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Abstract We address in this work interactive gestures as
a distinct type of knowledge that users acquire and employ
when interacting in smart environments. We characterize the
problem of gesture knowledge transfer by describing gesture
knowledge at the user level with the new IUES box concept
(information, understanding, experience, and skill), and we
introduce the newAIS space (articulation, interpretation, and
sensing) to characterize gesture knowledge transfer across
multiple contexts of use. Our explorations will be useful to
researchers and practitioners of smart environments thatwish
to reuse people’s gesture knowledge for intuitive gesture-
based interactions in such spaces.

Keywords Gesture interaction · Gesture knowledge ·
Knowledge transfer · Smart environments

1 Introduction

As human sensing technology develops in terms of high-
precision sensors, miniaturized wearables, and sophisticated
algorithms that process sensor data fast and reliably, smart
environments become more aware of their users’ goals and
actions. In fact, the profusion of sensors available today
enable researchers and practitioners to implement smart envi-
ronments that come very close to the vision of ambient
intelligence, in which environments are context aware and
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services provided to users are personalized, adaptive, and
anticipatory [1]. Although such environments can capture a
wealth of useful data about their users’ presence, location,
and actions, designing intuitive interactions for such spaces
is nevertheless challenging.

In this work, we make one step forward toward address-
ing this challenge by examining interactive gestures as a
distinct type of knowledge that users acquire, develop, and
employ in such smart spaces. As with any type of knowl-
edge, gesture knowledge can be accumulated and reused
for new interactions in new environments. To this end, we
define the concepts of gesture knowledge and gesture knowl-
edge transfer for multiple contexts of use. We rely on results
from epistemology [2] and the organizational theory [3–7] to
derive a taxonomy of gesture knowledge, which we describe
in terms of information, understanding, experience, and skills
with our new IUES box concept. We conjecture that ges-
ture knowledge at the level of the individual results from the
cognitive processing of successful experiences of effective
and efficient gesture production, while gesture knowledge
transfer occurs at the social level from effective combination
of individual IUES boxes mediated by collaborative gesture
production [4,8,9]. To describe the later, we introduce a new
space for characterizing gesture knowledge transfer (AIS),
for which we identify three important dimensions: articula-
tion, interpretation, and sensing.

The contributions of this work are as follows: (1) we
introduce the concept of gesture as knowledge and con-
duct a characterization of gesture knowledge transfer, for
which we describe an individual’s gesture knowledge with
the new IUES box concept; (2) we discuss a taxonomy of
gesture knowledge by inspiring from epistemology and orga-
nizational theory, and we introduce the new AIS space to
characterize gesture knowledge transfer; (3) we show the
usefulness of our concepts with practical examples and real-
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world data of stylus gesture input, motion gestures, and
mid-air gestures.

2 Related work

We relate in this section to previous work on gesture inter-
action in smart environments, we discuss the concepts of
knowledge and knowledge transfer, and we provide a brief
overview of gesture innate knowledge.

2.1 Gesture interaction in smart environments

Gesture user interfaces are attractive for designing inter-
actions in smart environments as they provide users with
natural, flexible, and intuitive ways to communicate inten-
tions and execute commands. Notable applications include
control of smart homes [10–12] and interacting with ambient
displays [13–16]. Gesture recognition has been implemented
with many machine learning approaches; see [17–20] for
surveys on gesture acquisition and recognition for vari-
ous application domains. New software infrastructure for
recognizing gestures in smart environments has also been
proposed, such as WS-Gesture [21], gesture profile for
web services (GPWS) [22], and gesture services for cyber-
physical environments (GS-CPE) [23].

One challenging aspect of designing gesture interactions
is to find a goodmapping between gesture commands and the
functions they execute. The literature has shown that users
have different gesture preferences [12,24,25] and that vari-
ability exists in gesture articulation [26–30]. For instance,
Rekik et al. [27,28] showed that users vary their multi-touch
gestures in terms of number of fingers and the way hands
move in parallel or in sequence. Also, gesture production in
public spaces depends on location and audience [31,32] and
the social acceptance of gestures is influenced by culture,
time, and interaction type [33].

The idea of reusing people’s experience to interact using
gestures has been considered before by Vatavu [34,35],
who introduced the concepts of “nomadic gestures” and
“smart pockets.” Nomadic gestures are training samples that
reside on their owner’s smart device and are uploaded to the
interactive system prior to the actual interaction. Nomadic
gestures enable reuse of gesture commands in any smart
environment by automatically remapping users’ preferred
gestures with the available tasks to execute in that environ-
ment. Smart-Pockets implement fast retrieval of personal
digital content with hand gestures reaching for physical
pockets on clothes. The smart-pockets metaphor enables
links to digital content using physical personal contain-
ers that have been devised over decades of fashion design
to provide convenient access to one’s personal belong-
ings.

2.2 Knowledge and transfer of knowledge

The definition of knowledge has been an ongoing debate in
epistemology. For a statement to be considered knowledge,
that statement must be true, people must believe it is true,
and there must be ways to justify why it is true. Knowledge
and knowledge transfer have been examined in the fields
of information systems and organizational theory to provide
organizations with sound practices to create, capture, and
distribute knowledge [6,36,37]. The literature has empha-
sized that knowledge is a distinct concept from information
and data [3,4,38]. For instance, Nonaka [5] defines informa-
tion as data that is interpreted into a meaningful framework,
while knowledge is information that has been authenticated;
Machlup [39] looks at information as a flux of messages with
associatedmeaning that can increase or revise the knowledge
of the recipient; andAlavi andLeidner [3] consider that infor-
mation becomes knowledge when processed by the human
mind,while knowledge can turn into information if presented
in symbolic forms, such as text.

Researchers have identified and examined various types
of knowledge. For instance, Nonaka [4] points to two
dimensions of knowledge creation: epistemological and
ontological. The epistemological dimension draws a dis-
tinction between tacit and explicit knowledge by following
Polanyi’s classification from philosophy [2]: explicit knowl-
edge can be codified and transmitted in formal language,
while tacit knowledge is personal and, thus, hard to formal-
ize and communicate, but it is rooted in action, commitment,
and involvement in a specific context. Other examinations of
knowledge have considered conscious, explicit, automatic,
and subconscious knowledge [7], declarative, procedural,
causal, conditional, and relational knowledge [40], and
embrained, embodied, encultured, embedded, and encoded
knowledge [41,42]. By overviewing current definitions of
knowledge, Alavi and Leidner [3] conclude that “knowledge
is a justified belief that increases an entity’s capacity for tak-
ing effective action.”

Knowledge can be transfered between individuals at the
level of the organization in several ways [4–6,43]. For
instance, by noting that organizational knowledge is cre-
ated as the result of the dialogue between tacit and explicit
knowledge, Nonaka [4] proposed four models of knowledge
conversion, i.e., tacit to tacit, explicit to explicit, tacit to
explicit, and explicit to tacit. Wasko and Faraj [43] examined
the ways in which knowledge is contributed inside networks
of practice and identified three factorswith themost influence
on individuals’ motivation to contribute knowledge: repu-
tation (i.e., the status of an individual in the community),
centrality (i.e., the extent in which an individual is in contact
with others), and tenure (i.e., individuals with longer tenure
have a better understanding of how their expertise is relevant
in some particular context).
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In this work, we are inspired by such previous develop-
ments in representing knowledge and modeling knowledge
transfer, especially by the work of Nonaka [4], which we
use to derive the concepts of gesture knowledge and gesture
knowledge transfer.

