s hand points in
front of the body, which makes the sensor report a z value for the hand different
than that of the body center. This event is detectable as follows:

event POINTED-ARM is TRUE if ZHand — #Body > €1 (1)

where zBody is the z location of the body measured by the sensor, e.g., Microsoft
Kinect reports the locations of the head, spine, and hip, which are all good
approximations of the body’s z coordinate; €; represents a threshold, beyond
which we can assume that the user’s hand is sufficiently away from the body
to be considered as pointing toward the ambient display. Our experiments
(reported in the next sections of the article) informed the value €;=0.50 m.
(b) HAND-IN-POCKET represents the event occurring when the user’s hand reaches
a pocket, which makes the sensor report a z value for the hand similar in
magnitude to the z value of the body. This event is detectable as follows:

event HAND-IN-POCKET is TRUE if |2Hand — 2Body| < €2 (2)
13



where €5 is our second threshold, below which we can assume that the hand is
touching the pocket. Our experiments (reported in the next sections) informed
a value of e = 0.20 m for this threshold, which includes both Smart-Pockets
and Smart-Containers actions.
The candidate C represents the set of body postures between two opposite key events.
Furthermore, we can safely make another simplification assumption for our segmen-
tation problem, according to which we only need to detect if the candidate C is a
postfix of stream &, instead of searching C at all possible locations in stream S. For
example, if the most recently-acquired body posture in § is of type POINTED-HAND,
we go back in time in stream S to see if the opposite event, i.e., HAND-IN-POCKET,
has occurred recently. If true, the sequence of body postures between these two
events constitutes the candidate C of a potential Smart-Pockets access action, to be
further validated.

The validation of the candidate C as a specific Smart-Pockets action, the specific
pocket (e.g., whether it was the breast pocket or the trousers pocket that the user
has touched), as well as rejection of non-pocket actions (e.g., the hand may go into
a resting state alongside the body, after having pointed toward the screen) are solved by
treating C as a candidate gesture in a whole-body gesture recognition problem (Vatavu,
2012a), for which we dispose of a training set of examples of Smart-Pockets access actions.
We describe this approach in the next section. Also, more sophisticated discrimination
between Smart-Pockets access actions referring to digital objects stored inside pockets
and actual reaching for the pocket to grab a physical item, such as the phone, need to be
handled by users with explicit segmentation, i.e., it is users that are in control of when
their actions should be interpreted by the system. Alternatively, discrimination between
the two actions could potentially be achieved automatically at the system level by using
context information (Dourish, 2004), keeping and using records of a user’s interaction
history (Nakamura and Igarashi; 2008), or collecting information from other devices
and/or sensors (Arase et al., 2010; Wiese et al., 2013), which are legitimate and interesting
directions for future work on interpreting human gestures performed with reference to a
physical or a digital object. The Discussion section contains a dedicated analysis of the
pros and cons of explicit versus implicit segmentation of Smart-Pockets access actions,
with explicit segmentation being our preferred implementation for Smart-Pockets. In
the following, we strictly focus on discriminating Smart-Pockets access actions from each
other as well as on detecting Smart-Pockets actions in continuous whole-body movement.

3.8. Classification of Smart-Pockets access actions

Let T = {(Tk,¢x) | K = 1..|T|} be a training set of previously recorded and annotated
whole-body movement sequences representing valid Smart-Pockets access actions, for
which sample Tj, = {T} | i = 1..|T|} belongs to Smart-Pockets class ¢; e.g., ¢, may be
“put content into the front trousers pocket.” According to our definitions, each posture
TF of sample T}, consists of n points in 3-D, TF = {tﬁj € R3 | j = 1..n}, where index k
identifies the training sample, 7 identifies a specific body posture in that sample, and j
refers to a specific point of the i-th body posture of training sample 7.

Let i be a metric defined over sequences of whole-body movement that computes a
real positive value representing the dissimilarity between any two movement sequences.
The whole-body gesture literature has implemented p as the Euclidean distance or the

14



Dynamic Time Warping (DTW) function; see (Vatavu, 2012a; De Silva et al., 2014).
The next sections of the paper report experiments that evaluate both these metrics. In
this work, we adopt the Nearest-Neighbor classification approach (Webb, 2003) (p. 93),
according to which a candidate is classified to the class of its closest template from the
training set. Let T+ be the template from the training set 7 that is closest to C with
respect to p, i.e., u(C, T+ ) = mm{u(C Ti)}. We reject sequence C if the measure’s result

is larger than a given threshold €3; our experiments informed a value of 0.125 for this
threshold for normalized body gestures. Otherwise, C is validated as a Smart-Pockets
access action and classified to the same type as template Tx«. For completeness purposes,
we provide below the formulas for the Euclidean (eq. 3) and DTW (eq. 4) measures of
dissimilarity:

ICl n

1ep (C, Tk) ZZ leig =t )

=1 j=1

where ||a — b|| represents the Euclidean distance between points a = (4, Y4, 2,) and

1
b= (b, s, 2) in R?, ice., la = b = ((za — 26)* + (Ya — ¥)? + (24 — 2)?) 2. Note that
the two sequences C and 7y must be equal in length (i.e., they must present the same
number of postures, |C| = |7x|) in order for the Euclidean distance to match body
postures one to one in chronological order. As this requirement is not met in practice,
we re-sample whole-body sequences of movement to make them equal in length. The
DTW measure is:

puptw (C, T) = cost-matrix|[|C|, |Tx|] (4)

where cost-matrix is a |C|x|Tg| matrix that iteratively computes the optimum alignment
between subsequences of body postures from C to subsequences of 7y, until the whole
sequences C and Ty are aligned. The result of the DTW measure is found in the lower
right corner of the matrix, i.e., cost-matrix[|C|,|7x|]; see (De Silva et al., 2014; Vatavu,
2012a).

4. Experiment #1: Smart-Pockets access actions

We conducted a data acquisition procedure to collect whole-body movements pro-
duced by users when they reach their hands into pockets at various locations on clothes
(e.g., front and rear trousers pockets, breast pockets, etc.) in order to understand how
accurate our detection and classification techniques are and, consequently, to validate
the feasibility of implementing Smart-Pockets for practical ambient display interactive
scenarios.

4.1. Participants

Ten participants (5 were females) aged between 22 and 31 years old (M=23.3 years,
SD=2.8 years) took part in the data collection experiment.
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4.2. Apparatus

A Microsoft Kinect sensor for Windows (SDK v1.8) was employed to capture partic-
ipants’ whole-body movements as time sequences of body postures with each posture
represented by 20 joints evenly distributed on the human body; see joints’ locations
in (Microsoft, 2013, p. 8). The Kinect sensor, running at a resolution of 640x480 pixels
and frame speed of ~25—30 fps, was connected to a desktop PC (3.2 GHz Quad-Core)
running our custom software application for the acquisition and storage of whole-body
movements.

4.83. Design
The experiment was a within-subject design with 3 independent variables:

1. POCKET represents the specific location on the human body (e.g., upper chest or
trousers rear) at which pockets are sewn on clothes and from which/to which digital
content can be taken out/put in. We designed POCKET as a nominal variable with
8 conditions: outer breast pockets (left and right side), inner breast pockets (left and
right side), front trousers pockets (left and right side), and rear trousers pockets (left
and right side); see Figure 3 for visual illustrations of the experimental conditions
for the POCKET variable. These conditions cover common locations for pockets as
per today’s common styles of fashion.