2.3 Gesture innate knowledge

The psycholinguistic literature has examined human gesture
production to understand how people communicate [44,45].
Gestures have been described and analyzed in relation to
language and speech as they reveal the processes of human
thought [45]. Previous work showed that speech and gestures
are coded as a single signal by a unique communication sys-
tem [46] and that gestures are tightly intertwinedwith spoken
language in time, meaning, and function, creating a speech-
gesture synchrony [45]. Gestures convey information to their
listeners [44], communicate attitudes and emotions both vol-
untarily and involuntarily [47], and represent effectivemeans
for non-verbal communication between interacting partners,
even at a distance [48]. Also, speakers from all cultural
and linguistic backgrounds use gestures [49], while gesture
communication emerges in young children even before the
development of language [50]. Even more, gestures are so
deeply interwoven with our thought processes that blind peo-
ple gesture as they speak just as much as sighted individuals
do, even when they know their listener is also blind [51].
These previous works show that there exists a form of innate
gesture knowledge in the individual, which represents a
strong motivation to pursue the development of a theory and
practice of interactive gesture knowledge.

3 Gesture knowledge and gesture knowledge
transfer: taxonomy and characterization

In this work, we understand by “gesture” any movement
that bears meaning for the purpose of interacting with a
computer. This generic definition enables us to consider
various types of gestures, regardless of their physical instan-
tiation and form [52], their communicative or manipulative
attributes [53], functionality [54], relationship to speech and
communication [45], structural patterns [55], or application
domains [56,57]. The interpretation thatwe use is in linewith
other researchers, such as Buxton [58] or Vatavu [59]. Also,
we follow in this work the definition principle illustrated by
Kurtenbach and Hulteen [60] to discriminate between ges-
tures and generic movement: “A gesture is a motion of the
body that contains information. Waving goodbye is a ges-
ture. Pressing a key on a keyboard is not a gesture because
the motion of a finger on it’s way to hitting a key is neither
observed nor significant. All that matters is which key was
pressed.” We are thus embracing in this work various types
of gesture commands, for which practitioners need to make

Fig. 1 An individual’s gesture knowledge is represented by an IUES
box reflecting the information, understanding, experience, and skill of
that individual. Social gesture knowledge is formed by communicating
IUES boxes, a process during which individuals share information by
externalizing their knowledge and internalizing information fromothers

the right decisions regarding the best fit acquisition device,
recognition technology, and composition of the gesture sets,
as stressed by Beuvens and Vanderdonckt [56].

In the following, we introduce the concepts of gesture
knowledge and gesture knowledge transfer, and we iden-
tify the factors that determine successful transfer of gesture
knowledge.

3.1 Gesture knowledge

We define gesture knowledge as the body of information,
understanding, experience, and skill (IUES) required to pro-
duce gestures effectively in a given context of use; see
Fig. 1. Information represents data and facts about gesture
production in general and gesture interfaces in particular.
Understanding represents a mental grasp of the situation at
hand, which leads to gesture action. Both Experience and
Skill inform effective and efficient production of gestures,
i.e., the correct gesture that will do the job effectively (expe-
rience) and the most efficient way to produce that gesture to
optimize time, effort, and information conveyed (skill).

Because gesture knowledge represents one instance of
generic human knowledge, we can connect the four IUES
components to the classical definition of knowledge from
epistemology, according to which, for a statement to be
considered knowledge, that statement must be true, people
must believe it is true, and there must be ways to jus-
tify that the statement is true [61]. IUES reflects all these
attributes of knowledge, as follows. Information about ges-
tures is accumulated through personal experiences which,
when successful, build confidence regarding the truthfulness
of information. In the absence of authoritative explanations
of why things work, people build their ownmental models of
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the situations they experience [62] and participatory design
of gesture commands has exploited this fact to reveal users’
mental models about gesture input [11,12,14,25].

Gesture knowledge is intrinsically connected to gesture
production, which consists of distinctly identifiable phases,
such as preparation, execution, and retraction [45]. Knowl-
edge is needed for effective production of gestures, while the
outcome of gesture production generates information useful
for the performer to build further understanding, experience,
and skill. Therefore, in the context of gesture-based inter-
faces, gesture knowledge at the individual level results from
the cognitive processing of successful personal experiences
consisting in effective and efficient gesture production.

3.2 Gesture knowledge transfer

Transfer of gesture knowledge can be defined and analyzed
at the level of the individual or at level of the social com-
munity in which individuals collaborate. At the individual
level, we define gesture knowledge transfer as the physical
and cognitive abilities of an individual to reuse their gesture
knowledge in a new context, e.g., in a new environment or
with a device other than the devices on which their gesture
experience has formed.

Transfer of gesture knowledge in a social group involves
communication between individuals that share knowledge
and create newknowledge by combinationmechanisms, such
as sorting, adding, restructuring, recategorization, recontex-
tualization, etc. To exemplify gesture knowledge transfer,
consider how gesture knowledge is acquired at the individ-
ual level. One way is through the formal channel of training
froman authoritative source (e.g., information providedby an
expert or found in usermanuals)with the help of assistive sys-
tems [63–68]. Anotherway to acquire knowledge is by obser-
vation and experimentation in social contexts [8,13,16]. For
instance,Chartrand andBargh [69] identified the “chameleon
effect,” which represents “nonconscious mimicry of the pos-
tures, mannerisms, facial expressions, and other behaviors
of one’s interaction partners, such that one’s behavior pas-
sively and unintentionally changes to match that of others in
one’s current social environment” (p. 893). In the context of
gesture-based interfaces, gesture knowledge transfer at the
level of the individual results from successful internalization
of IUES through effective and efficient gesture production. At
the social level, gesture knowledge transfer results fromeffec-
tive communicationbetween individual IUESboxesmediated
by gesture production.

3.3 A taxonomy of gesture knowledge and gesture
knowledge transfer scenarios

We continue our characterization of the gesture knowledge
concepts by exploring a multi-criteria taxonomy of ges-

ture knowledge, which we construct by describing gesture
knowledge along various dimensions and by identifying fac-
tors relevant for gesture knowledge transfer. We inspire our
approach from organizational theory, especially from the
work of Nonaka [4,6]. Although a lot of effort has beenmade
on formalizing and characterizing knowledge and knowledge
transfer [7,40,42,43,70], the work of Nonaka [4,6] with its
emphasis on the importance of the personal beliefs of the
individual that can be justified with working mental models
of the world approaches very closely our definition of ges-
ture knowledge. Figure 1 shows information, understanding,
experience, and skill as distinct aspects of gesture knowledge
captured in the IUES box as well as communicating mecha-
nisms for IUES boxes. Nonaka’s four modes of knowledge
creation at the individual and social levels [4] connect to
thesemechanisms as follows. Transfer of tacit gesture knowl-
edge (i.e., tacit to tacit [4]) takes place during socialization
when people interact with each other [69] or when they share
devices [8]. Explicit gesture knowledge creation at the social
level (i.e., explicit to explicit [4]) takes place during collabo-
ration between individuals toward the achievement of some
task [9]. Internalization (i.e., explicit to tacit [4]) and exter-
nalization of gesture knowledge (i.e., tacit to explicit [4])
are effects of collaboration between individuals that need to
adapt in order to be productive and effective in the group
(internalization) and to allow others to be effective as well
(externalization) [71,72]. In the following, we discuss var-
ious dichotomies for gesture knowledge by inspiring from
Nonaka [4].

3.3.1 Tacit versus explicit gesture knowledge

Following Polanyi’s work in philosophy [2] and Nonaka’s
[4,6] and Spender’s [7] classifications of knowledge from the
organizational theory, we adopt the ontological dimension of
knowledge and make distinction between tacit and explicit
gesture knowledge. Tacit gesture knowledge exists in the user
as an individual and consists in the sum of personal experi-
ences andmentalmodels that the individual has formed about
communicating meaningful action. Therefore, tacit knowl-
edge is difficult to articulate, but can be easily observed in
gesture production. One consequence of tacit knowledge for
gesture user interfaces is the variability that accompanies
gesture articulation, i.e., no two gestures are alike, but they
vary in terms of geometric shape, kinematics, and structure.
For example, Rekik et al. [27,28] brought empirical evidence
that different users produce the same gesture types in vari-
ous ways, and Anthony et al. [26] quantified numerically the
within- and between-user consistency of gesture variation
with a dedicated methodology. Explicit gesture knowledge
represents a codifiable, transmittable resource about how to
produce gestures, such as gesture diagrams [66,67], path
guides [63,73], or gesture video tutorials [68]. Once an opti-
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mal gesture set has been designed, explicit knowledge can
amplify its effectiveness and reach out.

3.3.2 Individual versus social gesture knowledge

In organizational theory, Nonaka [4] points out that it is
the individuals that create knowledge, while the role of the
organization is to articulate and amplify that knowledge.
Following this line of thought, gesture knowledge has an
individual dimension when it is created and can be social
when adopted by a group. For example, gesture commands
designed by experts are instances of gesture knowledge cre-
ated at the individual level with an authoritative mark, such
as the Rotate’N Translate [74] or pinch-to-zoom plus [75]
techniques. Transfer in this case takes the form of internaliza-
tion of knowledge from the community of experts. Another
example is gestures proposed by users, which inform design-
ers of users’ preferences and mental models about gesture
interaction [11,12,25]. In this case, theflowof gesture knowl-
edge transfer is from the individual to the group in the form
of externalization, i.e., users’ verbalizations of their gesture
actions and designers’ observations of users’ gesture behav-
ior contribute to creation of new gesture knowledge.

3.3.3 Innate versus educated gesture knowledge

Examples of innate knowledge include information about
general body movement by proprioception [76] or generic
expectations about body movement, such as large move-
ments require more effort than small ones. Training, trial and
error, or learning from experience are ways to attain a pos-
teriori gesture knowledge. For instance, after several failed
attempts, users think of new ways to perform a task [77].
Educated knowledge blends with innate knowledge in what
forms the tacit experience of each individual. Unlike edu-
cated knowledge, innate knowledge cannot be forgotten.

3.4 Factors for gesture knowledge transfer

In the following,we rely onDey’s definition of context [78] to
identify pieces of information to characterize users involved
in gesture interaction for our specific problem of gesture
knowledge transfer. We also adhere to the ontological and
architectural foundation of defining context of Coutaz et
al. [79], which we employ in the form of the specific formal-
ism of the “context of use” [80] consisting of three classes of
entities: users, hardware and software platforms, and envi-
ronments, i.e., C = (U, P, E). Inspired by [80], we identify
four factors for gesture knowledge transfer: users, tasks, sen-
sors, and environments.

1. Users produce gesture commands to interact with a
computing system. Fahey and Prusak [81] consider that
knowledge is meaningless in the absence of a “knower.” As

knowledge lieswith the individual [4,81], gesture knowledge
is internalized differently across individuals. Users possess
various motor and cognitive abilities, levels of expertise and
skill in how they produce gestures, and amount of expe-
rience with gesture technology [77,82–85]. Also, cultural
aspects [86] favor or constrain the type of gestures that are
acceptable in a specific community, and how and when those
gestures may be performed [31,32,87]. All these aspects
determine differences in how gestures are produced by dif-
ferent users and, therefore, determine differences in how
gestures look like for gesture recognizers. For instance, age
affects gesture production, e.g., elderly users produce ges-
tures differently than young people [82,85]; children are
less precise and take more time to produce touch gestures
than adults [77,88]; blind users have different preferences
of touch gestures than sighted users [83]; people with low
vision produce stroke gestures with different geometric and
kinematic characteristics than people without visual impair-
ments [89,90]; users with motor impairments create more
complex touch patternswhen selecting targets onmulti-touch
surfaces [84]; etc. Also, previous work has reported many
sources of variation for gesture articulation, such as the num-
ber of strokes, number of fingers, and number of hands for
multi-touch multi-stroke gestures [26,27,91,92]. The com-
plexity of a gesture, objectively assessed with the complexity
of its shape geometry [93], has been examined from the
users’ perspective, and previous work has highlighted strong
relationships with production time [91,94], the influence
of cognitive load on the appearance of pen gestures [95],
as well as the influence of widget representation complex-
ity on user performance for sketch-based interfaces [96].
Also, gesture elicitation studies highlighted that different
users have different preferences for gestures to execute vari-
ous tasks [11,12,14,25,97,98]. Because of these differences,
transfer of gesture knowledge between users or between user
groups needs to be addressed at both the recognizer and appli-
cation levels by designing gesture sets that match functions
well and by considering recognition techniques best adapted
to classify those gestures accurately.

2. Tasks or activities in which users engage. The ges-
ture command that executes a task can vary according to
the designer of the application or the users’ preferences.
For instance, many symbolic gestures may be designed to
effect the “help” function, such as drawing a question mark,
drawing letter “H”, etc., and different users will manifest
different preferences to employ one or another [12,14,25].
To mention just one relevant example, Vatavu and Zaiţi [12]
observed fourteen distinct proposals for the gesture to turn
up the volume on the TV, including cultural gestures (p.
138). The literature has reported agreement rates between
users’ gesture preferences between .100 and .400 on the unit
scale [24]. Good fit between gestures and the functions they
execute makes users believe that the mapping is appropri-
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ate and helps them form mental models to explain why the
mapping is appropriate [12,25,99].

3. Sensors. A variety of sensors exists today to collect
gesture input; see [17–20] for surveys of gesture acquisi-
tion in various gesture application domains.Different sensors
deliver different representations for the same gesture. For
instance, consider a user touching the surface of an inter-
active table. A basic representation of that gesture consists
in the (x, y) coordinates of the touch point at finger lift
off. A more detailed representation would include touch
pressure, the area of the touch, and the axes of the ellipse
produced by the user’s finger touching the surface. The same
gesture is captured as a series of acceleration points by
the accelerometer embedded in the user’s smartwatch. An
electromyography sensor attached to the user’s arm would
produce a description of the samegesture in terms of themag-
nitude of armmuscles’ contractions. Finally, a camera-based
sensor installed in the environment would have an overall
view of the user’s whole-body movement as a series of body
postures. The type of sensor depends on the application and
some applications rely on multiple sensors [100]. Because of
these differences in gesture representation, transfer of gesture
knowledge between sensors needs specific design, careful
analysis of the application transfer process and of the math-
ematical equivalence of gesture representations.

4. Environments represented by social relationships with
other individuals present in the same physical settings. Ges-
ture production in public spaces depends on location and
audience [31,32], the social acceptance of gestures is influ-
enced by culture, time, and the type of interaction [33],
and people are concerned about other people’s reactions and
acceptance [87]. Cultural gestures also fall into this cate-
gory [86]. However, where accepted, they represent strong
candidates for gesture commands, as they do not require
learningor training.Becauseof such aspects, transfer of inter-
active gesture knowledge in a social context may be limited
to a small range of gesture types.

The above factors, representing instances of the con-
stituting elements of the context of use [80], are key for
characterizing gesture knowledge transfer taking place from
one user to another, from one sensing device to another,
across tasks, and even across environments. Each change in
the context of use can be reduced to one or more factors that
influence gesture production. Next, we rely on these factors
to introduce a new space for characterizing transfer of gesture
knowledge.

4 AIS: a space for gesture knowledge transfer

We introduce in this section a new tool for characterizing
gesture knowledge transfer which we present in the form
of a new representation space for gesture knowledge with

Fig. 2 The AIS space for gesture knowledge transfer is organized
along the articulation, interpretation, and sensing dimensions. Regions
in this space (visualized as sets of cuboids in this figure) represent users’
IUES boxes of gesture knowledge. Transfer of gesture knowledge rep-
resents a transition between two points in the AIS space

three dimensions: articulation, sensing, and interpretation;
see Fig. 2. We inform the type of these dimensions from our
previous examination of the ways in which gesture knowl-
edge can be transfered in relation to our four factors: users,
tasks, sensors, and environments. In the following,wediscuss
and exemplify each dimension highlighting connectionswith
the factors relevant for gesture knowledge transfer. The next
section exemplifies how gesture knowledge transfer can be
characterized with the AIS space for practical gesture inter-
action scenarios (Table 1).