2. ACTION represents the type of operation performed on a specific smart pocket. Ac-
TION is a nominal variable with 2 conditions: put in and take out content into/from
the smart pocket.

3. HAND represents the user’s active hand employed to access the smart pocket, nom-
inal, with 2 conditions: left and right hand.

Note that the ergonomics of comfortable hand access actions to specific pockets restricts
the number of possible HAND x POCKET combinations for this experiment. For instance,
except for the two outer breast pockets that can be reached comfortably with both hands,
all the actions on all the other pockets can only be performed with one hand (e.g., the
left inner breast pocket is reachable with the right hand only), which results in a total
number of 2 (outer breast pockets) x 2 (hands) + 6 (remaining pockets)x 1(hand) =
10 POCKET x HAND combinations. When we further multiply these combinations by
two ACTION types, we get 20 distinct experimental trials to collect Smart-Pockets access
actions from participants.

The analyses that we run to evaluate the performance of our detection and recognition
techniques of Smart-Pockets access actions add three more independent variables to our
experimental design, as follows:

4. RECOGNIZER represents the specific classification technique employed to recognize
body movements as Smart-Pockets access actions. RECOGNIZER is a nominal vari-
able with 4 conditions: EUCLIDEAN-ALL-JOINTS, EUCLIDEAN-HANDS, DTW-ALL-
JoinTs, and DTW-HANDS. The Euclidean and DTW metric functions were defined
in equations 3 and 4, while the “ALL-JOINTS” and “HANDS” suffixes specify whether
all the 20 joints or only the 2 hand joints reported by the motion sensor were em-
ployed to compute the metrics.
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Figure 3: Smart-Pockets locations for the first experiment: outer breast pockets (left and right side),
front trousers pockets (left and right side), inner breast pockets (left and right side), and rear trousers
pockets (left and right side).

5. P represents the number of participants from which body movement data was col-
lected to train the recognizers. P is an ordinal variable with 8 conditions: 1, 2, 3, 4,
5, 6, 7, and 8 training participants.

6. DETECTOR represents the method employed to segment users’ pocket access actions
in the continuous stream of whole-body movement delivered by the sensor. DE-
TECTOR is a nominal variable with 3 conditions: explicit, implicit brute-force, and
implicit event-wise. In the explicit segmentation condition, Smart-Pockets are de-
limited in advance (timestamps were marked by the experimenter during gesture
acquisition by a press of a key in the software application implementing the experi-
ment design), while in the two iémplicit conditions the system automatically detects
Smart-Pockets actions using our two segmentation techniques described earlier in
the article.

The three independent variables employed for the analysis of Smart-Pockets recognition
performance generate a total number of 4 (RECOGNIZERS) x 8 (values for the number
of training participants P) x 3 (DETECTORS) = 96 trials.

4.4. Procedure

Participants stood at a distance of about 4 meters from a large display, on which text
instructions were presented by our custom software application regarding the specific
POCKET, active HAND, and ACTION to be performed, according to our experimental
design, e.g., “[Take out] content from your [trousers rear left pocket] with your [right
hand] and point it toward the screen.” Text in square brackets indicates conditions for
our three independent variables regarding Smart-Pockets access actions. Pointing was
performed by participants by outstretching their arms toward the display. There was
absolutely no constraint that we imposed on the hand pose to use (e.g., index finger
outstretched, index and thumb fingers pinching, etc.), which we allowed participants
free to vary as they wished in order to encourage them to use their own interpretation
of “holding” or “manipulating” digital objects and, by that, to make their experience
feel as natural and intuitive as possible. Once participants confirmed they understood
the action they were required to perform, their whole-body movement was recorded and
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the experiment continued with the next trial. In total, there were 20 trials of various
pockets and pocket access actions (see the experiment design), which resulted in 20
Smart-Pockets gestures acquired from each participant. Participants were not required
to wear any particular outfit other than the clothes they worn the day of the experiment.
In case a specific pocket was not available, participants were asked to mimic the action
required to access that pocket. By not particularly enforcing our participants to wear
a specific outfit with pockets at fixed locations, we were able to collect a wide range of
variation in body movement for pocket access actions determined by (i) slight differences
in pocket locations for different clothes and (ii) mimicking the presence of a pocket,
an action useful for actual practical scenarios where such a pocket is not available, yet
users might want to employ nevertheless. By adopting this procedure, we will evaluate
recognition algorithms that are invariant to variations in pocket locations on clothes
and, even more, also invariant to the actual presence of pockets. The order of trials was
randomized across participants. At the end of the data collection procedure, participants
filled in a questionnaire in which they rated the perceived comfortability to reach each
POCKET using ratings from a 5-point Likert scale ranging from 1 (very uncomfortable)
to 5 (very comfortable). Participants also rated their actual frequency of use of each
POCKET in their everyday lives with ratings from 1 (never) to 5 (very often).

5. Results #1: Recognition accuracy of Smart-Pockets actions

We present in this section experimental results on the recognition accuracy of Smart-
Pockets access actions as well as results on body movement analysis from a dataset of
9 (participants) x 20 (POCKET x HAND x ACTION conditions) = 180 body movement
records”, comprising a total number of 12,174 body postures with 243,480 joints tracked
in 3-D.

To understand the spatial variation in the articulation of Smart-Pockets access actions
between our participants, we looked at their hands’ locations reported by the sensor
when hands were placed in pockets as well as when hands were pointing toward the
display, according to our two event types from the event-wise implicit segmentation
technique. For each Smart-Pocket action type and for each of the two conditions (hand
in pocket, hand pointing), we computed the average Euclidean distance between the
hands’ locations for all participants. Results showed an average variation in hands’
locations of 0.16 m (SD=0.08 m) when hands were in pockets and an average variation
of 0.18 m (SD=0.08 m) when hands were outstretched pointing to the display. Figure 4
shows the average variation values computed for each Smart-Pockets action. We found
a significant effect of POCKET on the amount of variation in hands’ locations when
hands were in pockets (x2(7) = 38.925, p < .001) as well as when they were pointing
(x%(7) = 29.574, p < .001). We found no significant difference between the left and right
HAND conditions (Wilcoxon signed-ranked tests showed Z = —1.745 and Z = —0.732,
respectively, p > .05, n.s.). These results show that the type of POCKET influences users’
precision and consistency when performing hand movements toward that pocket, which
may impact the classification accuracy of Smart-Pockets actions. Possible causes for this

7"The body movement data of one participant was unfortunately lost, but his responses to the ques-
tionnaire were not.
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Figure 4: Variation in hand location when the hand was in pocket and when pointing, computed for
each POCKET and HAND experimental conditions. Error bars show +1 SD.

variation are represented by different locations of similar pockets on our participants’
clothes as well as different precision of accessing those pockets, i.e., actually placing
the hand into the pocket or just pointing to the pocket. Our results also indicate that
users show similar precision for their movements performed with either the left or the
right hand. In the following, we compute and report recognition accuracy rates for both
explicit and implicit segmentation conditions.