1. The articulation dimension registers the ways in
which users articulate gestures by connecting to the Users
factor of gesture knowledge transfer discussed in the previous
section. Gestures can be produced in many ways, and how a
gesture is articulated depends on the users’ cultural contexts,
motor abilities, and cognitive representations. For exam-
ple, there are 442 distinct ways to produce a simple square
with touch input [101] (p. 273). The number of possibilities
increases considerably for multi-touch input, for which mul-
tiple fingers and two hands can be used to draw the shape of
the square [28] (p. 201). The articulation dimension captures
the act of users instantiating their goals into a specific ges-
ture (which represents the semantic distance of Hutchins et
al. [103]) as well as articulating the specific geometric and
kinematic details of those gestures into a motor action (i.e.,
the articulatory distance of Hutchins et al. [103]). Specifi-
cally, the difference in gesture articulation can be appreciated
as the difference in the number of strokes or the orientation of
strokes between twomulti-stroke gestures as in [26], between
the number of fingers or hands producing a multi-touch ges-
ture [91], or between specific hand poses employed by users
during articulation [11,14,25,97,102]. Gesture similarity or
dissimilarity along the articulation space can also be quan-
tified using a distance function, such as those employed by
gesture recognizers [28,34,101,104].
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Table 1 Examples of gesture knowledge transfer across the three dimensions of the AIS space: articulation, interpretation, and sensing

Dimension of transfer Example

1. Articulation, from one way to produce a gesture to
another

Various ways to articulate gestures within and between
users [27,28,101]. Perceptions of gesture difficulty favor quick
gestures [91,94]. Various factors affect gesture
articulation [84,89,90,95,96]

2. Sensing, from one acquisition sensor to another Different sensors register and represent the same gesture differently,
e.g., tapping the touch-screen of a smartwatch is represented
differently by the smartwatch and the built-in motion sensor

3. Interpretation, from one interpretation to another Various interpretations for the same gesture type and various
preferences for gesture-to-function mappings [11,14,15,25,97,102]

2. The sensing dimension registers the ways in which
various sensors capture gesture input. Different sensors have
different capabilities to register human movement during
gesture articulation. For example, a tap on a touch surface can
be captured as a 2D point by the touchscreen, as accelerated
motion by the user’s smartwatch [105], or as electromuscu-
lar activity by an electromyography sensor attached to the
arm [106]. Which representation makes sense for a particu-
lar interaction context depends on the actual application. This
dimension connects directly to the Sensors factor of gesture
knowledge transfer; see the previous section.

3. The interpretation dimension registers the various
interpretations that a particular gesture may have for users.
The gesture elicitation literature reported that users mani-
fest different preferences for the gestures to execute a given
task [11,12,14,25] and also that users prefer different ges-
tures than those created by experienced designers [102].
Consequently, interpretationmay vary according to the Tasks
to perform and the Environments in which those tasks are
considered.

Individual gesture knowledge is represented in the AIS
space as a set of subregions of this space (IUES boxes), rep-
resented simplistically as cuboids in Fig. 2. An individual’s
experience with gesture user interfaces and interactive envi-
ronments may be represented with IUES boxes of various
sizes, i.e., information, understanding, experience, and skill
that cover less or more of the dimensions of the AIS space.
The social gesture knowledge represents the union of all the
IUES boxes. For instance, all the ten cuboids represented in
Fig. 2 form the social knowledge of the three depicted users.
In this context, gesture knowledge transfer can be represented
as “movement” in the AIS space, as follows:

1. Transferring gesture knowledge along the articulation
dimension denotes a system able to recognize variations
of the same gesture. Various approaches are available
to attain such a desideratum. For instance, the $P gesture
recognizer [90,101] employs gesture representations that
are invariant to articulation details; the RATA. Gesture
approach [107] relies on data mining analysis to create

new recognizers; optimization algorithms can perform
selection of gesture prototypes for template-based recog-
nition [108]; and gesture synthesis techniques enable
generation of large training sets [89,104,109].

2. Transferring gesture knowledge along the sensing dimen-
sion denotes an environment capable of recognizing
gestures that use representations different from those
available during training; e.g., a “circle” produced inmid-
air in the vertical plane in front of the user would still be
correctly recognized, even though the training examples
are only available from that user’s touch input on the
smartphone.

3. Transferring gesture knowledge along the interpretation
dimension refers to an environment that can adapt to its
users’ gesture preferences; e.g., the same “circle” gesture
executed by two users in the same environment produces
different outcomes, according to each user’s preferred
mappingbetweengestures and application functions. The
nomadic gestures concept [34] is a step in this direction.

We briefly note here how the articulation, sensing, and
interpretation dimensions of the AIS space connect to the
three functionalities of gestures illustrated by Cadoz [54].
According to Cadoz, semiotic gestures produce meaning-
ful informational messages for the environment as the result
of commonly shared cultural experience; epistemic gestures
offer information that reveals the environment through per-
ception; and ergotic gestures act directly on the environment
by altering its form and properties. In the AIS space, ges-
ture knowledge instantiates in practical forms of articulations
that, once sensed by the environment, require semiotic inter-
pretation to cause actionable effects, i.e., command execution
to control the functions and services of the smart environ-
ment.

The AIS space has the primarily function to characterize
gesture knowledge for specific users or user groups across
various application domains and interactive environments,
i.e., the AIS space possess descriptive power. However, it
also has generative power by informing on areas that could
be exploited further, inviting researchers to explore novel
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directions. For instance, preliminary studies might show that
their users execute gestures in many different ways along
the articulation dimension of the AIS space with the net
result being large recognition errors caused by the inabil-
ity of the recognizer to discriminate between various ways
to execute the same gesture. Therefore, redesign of the inter-
face could include gesture hints for users, such as starting
points for stroke input [110] or setting in place a gesture
guidance system [63,73,111]. In the next section, we discuss
a real-world example in which we quantify users’ varia-
tions in gesture articulation. The comparative power of the
AIS space, although not supported directly at this moment,
is nevertheless a consequence of its descriptive power. For
example, plotting the articulation details of two gesture sets
for the same application can reveal differences in the ways
users associate gesture types andmeaning. Depending on the
designer’s goal, several actions can be taken, such as con-
sidering multiple gestures for the same command [27,112],
redesigning the gesture set [25,102], and even reconsider
gesture metaphors [113,114]. The second example that we
discuss next in the paper examines the transfer of gesture
knowledge on the interpretation× sensing dimensions.

5 Case studies for gesture knowledge transfer

We exemplify in this section the use of the AIS space with
two practical case studies. In the first study, we examine
pen gestures on the articulation axis. In the second case
study, we analyze users’ mid-air gesture preferences on the
interpretation × sensing axis for gesture control of the TV
set.

5.1 Gesture transfer on the articulation dimension: a
case study for pen gestures

To analyze gesture knowledge transfer on the articulation
axis, we computed the consensus between users’ articula-
tions of stroke input for a large dataset consisting of 14,005
symbols produced by 34 subjects for 14 distinct symbol
types: accident, bomb, car, casualty, electricity, fire, fire
brigade, flood, gas, injury, paramedics, person, police, and
roadblock [115]. Following the methodology of Anthony et
al. [26], we quantified consensus between gesture executions
with real numbers in the [0, 1] interval. Consensus levels can
be interpreted as the percentage of pairs of gestures that are
similar in their articulation details (i.e., the number of strokes,
stroke orientation, and direction); see [24].

We found that the average consensuswas .785within users
(SD = .135) and .368 between users (SD = .274); see Fig. 3.
A Wilcoxon signed-rank test showed that the difference
between these levels of consensuswas statistically significant
(Z = −3.296, p < .001) with a large effect size (r = .623).