5.1. Ezxplicit segmentation of Smart-Pockets access actions

We start our recognition analysis by measuring and reporting the recognition accu-
racy of Smart-Pockets access actions in the explicit segmentation condition in order to
understand the upper margin of recognition accuracy expected for the Smart-Pockets
technique. All the recognition results that we report in this work are computed from
user-independent classification procedures, i.e., different participants were used for train-
ing and testing.

Our recognition experiment followed the design of similar experiments conducted in
the literature for user-independent gesture recognition; see (Vatavu et al., 2012, p. 275)
and (Vatavu, 2013, p. 395) for examples. A number of P participants were randomly
selected to deliver training data and one additional participant (which was different from
the first P) was randomly selected for testing. The number of training participants P
was varied according to the experimental design, from 1 to 8 participants. This selection
procedure was repeated for 100 times for each value of the P independent variable.
In total, we report recognition results from 8 (conditions for the number of training
participants P) x 100 (repetitions) x 20 (POCKET x HAND x ACTION conditions)
= 16,000 classification trials. All body movement samples were pre-processed before
recognition: they were uniformly scaled into the [—1,1]® unit cube, translated to origin,
and re-sampled into a fixed number of 32 body postures (which corresponds roughly
to 70 ms time duration between consecutive frames or a speed frequency of 15 fps).
Scale and translation normalizations applied to the data make our recognizers scale and
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translation invariant, while body movement re-sampling is required by the Euclidean
metric that needs the same number of body postures for the body movements it compares.
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Figure 5: User-independent recognition accuracy of Smart-Pockets actions for all RECOGNIZER X P
conditions and the explicit segmentation assumption, i.e., users segment their Smart-Pockets access
actions themselves. Note how recognition accuracy increases with more training samples up to 99.4%
accuracy for DTW with 8 training participants x 1 sample per each Smart-Pockets gesture type. NOTE:
error bars show 95% Cls.

Figure 5 illustrates recognition results for all RECOGNIZER and P conditions. A
Cochran’s @ test showed a significant effect of RECOGNIZER on the recognition accuracy
of Smart-Pockets actions ()(?3,]\,:16000):1239.8467 p<.001). Follow-up post-hoc McNe-
mar’s tests (Bonferroni corrected at p = .05/4 = .0125) revealed that DT'W significantly
outperformed the Euclidean recognizer with an average accuracy of 93.4% (SD=2.5%)
versus 89.5% (SD=3.1%) in the all-joints condition and 93.4% (SD=2.5%) versus 87.6%
(SD=3.3%) in the hand joints only condition, respectively, all p<.001. We also found that
the Euclidean recognizer was more accurate when all the joints were considered for recog-
nition than in the hand joints only condition (average recognition rate was 89.5% versus
87.6%, p<.001). There was no significant difference between the recognition accuracy
reported by DTW in the two joints conditions (average 93.4% and 93.4%, respectively,
n.s. at p=.01).

We found an overall significant effect of the number of training participants P on
recognition accuracy (X%7,N:8000):3625'701’ p<.001), a result that we also obtained for
each individual metric (all p<.001). For instance, DTW delivered 87.2% recognition
accuracy when data from only one participant was used (with one training sample per
pocket action), which increased to 93.5% with data from 4 participants (p<.001), and
reached 99.4% when training data from 8 participants was available (p<.001).

The high recognition accuracy of Smart-Pockets access actions obtained for user-
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independent training with just few samples from a few people (i.e., +99% accuracy
with only 8 training samples) show that the Smart-Pockets technique is feasible for im-
plementation in practical scenarios under the explicit segmentation assumption. Note
that our results were obtained with only one training sample from each training partici-
pant and, consequently, we expect accuracy to improve further when more samples per
participant are added to the training set leading to steeper curves in Figure 5. Also, these
results recommend the DTW-HANDS recognizer for the implicit segmentation scenario,
described in the next section.

5.2. Implicit segmentation of Smart-Pockets access actions

We know from the previous section that the Smart-Pockets technique can be success-
fully implemented with an accuracy of +99% when users segment their pocket access
actions themselves. In this section, we are interested to learn how an automatic segmen-
tation procedure would compare to those results. Our hypothesis is that such a procedure
will lead to segmentations of Smart-Pockets access actions that will sometimes be inac-
curate (e.g., because of candidates that present slightly different starting and ending
timestamps when compared to the actual pocket access body movement) which, in turn,
will cause an increase in recognition error. We report in this section the recognition accu-
racy of Smart-Pockets access actions when body movement is automatically segmented
by the system and we also evaluate the detection accuracy of Smart-Pockets actions by
computing and reporting the false detection rate of our DETECTORS. As in the previous
section, all the recognition results that we report were computed from user-independent
classification procedures.

The number of body postures captured for each Smart-Pockets access action varied
between 48 and 106 with a mean of 67.6 postures (SD=12.3). At roughly 30 fps, these val-
ues correspond to pocket access times that fall between 1.56 and 3.53 seconds (M=2.22s,
SD=0.41s). The difference in the z coordinates between the pointed arm and the cen-
ter of the users’ body (i.e., the value zHand — ZBody; see eq. 1) varied between 0.42m
and 0.83m (M=0.66 m, SD=0.06 m), while the difference between the z coordinates of
the hand while in pocket and the body’s z value (as per eq. 2) varied between 0.00 m
and 0.20m (M=0.04m, SD=0.05m). A Wilcoxon signed-rank test showed a significant
difference between these two means (Z(y—150)=11.635, p<.001) with a large Cohen ef-
fect size (r=.613). These results, as well as the large effect size, informed values 0.20 m
and 0.50m for thresholds €¢; and eq, respectively (see egqs. 1 and 2 for the meaning of
these thresholds); see also Figure 6 for the histogram distributions of the differences in
z coordinates.

We now proceed to the evaluation of the performance of our DETECTORS of Smart-
Pockets access actions. The design of the recognition experiment was as follows: P
participants were randomly selected to deliver training samples and 1 additional par-
ticipant (different from the first P) was randomly selected for testing. Samples from
the training participants were normalized with respect to scale, translation, and number
of body postures per pocket access action as in the previous experiment. Each sample
from the testing participant (not normalized) was inserted at a random timestamp in a
continuous stream of body movement & that was generated with body postures from the
testing participant’s dataset and hand joints generated at random locations. The length
of the testing stream S was 900 body frames, which corresponds to 30 seconds of con-
tinuous movement data. As the average time duration of a Smart-Pockets access action
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Figure 6: Histogram of the difference in z coordinates for the POINTED-ARM and HAND-IN-POCKET events

with normal curves overimposed. These results inform threshold values €3 = 0.20 m and e3 = 0.50 m,
respectively.

was 2.2 seconds only, the “interesting” part of each body movement stream that our au-
tomatic procedures had to detect represented on average just 7% of the data submitted
to processing. The testing stream S was fed into each DETECTOR that reported both the
type of the Smart-Pockets access action and its timestamp in the stream. We counted
correct recognition and detection when the type of the reported pocket action matched
the type of the testing sample and the difference between the timestamp reported by the
detector and the true timestamp was less than 0.5 seconds. The procedure for selecting
training and testing participants was repeated for 100 times for each P and the genera-
tion of the testing stream S was repeated for each pocket access action type. In total,
we report recognition results from 8 (conditions for the number of training participants
P) x 100 (repetitions) x 20 (POCKET x HAND x ACTION conditions) x 2 (DETECTOR
implementations for implicit segmentation) = 32,000 detection and classification trials.