Fig. 3 Articulation consensus (expressed on the unit scale) for the
NicIcon symbols of Willems et al. [115]. Notes consensus values were
computed from14,005 gesture samples; bothwithin- and between-users
consensus is reported

Different gesture types determined different levels of consen-
sus. For instance, participants were more consistent for some
gestures (e.g., “gas” or “flood”, which scored .972 and .951
within-subject consensus) than for others (e.g., “firebridge”
or “person” with .598 and .573 consensus, respectively). The
between-users consensus was two times smaller, yet values
were significantly correlated at the level of individual gesture
types (Pearson’s r(N=14) = .876, p < .01). The expla-
nation of these findings can be found in each individual’s
IUES gesture knowledge box. In this case, skill helps users
produce symbols efficiently (e.g., producing gestures in the
samewaymaximizes execution speed), which usually results
from automatisms created through experience. Still, for some
gesture types, even within-user consensus is low (e.g., less
than .600 for the “person” symbol), which suggests that such
automatisms still need to be formed for unfamiliar symbols.

To support articulation invariance, applications should
implement gesture knowledge transfer in the articulation
dimension. This means recognizing gestures no matter how
users produce them. At this moment, the $P point-cloud ges-
ture recognizer [90,101] is the only approach meeting that
desideratum. Figure 5 shows the recognition rates delivered
by the $P recognizer for both user-dependent (92.5% accu-
racy) and user-independent (75.6%) training conditions.1

The various levels of experience that users have acquired
over time and the understanding that they formed about the
task (e.g., how to perform the “car” symbol more efficiently,
for example) explain the low consensus between users. For
instance, we found 39 distinct ways in which participants
produced the “car” symbol from 1010 executions [115]. The
IUESboxes for this symbol are illustrated for all the 33partic-
ipants as dots in AIS space of this case study shown in Fig. 4.
Please note that because of the nominal nature of the artic-

1 Training and testing procedures were conducted according to Vatavu
et al. [101] by varying the number of training samples per gesture type
from 1 to 8 and the number of training participants from 1 to 8.
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Fig. 4 IUES boxes (represented as dots) for the articulation dimension of the AIS space showing the variation of the “car” symbol [115]. Notes
participants (1–33) are shown on the vertical axis; the IUES boxes for two participants’ are highlighted

ulation dimension, IUES boxes are reduced to dots in this
visualization and, consequently, the AIS space is discrete.
In this space, a color dot marks a specific articulation of the
“car” symbol produced by a specific user; see the highlighted
boxes representative of two users’ articulations in Fig. 4.
When users are consistent in their gesture articulations, few
boxes exist, whereas larger variation in articulation produces
multiple boxes.

Transfer of gesture knowledge for the “car” symbol can
take place both at the user level and between users. For exam-
ple, a user may switch between different articulations over
time or may use different articulations of the same gesture
type to accommodate various devices, such as using more
or less strokes depending on the available area to draw, e.g.,
smartwatch versus tablet. Such a transfer (within-user) can be
visualized along the horizontal dimension of Fig. 4, where
multiple symbols and colors encode various ways to artic-
ulate the “car” symbol. Transfer of gesture knowledge can
also take placebetween users that share knowledge directly or
indirectly by cooperating in the same task.Different users can
thus reach consensus over their gesture articulation patterns
for reasons of task productivity or they can adopt each others’
ways to articulate gestures for articulation effectiveness and
efficiency. In that case, transfer of gesture knowledge occurs
between users and is visualized along the vertical dimension
of Fig. 4.

5.2 Gesture transfer on the interpretation× sensing
dimensions: a case study for mid-air gestures

We continue with a case study regarding users’ subjective
interpretations of gesture commands in two gesture sens-
ing contexts. Therefore, we perform gesture analysis along
the interpretation × sensing dimensions of the AIS space.
Twenty (20) participants (mean age 27.4 years, SD = 7.4)
were elicited for preferences of gesture commands to con-
trol various functions on a TV screen (play, pause, go to next
item, go to previous item, open menu, hide menu, and ask for
system help) by following the gesture elicitation methodol-

Fig. 5 Recognition rates delivered by the $P recognizer [101] for
the NicIcon symbols [115]. Notes gestures are ordered according to
the user-dependent recognition rate; both user-dependent and user-
independent rates are reported

ogy [24,25]. Participants proposed gestures in two different
acquisition scenarios: using a motion-sensing remote con-
troller and performingmid-air gestures in front of aMicrosoft
Kinect sensor. Agreement rate analysis was conducted using
the AGATe toolkit [24,99].

Participants’ gesture proposals represent instances of their
IUES boxes of gesture knowledge applied for the specific TV
interaction scenario. The sensing dimension of the AIS space
implements two values corresponding to the motion-sensing
controller and the free-hand gesture acquisition conditions.
The interpretation dimension of AIS implements seven val-
ues, one for each function to execute on the TV set. In the
following, we are interested in the transfer of gesture knowl-
edge that takes place on these two axes (Figs. 5, 6).

To understand gesture knowledge transfer across the inter-
pretation axis, we computed agreement rates using the
formula of Vatavu and Wobbrock [24] (p. 1327). The aver-
age agreementwas .373 for themotion-sensing controller and
.307 for the free-hand scenario; see Fig. 7, left. These values
can be interpreted as medium to high agreement, accord-
ing to the recommendations of [24] (p. 1332). A Pearson
test showed a significant correlation between the agreement
rates reached for gestures under the two sensing conditions
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Fig. 6 Gesture preferences of 20 users, 7 tasks, and 2 sensors. Circles show common preferences for the same interpretation, e.g., 5 participants
have the same preference for “Play”. Squares show the winning gesture for each function

Fig. 7 Left agreement rates for gestures elicited in the two gesture
acquisition scenarios (controller and free-hand); right percentage of
shared gestures

(r(N=6) = .769, p < .05). More agreement (+21.5%) was
measured for the remote controller, probably because of its
form factor that looked familiar to the participants, enabling
them to reuse their experience in controlling the TV using a
remote. Nevertheless, all agreement rates were significantly
greater than zero (p < .05), as indicated by Vrd tests [24].
We also found a significant effect of function type over agree-
ment rate for both sensing scenarios (Vrd(6) = 97.599 and
Vrd(6) = 612.450, respectively, p < .001), which shows
that the specifics of each function made participants think of
different gestures.

To understand gesture knowledge transfer across the sens-
ing axis, we looked at howmany times participants proposed
the same gesture for a given function for both sensing condi-
tions. The percentage of shared gestures varied between 0%
(for “Pause”) and 90% (for “Next” and “Previous”), with an
average percent of 45%. This result shows that participants
were inclined to reuse the gesture knowledge they had just
gained for the other gesture sensing condition; see Fig. 7,
right. Figure 6 illustrates the main results visually. Instead
of listing actual gesture proposals, we focus on represent-
ing gestures that are common across participants and across
sensors. For instance, participants P4, P5,P6,P7, and P9 pro-
posed the same gesture for “Play” in both sensing scenarios.
Different colors for circles indicate different gesture types.
We used squares to show the winning gesture for each sce-

nario, i.e., the gesture for which the most participants agreed
on. Although each participant proposed a gesture for each
function, for clarity purposes we omitted from Fig. 6 those
proposals that did not match with others.

We conclude that participants reused their gesture experi-
ence from one domain in order to start off with a reasonable
level of skill and experience in a different gesture sensing sce-
nario, according to their generic information about gesture
interfaces and the understanding they formed about the task.
This type of transfer can be visualized along the horizon-
tal axis of Fig. 6. To support various sensors, an application
should implement gesture knowledge transfer in the sensing
dimension. This means designing algorithms that can recog-
nize gestures independently of their representation. Gesture
transfer can also take place along the interpretation dimen-
sion (vertical axis in Fig. 6) when users employ the same
gesture type to execute multiple functions according to the
current context of use, or they adopt other users’ associations
between gestures and functions. To support various gesture to
function mappings, an application should implement gesture
transfer in the interpretation dimension by adaptively match-
ing users’ gesture preferences to the tasks they execute. The
result will be higher flexibility by leveraging existing knowl-
edge for new contexts of use.