Figure 7 illustrates recognition results for the D TW-HANDS recognizer, which was
the recognizer that delivered the best performance under the explicit segmentation as-
sumption; see the previous section. A Cochran’s @ test showed a significant effect of
the number of training participants on recognition accuracy for both the brute-force and
the event-wise technique (X%7,N:7000):2958.885 and X%7’N:7000):3843.380, respectively,
all p<.001). Follow-up McNemar’s tests (Bonferroni corrected at p=.05/2=.025) showed
that the brute-force detector was significantly more accurate than the event-wise de-
tector (X%l,N:16000):229'4937 p<.001). The maximum accuracy attained by brute-force
was 94.0% with 8 training participants, while event-wise delivered only 84.1% under the
same training conditions. However, even brute-force was significantly less accurate than
DTW-HANDS running in the explicit segmentation condition (X%I,N:16000)23709'167’
p<.001), with the maximum recognition performance being 94.0% versus 99.4% for P=8
participants.

To understand more about the performance of each DETECTOR, we computed two ad-
ditional accuracy measures: (1) the percentage of false detections and (2) the F-measure
reporting the weighted average of our detectors’ precision and recall performances; see

Figure 8. On average, false detection rates were 5.13% (maximum 7.00%) for event-wise
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Figure 7: User-independent recognition accuracy of Smart-Pockets actions for the DTW-HANDS recog-
nizer and tmplicit segmentation, i.e., actions are automatically segmented by the system. Note how
recognition accuracy increases with more training samples up to 93.4%. NOTES: error bars (too small
to be visualized in this figure) show 95% CIs; the performance of the DTW-HANDS recognizer in the
explicit condition is also shown (in green) for comparison purposes, as it represents the upper margin of
accuracy expected for Smart-Pockets.

and 4.63% (maximum 6.40%) for brute-force, which decreased to 2.10% and 1.35%, re-
spectively, for the maximum number of 8 training participants. We found a significant
effect of the number of training participants P on the false detections rate for both DE-
TECTORS (X?7,N:2000):92-4167 p<.001 for event-wise and X%?,N:2000)2103'422’ p<.001
for brute-force, respectively). A McNemar’s test showed no significant difference in terms
of the false positives rates delivered by the two DETECTORS (X7, y—16000)=4-914; n.s.
at p=.01). The value of the F-measure increased for both detectors with more training
participants, from 0.34 and 0.42 for P=1 to 0.90 and 0.96, respectively, for P=8 partic-
ipants; see Figure 8. The F-measure evaluates the tradeoff between recall and precision
in the [0..1] interval: the higher its value and the closer it gets to 1.0, the better the
performance (Zhang and Zhang, 2009). Our results show that the F-measure increases
almost linearly with the number of training participants up to 0.96 for both DETECTORS,
confirming our previous results about the better performance of the brute-force technique
over event-wise.

While the results of the automatic, implicit segmentation of Smart-Pockets access
actions are inferior to those obtained in the explicit segmentation condition, recognition
rates are still high, i.e., 94% for 8 training participants x 1 training sample for each
Smart-Pockets access gesture. It is likely that the recognition accuracy will improve
further with more training data. However, there are several pro and con arguments for
the implicit versus explicit segmentation that we present in the Discussion section of the
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from more training participants is available; higher F-measure values (closer to 1.0) indicate better
performance.

paper, with explicit segmentation being our preferred choice for Smart-Pockets.

6. Experiment #2: Smart-Containers access actions

Motivated by the high recognition results obtained for the 20 types of Smart-Pockets
access actions, we wanted to explore even more options for users to access personal con-
tent with body-deictic gestures. As pockets are available for briefcases, backpacks, and
similar items, we wanted to explore those options as well. Consequently, we conducted
a second data acquisition procedure to collect whole-body movements produced by the
nine validated participants from the first study. This time, participants were asked to
access content from various hand-held or worn accessories and containers, such as back-
packs, briefcases, or cups. The same experimental design was used for this study as well,
except that the independent variable POCKET was renamed to CONTAINER to better
reflect the new actions. CONTAINER is a nominal variable with seven (7) conditions:
backpack, sleeve (left and right), briefcase (held in the left or the right hand), and coffee
cup (held in the left or the right hand); see Figure 9 for a visual illustration of these
conditions. Except for the backpack that can be accessed easily with either the left or
the right hand, all the other containers require one specific hand explicitly, e.g., the right
sleeve can only be accessed with the left hand, etc. Therefore, the maximum number
of conditions for Smart-Containers generated by CONTAINER x HAND combinations is
8, which makes the total number of Smart-Pockets and Smart-Containers experimental
conditions 20+8=28. Just like for the Smart-Pockets experiment, we did not enforce
participants to adopt a specific pose or location in space for container objects, e.g., no
other express indication was given for the “coffee cup” other than “Please hold the coffee
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cup in your hand.” By adopting this approach, we were able to collect a wide range of
variations in whole-body movement during access to various containers.

Figure 9: Smart-Containers employed for the second study with 8 experimental conditions: sleeves (left
and right arm), backpack (accessible with the right or left hand), briefcase (held in the left or the right
hand), and coffee mug (held in the left or the right hand). Except for the backpack, all containers are
accessible with one hand only because of holding and grasping constraints, e.g., the right sleeve can only
be reached with the left hand, etc.

7. Results #2: Recognition accuracy of Smart-Containers actions

In this section, we report results from a recognition experiment involving all the 28
Smart-Pockets and Smart-Containers access actions. Before the recognition experiment,
we ran a similar analysis for evaluating the variation in the performance of Smart-
Containers access actions, using the same approach as we used before for Smart-Pockets.
We found an average variation in hands’ locations of 0.20 m (SD=0.10 m) when hands
were accessing containers and 0.19 m (SD=0.08 m) when hands were outstretched point-
ing to the display. Figure 10 illustrates the average variation for each CONTAINER and
HAND experimental conditions. We found a significant effect of CONTAINER on the
amount of variation in producing Smart-Containers access actions when hands were
accessing containers (x2(7) = 18.560, p < .001), but not when hands were pointing
(x%(7) = 11.202, p > .05, n.s.). A Wilcoxon signed-rank test revealed a significant ef-
fect of HAND (Z = —4.560, p < .001) when hands were reaching for the containers,
but not when hands were pointing (Z = —.791, p > .05, n.s.). The average amount of
variation when hands were accessing the containers (0.20 m) is larger in magnitude than
the variation observed for hands in pockets (0.16 m), a result that can be explained by
more degrees of freedom to hold and move containers when compared to pockets sewn on
clothes. We focus in the following on the recognition accuracy rates for Smart-Pockets
and Smart-Containers access actions.

As in the previous sections, all the recognition results that we report were computed
from user-independent classification procedures, i.e., different participants were used for
training and testing the detectors and recognizers. Overall, we report the accuracy of
recognizing access actions from 28 (Smart-Pockets and Smart-Containers) x 8 (condi-
tions for the number of training participants P) x 100 (repetitions for each P) x 4
(RECOGNIZERS) = 89,600 classification trials for the explicit segmentation condition and
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Figure 10: Variation in hand location for each CONTAINER and HAND experimental conditions. Error
bars show +1 SD.

22,400 classification trials for the implicit brute-force segmentation®. Overall, a total

number of 112,000 attempts to classify Smart-Pockets and Smart-Containers actions was
performed. Recognition results are shown in Figure 11.

A Cochran’s @ test showed a significant effect of RECOGNIZER on recognition accu-
racy (X%3,N=28800):1545'1297 p<.001). This time, the all-joints DTW recognizer was
significantly more accurate than DTW hands-only by 1.1% as revealed by a follow-up
McNemar’s test (X%17N228800):70.534, p<.001), but the effect size was small (r=.035).
Again, DTW outperformed the Euclidean recognizer for both all-joints and the hands-
only conditions (p<.001, r=.110). The maximum recognition accuracy was attained by
DTW with 8 training participants: 98.8% and 98.2% in the all-joints and hands-only
conditions, respectively. The difference in accuracy was marginally significant as re-
vealed by a follow-up McNemar’s test (X%I,N:36OO):6'682’ p=.01, r=.031) (Bonferroni
corrected at p=.05/3=.017). The best performance of DTW achieved for the 28 actions
(98.8%, see Figure 11) was just 0.9% smaller than the best performance achieved for the
20 Smart-Pockets access actions (99.7%, see Figure 5). We found a significant effect of
the number of training participants P on recognition accuracy (X%7,N:14400):12127'999’
p<.001): accuracy increased from an average of 64.6% for P=2 training participants to
86.8% for P=4 participants, and to 98.0% for P=8 participants (average values com-
puted for all four RECOGNIZERS). These results show that the Smart-Pockets technique
can easily accommodate recognition of more access actions without considerable loss of
accuracy. In the following, we consider the performance of Smart-Pockets in the implicit
segmentation condition, using the brute-force approach and the DTW-HANDS recognizer
for all the 28 Smart-Pockets and Smart-Containers access actions.

Figure 12 illustrates the recognition performance of DTW-HANDS under the implicit
segmentation condition. Recognition accuracy starts as low as 15.3% for one training
participant, increases to 56.6% for P=4 participants, and attains the maximum value of
93.3% for P=8 training participants. A Cochran’s @ test revealed a significant effect

80nly DTW-Hands was employed for the implicit segmentation recognition experiment.
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Figure 11: User-independent recognition accuracy of Smart-Pockets and Smart-Containers access actions
for all RECOGNIZER X P conditions under the explicit segmentation assumption, i.e., users segment their
actions themselves. Note how recognition accuracy increases with more training samples up to 98.8%;
error bars show 95% Cls.

of the number of training participants on recognition accuracy (X%% N:3600):8388.435,
p<.001). A McNemar test showed that DTW-HANDS was significantly more accurate in
the explicit than in the implicit condition (X?LN:288OO):6960'1207 p<.001). The smallest
difference in performance between the two conditions occurred for P=8, with 98.2%
accuracy in the explicit and 93.3% accuracy in the implicit condition. Cochran’s @ test
showed a significant effect of the number of training participants P on the false detections
rate (X%7,N:3600):103‘3277 p<.001); see Figure 13. The average false detection rate was
3.02% and reached the minimum value 1.11% (Clgsy, = [0.77%, 1.45%)]) for P=8 training
participants. The F-measure increased from 0.26 (P=1) to 0.96 (P=8), confirming the
high performance of the brute-force technique.

8. Discussion

We discuss in this section users’ performance with Smart-Pockets and Smart-
Containers access actions and we also point to alternative technology to implement our
recognition techniques. We discuss pro and con arguments for explicit versus implicit seg-
mentation of body-deictic gestures, and we conclude that explicit segmentation represents
our preferred solution for implementing Smart-Pockets in practical ambient scenarios at
this moment. We also point to interesting research directions regarding body-deictic
gestures and to further developments envisioned for the Smart-Pockets concept.
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for the DTW-HANDS recognizer and implicit segmentation, i.e., actions are automatically segmented by
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Figure 13: False detection rates and F-measure values for Smart-Pockets and Smart-Containers access
actions for the brute-force implicit recognition technique. NOTE: error bars show 95% ClIs; higher
F-measure values (closer to 1.0) indicate better performance.
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Figure 14: Illustrative examples for Smart-Pockets and Smart-Containers providing assistance to ambient
users and consumers of ambient services during traveling (a), shopping (b), and consuming multimedia
content in public spaces (c); see discussion in the text.

(c)

8.1. Usage scenarios for Smart-Pockets and Smart-Containers

We start the Discussion section with a consideration of a few prospective usage sce-
narios for Smart-Pockets and Smart-Containers to point readers to practical, relevant
examples of everyday interactions with public ambient displays enabled by our Smart-
Pockets concept. In the following, we show through a series of fictional stories how
Smart-Pockets and Smart-Containers can find applications in a variety of interactive
contexts (e.g., collection of public information from ambient displays, multimedia ren-
dering, or retrieval of personalized content from public information displays) and how
they can be customized accordingly to suit various needs; see Figure 14:

(a) John is a frequent traveler, as a result of his job responsibilities. He travels mostly
by train to connect between cities and takes transit buses in the city. As he has been
doing his job for a long time, he has learned time schedules by heart for many of his
train and bus connections. However, he also needs to travel to new cities quite often
and, sometimes, it happens that even time schedules for his frequent routes may
change unexpectedly in the last minute, because of delays or other events in public
transportation. To still be on time for his day agenda, John needs to be able to
make fast decisions, sometimes within minutes or even seconds, to change his travel
connections or even the entire travel route to his destination. John keeps a link to
his day agenda in the right pocket of his vest. For time critical situations, he uses
this Smart-Pockets connection to take the link from his pocket and point it to an
information display with train time schedules; see Figure 14a. The ambient display
reads John’s calendar and instantly highlights the fastest route and the first connec-
tion that John needs to take to arrive on time at his destination. John can save this
information by storing it into his left pocket, and use it later to receive confirmation
or more directions inside the train station by pointing it to other ambient displays,
while he heads to his train platform. Displaying personal events from one’s calendar
on public displays for various applications has been explored by researchers with
various technologies and interactive techniques (Vogel and Balakrishnan, 2004; Cao
et al., 2007), while route planning using ambient displays to help travelers navigate
in public transportation has started to receive attention recently (De Marchi et al.,
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2015). In this context, Smart-Pockets enables fast access to personal content, such
as John’s day agenda in our example, reducing the search time for retrieving that
content to under 2.5 seconds (see next for performance measures for Smart-Pockets).