6 Conclusion

We introduced in thiswork the concept of interactive gestures
as knowledge to address the problem of gesture knowledge
transfer across multiple contexts of use. While this work
represents the first step toward understanding gesture knowl-
edge transfer, it already provides the community with several
contributions: a taxonomy of gesture knowledge, the IUES
box concept to describe the various dimensions of gesture
knowledge at the level of the individual, and the AIS space
to characterize gesture knowledge transfer. Future work will
consider extending these results towards deriving a formal,
mathematical definition of the IUES and AIS construct,
possibly including various channels of users’ motor and cog-
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nitive abilities. Due to the importance of gesture interactions
for smart environments, we believe that the topic of gesture
knowledge transfer will receive considerable scholarly atten-
tion in the future, and we are eager to see how our results will
be used by the community to develop a comprehensive the-
ory of gesture knowledge, unveil new gesture discoveries,
and inform gesture interface design for new environments.

Acknowledgements This work was supported by a grant of the
Romanian National Authority for Scientific Research and Innovation,
CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-
2016-0688 within PNCDI III. The infrastructure was provided by the
University Stefan celMare of Suceava andwas partially supported from
the project “Integrated center for research, development and innova-
tion inAdvancedMaterials,Nanotechnologies, andDistributedSystems
for fabrication and control”, No. 671/09.04.2015, Sectoral Operational
Program for Increase of the Economic Competitiveness co-funded from
the European Regional Development Fund.

References

1. Aarts E, Harwig R, Schuurmans M (2002) Ambient intelli-
gence. In: Denning PJ (ed) The invisible future. McGraw-Hill,
Inc., New York, pp 235–250. http://dl.acm.org/citation.cfm?
id=504949.504964

2. Polanyi M (2009) The tacit dimension, Revised edn. University
of Chicago Press, Chicago (1966)

3. Alavi M, Leidner DE (2001) Review: knowledge management
and knowledgemanagement systems: conceptual foundations and
research issues. MIS Q 25(1):107–136. doi:10.2307/3250961

4. Nonaka I (1994) A dynamic theory of organizational knowledge
creation. Organ Sci 5(1):14–37

5. Nonaka I (2005) Knowledge management: critical perspectives
on business and management, vol III. Taylor and Francis, London

6. Nonaka I, Takeuchi H (1995) The knowledge-creating company.
Oxford University Press, New York

7. Spender JC (1994) Knowing, managing and learning: a dynamic
managerial epistemology. Manag Learn 25:387–412. doi:10.
1177/135050769402500302

8. Hinrichs U, Carpendale S (2011) Gestures in the wild: studying
multi-touch gesture sequences on interactive tabletop exhibits.
In: Proceedings of the SIGCHI conference on human factors in
computing systems, CHI’11. ACM, New York, pp 3023–3032.
doi:10.1145/1978942.1979391

9. Morris MR, Huang A, Paepcke A, Winograd T (2006) Coop-
erative gestures: multi-user gestural interactions for co-located
groupware. In: Proceedings of the SIGCHI conference on human
factors in computing systems,CHI’06.ACM,NewYork, pp1201–
1210. doi:10.1145/1124772.1124952

10. Bobeth J, Schmehl S, Kruijff E, Deutsch S, Tscheligi M (2012)
Evaluating performance and acceptance of older adults using free-
hand gestures for TV menu control. In: Proceedings of the 10th
European conference on interactive TV and video, EuroiTV’12.
ACM, New York, pp 35–44. doi:10.1145/2325616.2325625

11. VatavuRD(2012)User-definedgestures for free-handTVcontrol.
In: Proceedings of the 10th European conference on interactive
TVs and video, EuroiTV’12. ACM, New York, pp 45–48. doi:10.
1145/2325616.2325626

12. VatavuRD, Zaiti IA (2014) Leap gestures for TV: insights from an
elicitation study. In: Proceedings of the 2014 ACM international
conference on interactive experiences for TV and online video,

TVX’14. ACM, New York, pp 131–138. doi:10.1145/2602299.
2602316

13. Schmidt C, Müller J, Bailly G (2013) Screenfinity: extending
the perception area of content on very large public displays. In:
Proceedings of the SIGCHI conference on human factors in com-
puting systems, CHI’13. ACM,NewYork, pp 1719–1728. doi:10.
1145/2470654.2466227

14. Vatavu RD (2013) A comparative study of user-defined hand-
held vs. freehand gestures for home entertainment environments.
J Ambient Intell Smart Environ 5(2):187–211. doi:10.3233/
AIS-130200

15. Vatavu RD (2013) There’s a world outside your TV: explor-
ing interactions beyond the physical TV screen. In: Proceed-
ings of the 11th European conference on interactive TV and
video, EuroITV’13. ACM, New York, pp 143–152. doi:10.1145/
2465958.2465972

16. Walter R, Bailly G, Müller J (2013) StrikeAPose: revealing mid-
air gestures on public displays. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI’13.
ACM, New York, pp 841–850. doi:10.1145/2470654.2470774

17. Cirelli M, Nakamura R (2014) A survey on multi-touch ges-
ture recognition and multi-touch frameworks. In: Proceedings of
the 9th ACM international conference on interactive tabletops
and surfaces, ITS’14. ACM, New York, pp 35–44. doi:10.1145/
2669485.2669509

18. Dipietro L, Sabatini AM, Dario P (2008) A survey of glove-based
systems and their applications. Trans Sys Man Cybern Part C
38(4):461–482. doi:10.1109/TSMCC.2008.923862

19. Mitra S, Acharya T (2007) Gesture recognition: a survey. Trans
Syst Man Cybern Part C 37(3):311–324. doi:10.1109/TSMCC.
2007.893280

20. Rautaray SS, Agrawal A (2015) Vision based hand gesture recog-
nition for human computer interaction: a survey. Artif Intell Rev
43(1):1–54. doi:10.1007/s10462-012-9356-9

21. van Seghbroeck G, Verstichel S, de Turck F, Dhoedt B (2010)
WS-gesture, a gesture-based state-aware control framework. In:
Proceedings of the IEEE international conference on service-
oriented computing and applications

22. Vatavu RD, Chera CM, Tsai WT (2012) Gesture profile for web
services: an event-driven architecture to support gestural inter-
faces for smart environments. In: Paterno F, Ruyter B, Markopou-
los P, Santoro C, Loenen E, Luyten K (eds) Proceedings of the 3rd
international joint conference on ambient intelligence. Springer,
Berlin, pp 161–176. doi:10.1007/978-3-642-34898-3_11

23. Lou Y, Wu W, Vatavu RD, Tsai WT (2017) Personalized
gesture interactions for cyber-physical smart-home environ-
ments. Sci China Inf Sci 60(7):072104:1–15. doi:10.1007/
s11432-015-1014-7

24. Vatavu RD,Wobbrock JO (2015) Formalizing agreement analysis
for elicitation studies: newmeasures, significance test, and toolkit.
In: Proceedings of the 33rd annual ACM conference on human
factors in computing systems,CHI’15.ACM,NewYork, pp1325–
1334. doi:10.1145/2702123.2702223

25. Wobbrock JO, Morris MR, Wilson AD (2009) User-defined ges-
tures for surface computing. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI’09.
ACM, New York, pp 1083–1092. doi:10.1145/1518701.1518866