Esther and Olivia are on a day out in the city. While they have fun window shopping,
they sometimes see interesting items on display, and they enter the various shops.
Other times, however, shops are unfortunately closed, yet the window displays ad-
vertise savings and deals that the two girls cannot miss; see Figure 14b. To save that
information, Olivia points to the display and then to her purse: a link to the specific
offers from that shop is now mapped by a Smart-Container connection directly to
Olivia’s purse. Olivia continues to link her Smart-Container purse to various pieces
of shopping offers which, at the end of the day, she can browse, learn more about,
and share with Esther. Assisting users accessing retail services in public places has
been an active research direction in the ambient intelligence community (Garcia-
Perate et al., 2013; Meschtscherjakov et al., 2009; van Doorn et al., 2008) and also
for wearables and smart textiles; e.g., the “Shopping Jacket” of Randell and Muller
(2000) enables both subliminal and active shopping by submitting the owner’s shop-
ping list to nearby shops. Smart-Containers, such as purses and bags, create an
intuitive mapping between purchased items and physical containers to carry those
items, even when the sale is done entirely electronically and purchased items will be
later dispatched by the shop to the buyer’s address.

Joseph and David, two 12-year-old boys, enjoy playing video games on their new
game console. However, it just happens that today they need to attend to their
chores, outside the house. Unfortunately, this means that they need to pause their
video game, right in the middle of its exciting action. Joseph points his hand toward
the TV and, from the menu that pops up on the screen, he selects “Save game
state.” As the console performs the action, Joseph puts his hand into his trousers’
front pocket. As a result, a link to the current game state has been mapped by a
Smart-Pockets connection directly to Joseph’s pocket, making the game state easily
accessible at any time, just like any other physical pocket game. The boys leave
the house and head to the bus station. However, today is different from other days.
While they wait at the station for their bus to arrive, Joseph takes out the game
state from his pocket and points it to a nearby display; see Figure 14c. The game
resumes, and the two boys are able to continue playing and, in just few minutes,
they succeed advancing to the next level. As the bus arrives, Joseph carefully puts
back the new saved game state into his pocket, ending the connection with the public
display. Ambient games have been designed in the community for various purposes,
such as to foster interaction, socialization, and learning in public spaces, but also
to implement persuasion to change behaviors (Korozi et al., 2012; Kuramoto et al.,
2013; Salvador and Romaéao, 2011), while a recent study showed that interruptions
and pausing of games on public displays occur often (Feuchtner et al., 2016). In
this context, Smart-Pockets represent an efficient way to access personal multimedia
content for consumption in public spaces, enabling fast retrieval, play, and resume
operations that treat digital content, e.g., the game state in our example, just like
any another personal possession stored in one’s pockets.
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8.2. Ezplicit versus implicit segmentation for Smart-Pockets and Smart-Containers

The results of our two recognition experiments showed that Smart-Pockets access
actions can be recognized with 99.4% accuracy in the explicit segmentation condition
and with 94.0% accuracy under implicit segmentation using the brute-force approach.
Combined Smart-Pockets and Smart-Containers actions were recognized with 98.8% and
93.3% accuracy in the explicit and implicit segmentation conditions, respectively. The
immediate advantage of explicit over implicit detection of Smart-Pockets and Smart-
Containers access actions clearly emerges from these results.

However, more aspects need to be considered for this discussion. For instance, explicit
segmentation has the benefit of creating a tight coupling between the user’s interaction
intentions and system responses. Users are familiar with click-like events from operating
standard desktop PCs that expose WIMP (windows, icons, menus, pointer) interaction
styles. Users are also familiar with tap input on touch-screen devices, where a tap sim-
ply acts as another implementation of a “click.” Practically, almost all current styles
of interaction with computers have been heavily based on the notion of a “click.” Fur-
thermore, the literature has shown that users move fluently between different interaction
zones and phases when they interact with public ambient displays, while they shift from
pointing to direct touch interaction (Vogel and Balakrishnan, 2004; Miiller et al., 2014).
In this context, reusing concepts, such as the “click,” during the multiple interaction
phases of the same user interface represents a good design decision. Lastly, explicit in-
teraction gives the users the feeling of being in control as they tell the system when
their actions should be interpreted. From this perspective, explicit segmentation creates
the premises for a fluent user experience, for which command execution is clearly de-
fined by start and stop events. Our recognition results already recommend the explicit
segmentation approach over implicit techniques due to increased accuracy. The above
arguments strengthen our conviction that explicit segmentation is the preferred choice
for implementing Smart-Pockets at this moment.

There are many ways to implement click-like events for explicit segmentation, such
as by using a secondary sensor, worn on the body or held in hand, or by performing a
specific hand gesture that acts as a delimiter for Smart-Pockets gestures. For instance,
through-fabric capacitive touch input (Saponas et al., 2011; Heller et al., 2014), mid-
air devices (Baudisch et al., 2006; Wilson and Shafer, 2003) or specific hand postures
that delimit meaningful motion (Haque et al., 2015; Malik et al., 2005; Vatavu et al.,
2009) represent good candidates of techniques that deliver click-like events to segment
Smart-Pockets gestures in continuous whole-body movement. Our preferred choice is
the PocketTouch technique (Saponas et al., 2011) that places sensors inside the pocket
to enable touch sensing through the garment. Also, consumer-level electromyographic
sensors, such as the Myo armband, represent a good alternative for implementing ex-
plicit segmentation. Note that electromyographic and IMU sensors have been recently
adopted by researchers for implementing techniques to point and control content on large
displays (Haque et al., 2015).

However, implicit segmentation should not be discarded entirely. After all, implicit
segmentation requires no instrumentation of clothes and no in-between devices to me-
diate interaction. Even though our recognition results show only 94.0% accuracy for
Smart-Pockets and 93.3% accuracy for Smart-Pockets and Smart-Containers combined,
recognition performance is likely to improve with more training samples per gesture type
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Figure 15: Participants’ perceived comfortability of accessing Smart-Pockets and Smart-Containers.
NOTE: rating values were 1—“uncomfortable”, 2—“somewhat uncomfortable”, 3—“medium”,
4—“comfortable”, and 5— “very comfortable”.

and data from more training participants. Future work will look at practical ways to
improve recognition accuracy for the implicit segmentation approach.

8.8. Users’ perceived experience with Smart-Pockets and Smart-Containers

We asked participants to evaluate their perceived comfortability of accessing each
PoCKET and CONTAINER with ratings on a 5-point Likert scale ranging from 1 (“un-
comfortable”) to 5 (‘very comfortable”). The median rating across all conditions was 4
(“comfortable”). Figure 15 illustrates ratings for each POCKET and CONTAINER. The
least comfortable locations were the backpack when accessed with the left hand (2.5,
between “somewhat uncomfortable” and “medium”), backpack accessed with the right
hand, and the outer breast right and left pockets (3, “medium”). The pocket that was the
most comfortably accessed was the front trousers left pocket with the left hand (median
rating 5, “very comfortable”).

We also asked participants to rate how frequent they used pockets in daily life on a 5-
point Likert scale with ratings ranging from 1 (“never”) to 5 (“very often”); see Figure 16
for results. The most used pockets and containers were front trousers left and right
(median ratings 5, “very often”), followed by briefcase (4, “often”), and rear trousers
right and left pockets (3.5, between “now and then” and “often”). The least used pockets
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were the inner and outer breast pockets. These results inform the design of Smart-Pockets
gestures to specific locations on the body that are frequently employed by users. They
also suggest ideas for designing specific associations; for instance, while frequently-used
pockets may be associated to frequently-accessed digital content, a specific association
between content and a rarely-used pocket might also be considered to reflect a particular
aspect of that content.