26. Anthony L, Vatavu RD, Wobbrock JO (2013) Understanding the
consistency of users’ pen and finger stroke gesture articulation. In:
Proceedings of graphics interface 2013, GI’13. Canadian Infor-
mation Processing Society, Toronto, pp 87–94. http://dl.acm.org/
citation.cfm?id=2532129.2532145

27. Rekik Y, Grisoni L, Roussel N (2013) Towards many gestures
to one command: a user study for tabletops. In: Proceedings of
the 14th IFIP TC 13 international conference on human–computer

123

http://dl.acm.org/citation.cfm?id=504949.504964
http://dl.acm.org/citation.cfm?id=504949.504964
http://dx.doi.org/10.2307/3250961
http://dx.doi.org/10.1177/135050769402500302
http://dx.doi.org/10.1177/135050769402500302
http://dx.doi.org/10.1145/1978942.1979391
http://dx.doi.org/10.1145/1124772.1124952
http://dx.doi.org/10.1145/2325616.2325625
http://dx.doi.org/10.1145/2325616.2325626
http://dx.doi.org/10.1145/2325616.2325626
http://dx.doi.org/10.1145/2602299.2602316
http://dx.doi.org/10.1145/2602299.2602316
http://dx.doi.org/10.1145/2470654.2466227
http://dx.doi.org/10.1145/2470654.2466227
http://dx.doi.org/10.3233/AIS-130200
http://dx.doi.org/10.3233/AIS-130200
http://dx.doi.org/10.1145/2465958.2465972
http://dx.doi.org/10.1145/2465958.2465972
http://dx.doi.org/10.1145/2470654.2470774
http://dx.doi.org/10.1145/2669485.2669509
http://dx.doi.org/10.1145/2669485.2669509
http://dx.doi.org/10.1109/TSMCC.2008.923862
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.1007/s10462-012-9356-9
http://dx.doi.org/10.1007/978-3-642-34898-3_11
http://dx.doi.org/10.1007/s11432-015-1014-7
http://dx.doi.org/10.1007/s11432-015-1014-7
http://dx.doi.org/10.1145/2702123.2702223
http://dx.doi.org/10.1145/1518701.1518866
http://dl.acm.org/citation.cfm?id=2532129.2532145
http://dl.acm.org/citation.cfm?id=2532129.2532145


312 J Multimodal User Interfaces (2017) 11:301–314

interaction, INTERACT’13, Springer,Berlin, pp246–263. doi:10.
1007/978-3-642-40480-1_16

28. Rekik Y, Vatavu RD, Grisoni L (2014) Match-up and conquer: a
two-step technique for recognizing unconstrained bimanual and
multi-finger touch input. In: Proceedings of the 2014 international
working conference on advanced visual interfaces, AVI’14.ACM,
New York, pp 201–208. doi:10.1145/2598153.2598167

29. TuH,RenX,Zhai S (2012)Acomparative evaluation of finger and
pen stroke gestures. In: Proceedings of the SIGCHI conference on
human factors in computing systems, CHI’12. ACM, New York,
pp 1287–1296. doi:10.1145/2207676.2208584

30. Tu H, Ren X, Zhai S (2015) Differences and similarities between
finger and pen stroke gestures on stationary and mobile devices.
ACM Trans Comput Hum Interact 22(5):22:1–22:39. doi:10.
1145/2797138

31. Rico J, Brewster S (2009) Gestures all around us: user dif-
ferences in social acceptability perceptions of gesture based
interfaces. In: Proceedings of the 11th international conference
on human–computer interaction with mobile devices and ser-
vices, MobileHCI’09. ACM, New York, pp 64:1–64:2. doi:10.
1145/1613858.1613936

32. Rico J, Brewster S (2010) Usable gestures for mobile interfaces:
evaluating social acceptability. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI’10.
ACM, New York, pp 887–896. doi:10.1145/1753326.1753458

33. Montero CS, Alexander J, Marshall MT, Subramanian S (2010)
Would you do that? understanding social acceptance of gestural
interfaces. In: Proceedings of the 12th international conference
on human–computer interaction with mobile devices and ser-
vices, MobileHCI’10. ACM, New York, pp 275–278. doi:10.
1145/1851600.1851647

34. Vatavu RD (2012) Nomadic gestures: a technique for reusing ges-
ture commands for frequent ambient interactions. JAmbient Intell
Smart Environ 4(2):79–93

35. Vatavu RD (2017) Smart-pockets: body-deictic gestures for fast
access to personal data during ambient interactions. Int J Hum
Comput Stud 103:1–21. doi:10.1016/j.ijhcs.2017.01.005

36. Argote L, Ingram P (2000) Knowledge transfer: a basis for com-
petitive advantage in firms. Organ Behav Hum Decis Process
82(1):150–169. doi:10.1006/obhd.2000.2893

37. Gottschalk P (2007) Business dynamics in information technol-
ogy. Idea Group Publishing, Hershey

38. Vance D (1997) Information, knowledge and wisdom: the epis-
temic hierarchy and computer-based information systems. In:
Proceedings of the 3rd Americas conference on information sys-
tems, pp 348–350

39. Machlup F (2014) Knowledge: its creation, distribution and eco-
nomic significance. Princeton University Press, Princeton

40. Zack M (1998) What knowledge-problems can information tech-
nology help to solve? In: Proceedings of the Americas conference
on information systems. http://aisel.aisnet.org/amcis1998/216

41. Blackler F (1995) Knowledge, knowledge work and organiza-
tions: an overview and interpretation. Organ Stud 16(6):1021–
1046. doi:10.1177/017084069501600605

42. Collins H (1993) The structure of knowledge. Soc Res 60(1):95–
116. http://www.jstor.org/stable/40970729

43. WaskoMM,Faraj S (2005)Why should I share? examining capital
and knowledge contribution in electronic networks of practice.
MIS Q 29(1):35–57

44. Kendon A (1994) Do gestures communicate? a review. Res Lang
Soc Interact 27:175–200

45. McNeill D (1992) Hand and mind: what gestures reveal about
thought. The University of Chicago Press, Chicago

46. Bernardis P, Gentilucci M (2005) Speech and gesture share the
same communication system. Neuropsychologia 44(2):178–190.
doi:10.1016/j.neuropsychologia.2005.05.007

47. Graham J, Argyle M (1975) A cross-cultural study of the com-
munication of extra-verbal meaning by gestures. Int J Psychol
10:57–67

48. Vatavu RD (2015) Audience silhouettes: peripheral awareness
of synchronous audience kinesics for social television. In: Pro-
ceedings of the ACM international conference on interactive
experiences for TV and online video, TVX’15. ACM, New York,
pp 13–22. doi:10.1145/2745197.2745207

49. Feyereisen P, de Lannoy J (1991) Gestures and speech: psycho-
logical investigations. Cambridge University Press, New York

50. Goodwyn S, Acredolo L, Brown C (2000) Impact of symbolic
gesturing on early language development. J Nonverbal Behav
24:81–103

51. Iverson JM, Goldin-Meadow S (1998) Why people gesture when
they speak. Nature. doi:10.1038/24300

52. van den Hoven E, Mazalek A (2011) Grasping gestures: ges-
turing with physical artifacts. Artif Intell Eng Des Anal Manuf
25(3):255–271. doi:10.1017/S0890060411000072

53. Quek FK (1995) Eyes in the interface. Image Vis Comput
13(6):511–525. doi:10.1016/0262-8856(95)94384-C

54. Cadoz C (1994) Les réalités virtuelles. Dominos-Flammarion,
Paris

55. Vatavu RD, Pentiuc SG (2008) Multi-level representation of
gesture as command for human–computer interaction. Comput
Inform 27:837–851. http://www.cai.sk/ojs/index.php/cai/article/
viewArticle/16

56. Beuvens F, Vanderdonckt J (2012) Designing graphical user inter-
faces integrating gestures. In: Proceedings of the 30th ACM
international conference on design of communication, SIG-
DOC’12. ACM, New York, pp 313–322. doi:10.1145/2379057.
2379116