Briefcase | 4

Backpack ‘ |3

Inner breast right \ |2.5

Inner breast left ‘ |3

Rear trousers right ‘ |3.5

Rear trousers left ‘ |3.5

Front trousers right ‘ |5

Front trousers left ‘ |5

Outer breast right ‘ |2

Outer breast left ‘ |2

0 1 2 3 4 5
Pockets and containers frequency of use

Figure 16: Participants’ self-reported use of pockets and containers. NOTE: rating values were 1— “never”,
2—“very rare”, 3—“now and then”, 4— “often”, and 5— “very often.”

8.4. Kinematics of Smart-Pockets and Smart-Containers access actions

We examine in this section our participants’ performance with Smart-Pockets and
Smart-Containers gestures, which we measure using a new dependent variable, ACCESS-
TIME, expressed in seconds. Overall, the time that our participants needed to access
Smart-Pockets and Smart-Containers varied between 1.56 and 3.53 seconds with a mean
of 2.22 seconds (SD=0.41); see Figure 17 for both individual and average ACCESS-TIME
values. A Friedman test revealed a significant effect of POCKET and CONTAINER on
Accrss-TIME (x2(14)=49.378, p<.001). The fastest access occurred for the outer breast
pockets, as follows: the outer breast left pocket was accessed the fastest with the right
hand (2.01 seconds), followed closely by the outer breast right pocket accessed with the
right hand (2.05 seconds), the outer breast left pocket with the left hand (2.07 seconds)
and the outer breast right pocket with the left hand (2.09 seconds). In between, the coffee
cup container was accessed the fastest among all Smart-Containers with both the right
and left hands (2.02 and 2.03 seconds, respectively). The explanation of these findings
probably lies with the fact that the outer breast pockets and the coffee cup are at the
shortest distance from the hand pointed in front of the body. The slowest access was
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Figure 17: Access times for each POCKET and CONTAINER experimental conditions and average access
times for each HAND and ACTION condition.

registered for the front trousers left and right pockets when access was performed on the
same side of the body (2.39 and 2.42 seconds, respectively); see Figure 17. Overall, the
difference between the fastest and the slowest ACCESS-TIME of all POCKET x HAND
combinations was under a half of a second (0.41 seconds).

We found that access times were significantly larger when users put content into their
pockets than when they took content out (2.32 versus 2.07 seconds, Z=—6.070, p<.001,
r=-—.369). We found no significant effect of HAND on ACCESS-TIME (2.21 versus 2.18
seconds, Z=—1.729, n.s. at p=.05). Also, we found no significant effect of the type of
smart, container (é.e., POCKET or CONTAINER) on ACCESS-TIME (2.22 versus 2.16 sec-
onds, Z=-.392, n.s. at p=.05); see Figure 17 for average access times for each condition
of the HAND and ACTION independent variables.

These findings show that access to Smart-Pockets is fast (i.e., 2.2 seconds on average)
and that the location of the pocket on the body has a significant, yet small influence on
the time needed to access that pocket. To understand these results better, we positioned
them in a broader context by relating to similar results reported in the literature. For
instance, Ashbrook et al. (2008) were interested in the effect of placement of on-body
interfaces on the time required to access those interfaces. In their study, similar in size
and participants’ age range to ours (15 participants, mean age 24.87 years, see p. 221),
they found that participants’ average access times were 2.78 seconds for the wrist, 4.62
seconds for pocket, and 5.52 seconds for the hip (p. 221-222). We also wanted to learn
how Smart-Pockets gestures compare with other whole-body gestures and, in general,
to other types of gestures as well, such as touch and pen gestures performed on smart
mobile devices. To this end, we computed the average production times of gestures from
several public datasets (Hoffman et al., 2010; Chen et al., 2012a; Wobbrock et al., 2007;
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Anthony and Wobbrock, 2010; Vatavu et al., 2011; Fothergill et al., 2012), as follows:

The Wiimote motion gestures dataset of Hoffman et al. (2010) consisting in 25
distinct acceleration gestures performed by 17 participants for 20 times, with a
total number of 25 x 17 x 20 = 8500 gesture samples; the dataset is available
for download from the Interactive Systems & User Experience Research Cluster of
Excellence website?.

The 6DMG dataset of Chen et al. (2012a), composed of 20 acceleration gestures per-
formed by 28 participants with 10 repetitions, with a total number of 5600 samples;
available from the 6DMG website!?.

The $1 stroke gesture dataset of Wobbrock et al. (2007) composed of 16 distinct
unistroke gestures performed by 10 participants at 3 speeds (slow, medium, and fast)
for 10 times using the stylus on a Pocket PC, with 4800 gesture samples in total;
the dataset is available to download from the $1 Unistroke Recognizer website!®.

The MMG multi-stroke gesture dataset of Anthony and Wobbrock (2010) composed
of 16 multi-stroke gestures performed by 20 participants for 10 times with the sty-
lus and the finger, with 3200 total samples; the dataset is available from the $N
Recognizer website!2.

The two Unistroke Gesture Difficulty datasets of Vatavu et al. (2011) consisting in 38
distinct unistroke gestures performed by 25 participants with a stylus on a Wacom
interactive display, with 9440 samples in total; the two datasets are available at the
Gesture Difficulty website!.

The Microsoft Research Cambridge-12 Kinect gesture dataset of Fothergill et al.
(2012), consisting of 6244 whole-body gesture samples of 12 distinct gestures per-
formed by 30 participants; the dataset is available to download from the MSRC-12
website!.

We wanted to learn how Smart-Pockets access times compare to various gesture types
performed in various conditions. In total, we compared Smart-Pockets access times with
14100 accelerated motion gestures, 17440 unistroke and multi-stroke finger and stylus
gestures, and 6244 whole-body gestures. Figure 18 shows the summary of our findings.
Smart-Pockets gestures (average 2.22 seconds) were comparable in terms of production
time to unistroke and multi-stroke gestures performed on tablets (average 2.01 and 2.09
seconds) (Anthony and Wobbrock, 2010; Vatavu et al., 2011) and they were 60% faster
than other whole-body gestures (Fothergill et al., 2012). Overall, these results show
that Smart-Pockets in the form of body-deictic and deictic gestures are very efficient to
perform, making them suitable for implementing fast ambient interactions.

9http://www.eecs.uct.edu/isuelab/downloads . php
Ohttp://www.ece.gatech.edu/6DMG/6DMG . html
https://depts.washington.edu/aimgroup/proj/dollar/
2http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
Bhttp://www.eed.usv.ro/~vatavu/index.php?menul tem=pengestures2011
Mhttp://research.microsoft.com/en-us/um/cambridge/projects/msrc12/
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Figure 18: Average production times computed for touch, stroke, motion, and whole-body gestures
from public datasets. Note how the Smart-Pockets average access time is very close to touch gesture
production time (Anthony and Wobbrock, 2010; Vatavu et al., 2011) and smaller than the production
time of other whole-body gestures (Fothergill et al., 2012). Error bars show 95% Cls.

8.5. Alternative technology and future work on Smart-Pockets and body-deictic gestures

In this work, we demonstrated the Smart-Pockets concept with an implementation
using whole-body gestures captured with the Microsoft Kinect sensor. However, Smart-
Pockets implementation is flexible and other technology can be considered to achieve the
same effect. For instance, sensors worn at arm level report the movement characteristics
of the hands in 3-D space: smart-watches, the Myo armband!®, the Leap Motion con-
troller', and the Ring Zero sensor!” are just a few examples. These devices incorporate
accelerometers and gyroscopes that report many parameters of the hand movement in
real-time and have been recently considered for interactions with ambient displays; see
the “Gunslinger” prototype of Liu et al. (2015) and the “Myopoint” technique of Haque
et al. (2015). While such sensing equipment is very practical to consider for implement-
ing interactions with Smart-Pockets and Smart-Containers for outdoor scenarios, such
as the ones discussed at the beginning of this section, more punctilious investigations of
users’ performance with body-deictic gestures can be achieved with more precise mea-
surements delivered by state-of-the-art motion capture systems. For instance, Figure 19
shows an example of a participant’s body-deictic gestures tracked by a Vicon Bonita
system. Note that the mathematical formalism that we introduced in this work for clas-
sifying and detecting Smart-Pockets and Smart-Containers access actions in sequences
of continuous whole-body gesture movement is generic, not tied to any particular motion

Bhttps://wuw.myo.com/
6https://www.leapmotion.com/
"http://ringzero.logbar. jp/
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Figure 19: Our mathematical formalism for classification and detection of Smart-Pockets and Smart-
Containers actions access can be used with any motion tracking device and any types of body-deictic
gestures. In this figure, a Vicon Motion Capture system tracks the user’s dominant hand and a large
display shows a collection of generic graphical items.

sensing equipment and readily applicable to work with any number of joints tracked on
the human body as well as to any type of body-deictic gestures.

We list below a few interesting directions for future work regarding body-deictic ges-
tures:

1. Examination of the design space of body-deictics by considering factors as such
gesture type, performance and accuracy, but also social acceptability for gestures
produced in public (Ahlstrom et al., 2014; Montero et al., 2010; Rico and Brewster,
2009, 2010) or for gestures performed on the body (Harrison and Faste, 2014; Profita
et al., 2013). A taxonomy for body-deictic gestures will also be useful to guide further
explorations of potential applications.

2. Precise measurements of user performance with body-deictic gestures in terms of
pointing accuracy, production speed, perceived difficulty, and recall rates. Specific
measures to evaluate the geometric and kinematic accuracy of body-deictics might be
useful to capture and report users’ performance, similar to existing measures avail-
able for other types of gestures (Vatavu, 2017; Vatavu et al., 2014, 2013), general
pointing (Fitts, 1954; MacKenzie et al., 2001), or to the velocity profile measure-
ments of the hand performing movement in the context of the Kinematic Theory of
Rapid Human Movements (Leiva et al., 2017; Plamondon et al., 2014).

3. Further investigations of application opportunities, including the design and evalua-
tion of interaction techniques based on body-deictic gestures, as well as integration
with other gesture types, such as whole-body gesture input (Lou et al., 2016; Vatavu,
2012a; Walter et al., 2013, 2014) or touch input on mobile and wearable personal
devices (Lee et al., 2011; Perrault et al., 2013; Vatavu et al., 2016) will lead to richer
interactive experiences for users.

The Smart-Pockets concept builds on the “pocket metaphor”: personal belongings are
held in one’s pockets, from which they are easily retrieved. However, although metaphors
play an important part in user interface design to help users understand and experience
new concepts in relation to their knowledge about the real world (Hamilton, 2000; Lakoff
and Johnson, 1980; Sanford et al., 2014), we also acknowledge that metaphors may not
always be appropriate as they might break the operation consistency across the digital
and physical worlds, especially for tangible interactions (Bakker et al., 2012; Celentano
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and Dubois, 2012; Oppl and Stary, 2011; Svanaes and Verplank, 2000). Nevertheless, we
believe that the simple operation of Smart-Pockets is likely to make our technique free
of such metaphor consistency problems. In fact, Smart-Pockets represent an instance
of both “body-inspired” and “body-as-a-surface” metaphors, as inventoried by Cho and
Yang (2002) and Kim et al. (2004). Body-inspired metaphors employ parts of the body
for interaction, such as touching the head, pointing to the ear, or even pointing to specific
parts on clothes, such as pockets, to trigger a command. The body as interaction surface
repurposes parts of the body as the physical support for interactions, such as the forearm
can turn into an interactive surface. As body-inspired metaphors were found to produce
the lowest error rates among four different types of body-based interfaces (Kim et al.,
2004), Smart-Pockets may benefit of similar advantages. However, such a hypothesis
needs to be examined by future studies. We list below several future work directions for
Smart-Pockets and Smart-Containers:

1. Further evaluations of the naturalness and intuitiveness of the pocket metaphor for
accessing digital contents are needed, with experimental conditions involving various
object types and application contexts, e.g., document browsing, editing, information
retrieval, etc.

2. Specific interaction techniques need to be designed for Smart-Pockets and Smart-
Containers to act as basis for evaluating the appropriateness of the pocket metaphor.
The recognition techniques that we introduced in this work showed that Smart-
Pockets and Smart-Containers access actions can be reliably recognized with high
accuracy in both explicit and implicit interaction contexts. Our results create the
basis for future integration of Smart-Pockets into actual interaction techniques for
various application contexts.

3. Future explorations regarding users transitioning between implicit and explicit in-
teraction (Vogel and Balakrishnan, 2004) will likely reveal new interesting findings
on people’s capacity to use Smart-Pockets and Smart-Containers in public scenarios.
For instance, some frequently occurring Smart-Pockets access actions may need to
be explicitly segmented to help the ambient system avoid disambiguation against
pocket access for actual physical objects, such as the phone. Understanding the
context of the interaction (Lopes et al., 2012; Dourish, 2004) can play a key part in
achieving natural and fluent interactions with ambient displays mediated by Smart-
Pockets access actions.

4. Integration of the Smart-Pockets concept in the recent context of advances in proto-
typing smart garments and designing gesture-based interaction techniques for smart
textiles (Profita et al., 2013; Heller et al., 2014). Recent efforts, such as the “Inter-
actex” visual programming environment of Haladjian et al. (2016) will likely foster
new developments in the community toward moving smart garments technology from
niche to mass production (Cheng et al., 2013). ¢ recognition techniques for body-
deictics in such tools will enable readily integration of Smart-Pockets into the next
generation of natural user interfaces.

9. Conclusion

We introduced in this work Smart-Pockets, a new concept and set of recognition tech-
niques that rely on the pocket metaphor and body gestures to enable users to access
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personal content: the users’ pockets act as placeholders or links to their digital content,
just how conventional pockets facilitate access to one’s personal belongings. We imple-
mented Smart-Pockets by introducing and evaluating three whole-body gesture detection
and recognition approaches. Our experimental evaluations showed that Smart-Pockets
gestures are fast and robustly recognized (99%) in user-independent conditions, while
the concept is easily extensible to include other physical containers as well. We hope
that the Smart-Pockets concept will inspire researchers and practitioners to explore the
opportunities offered by this new type of body-deictic gestures to create novel ways to
associate physical objects with digital content in the context of ambient interactions.
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