57. KaramM, SchraefelMC (2005)A taxonomy of gestures in human
computer interactions. http://eprints.soton.ac.uk/261149/

58. Buxton B (2011) Gesture based interaction (Chapter 14). http://
www.billbuxton.com/input14.Gesture.pdf

59. Vatavu RD (2017) Beyond features for recognition: human-
readable measures to understand users’ whole-body gesture
performance. Int J HumComput Interact. doi:10.1080/10447318.
2017.1278897

60. Kurtenbach G, Hulteen E (1990) Gestures in human–computer
communications. In: Laurel B (ed) The art of human computer
interface design. Addison-Wesley, Reading, pp 309–317

61. Ichikawa JJ, SteupM (2014) The analysis of knowledge. In: Zalta
EN (ed) The Stanford encyclopedia of philosophy, spring, 2014th
edn. Metaphysics Research Lab, Stanford University, Stanford

62. Young I (2008) Mental models: aligning design strategy with
human behavior. Rosenfeld Media, New York

63. Bau O, Mackay WE (2008) Octopocus: a dynamic guide for
learning gesture-based command sets. In: Proceedings of the 21st
annual ACM symposium on user interface software and technol-
ogy, UIST’08. ACM,NewYork, pp 37–46. doi:10.1145/1449715.
1449724

64. Bragdon A, Zeleznik R, Williamson B, Miller T, LaViola JJ Jr
(2009) GestureBar: improving the approachability of gesture-
based interfaces. In: Proceedings of the SIGCHI conference on
human factors in computing systems, CHI’09. ACM, New York,
pp 2269–2278. doi:10.1145/1518701.1519050

65. Ghomi E, Huot S, Bau O, Beaudouin-Lafon M, Mackay WE
(2013) Arpège: learning multitouch chord gestures vocabularies.
In: Proceedings of the 2013 ACM international conference on
interactive tabletops and surfaces, ITS’13. ACM, New York, pp
209–218. doi:10.1145/2512349.2512795

66. Kurtenbach G, Moran T, Buxton W (1994) Contextual anima-
tion of gestural commands. ComputGraph Forum13(5):305–314.
doi:10.1111/1467-8659.1350305

123

http://dx.doi.org/10.1007/978-3-642-40480-1_16
http://dx.doi.org/10.1007/978-3-642-40480-1_16
http://dx.doi.org/10.1145/2598153.2598167
http://dx.doi.org/10.1145/2207676.2208584
http://dx.doi.org/10.1145/2797138
http://dx.doi.org/10.1145/2797138
http://dx.doi.org/10.1145/1613858.1613936
http://dx.doi.org/10.1145/1613858.1613936
http://dx.doi.org/10.1145/1753326.1753458
http://dx.doi.org/10.1145/1851600.1851647
http://dx.doi.org/10.1145/1851600.1851647
http://dx.doi.org/10.1016/j.ijhcs.2017.01.005
http://dx.doi.org/10.1006/obhd.2000.2893
http://aisel.aisnet.org/amcis1998/216
http://dx.doi.org/10.1177/017084069501600605
http://www.jstor.org/stable/40970729
http://dx.doi.org/10.1016/j.neuropsychologia.2005.05.007
http://dx.doi.org/10.1145/2745197.2745207
http://dx.doi.org/10.1038/24300
http://dx.doi.org/10.1017/S0890060411000072
http://dx.doi.org/10.1016/0262-8856(95)94384-C
http://www.cai.sk/ojs/index.php/cai/article/viewArticle/16
http://www.cai.sk/ojs/index.php/cai/article/viewArticle/16
http://dx.doi.org/10.1145/2379057.2379116
http://dx.doi.org/10.1145/2379057.2379116
http://eprints.soton.ac.uk/261149/
http://www.billbuxton.com/input14.Gesture.pdf
http://www.billbuxton.com/input14.Gesture.pdf
http://dx.doi.org/10.1080/10447318.2017.1278897
http://dx.doi.org/10.1080/10447318.2017.1278897
http://dx.doi.org/10.1145/1449715.1449724
http://dx.doi.org/10.1145/1449715.1449724
http://dx.doi.org/10.1145/1518701.1519050
http://dx.doi.org/10.1145/2512349.2512795
http://dx.doi.org/10.1111/1467-8659.1350305


J Multimodal User Interfaces (2017) 11:301–314 313

67. Microsoft: Kinect Gesture and Voice Commands (2015).
http://download.microsoft.com/download/2/B/0/2B0FE92A-73
B9-4FC7-88D2-3A5FF3588154/XboxOneKinectVoiceGesture
Library.pdf

68. Microsoft: Kinect Gestures (2015). https://support.xbox.com/
en-US/xbox-360/accessories/body-controller

69. Chartrand T, Bargh J (1999) The chameleon effect: the
perception–behavior link and social interaction. J Pers Soc Psy-
chol 76(6):893–910. doi:10.1037/0022-3514.76.6.893

70. Bohn RE (1994) Measuring and managing technological knowl-
edge. Sloan Manag Rev 36:61–74

71. Piper AM, O’Brien E, Morris MR, Winograd T (2006) Sides:
a cooperative tabletop computer game for social skills develop-
ment. In: Proceedings of the 2006 20th anniversary conference
on computer supported cooperative work, CSCW’06. ACM, New
York, pp 1–10. doi:10.1145/1180875.1180877

72. Rubart J (2014) A cooperative multitouch scrum task board for
synchronous face-to-face collaboration. In: Proceedings of the
9th ACM international conference on interactive tabletops and
surfaces, ITS’14. ACM, New York, pp 387–392. doi:10.1145/
2669485.2669551

73. Delamare W, Coutrix C, Nigay L (2015) Designing guiding sys-
tems for gesture-based interaction. In: Proceedings of the 7th
ACM SIGCHI symposium on engineering interactive comput-
ing systems, EICS’15. ACM, New York, pp 44–53. doi:10.1145/
2774225.2774847

74. Kruger R, Carpendale S, Scott SD, Tang A (2005) Fluid integra-
tion of rotation and translation. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI’05.
ACM, New York, pp 601–610. doi:10.1145/1054972.1055055

75. Avery J, Choi M, Vogel D, Lank E (2014) Pinch-to-zoom-plus: an
enhanced pinch-to-zoom that reduces clutching and panning. In:
Proceedings of the 27th annualACMsymposiumon user interface
software and technology,UIST’14.ACM,NewYork, pp 595–604.
doi:10.1145/2642918.2647352

76. Lopes P, Ion A, Mueller W, Hoffmann D, Jonell P, Baudisch P
(2015) Proprioceptive interaction. In: Proceedings of the 33rd
annual ACM conference on human factors in computing systems,
CHI’15. ACM, New York, pp 939–948. doi:10.1145/2702123.
2702461

77. Vatavu RD, Cramariuc G, Schipor DM (2015) Touch interaction
for children aged 3 to 6 years: experimental findings and relation-
ship to motor skills. Int J Hum Comput Stud 74:54–76. doi:10.
1016/j.ijhcs.2014.10.007

78. DeyAK (2001)Understanding and using context. PersUbiquitous
Comput 5(1):4–7. doi:10.1007/s007790170019

79. Coutaz J, Crowley JL, Dobson S, Garlan D (2005) Context is key.
Commun ACM 48(3):49–53. doi:10.1145/1047671.1047703

80. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L,
Vanderdonckt J (2003) A unifying reference framework for multi-
target user interfaces. Interact Comput 15(3):289. doi:10.1016/
S0953-5438(03)00010-9

81. Fahey L, Prusak L (1998) The eleven deadliest sins of knowl-
edgemanagement.CalifManagRev40(3):265–276. doi:10.2307/
41165954

82. CocksN,MorganG, Kita S (2011) Iconic gesture and speech inte-
gration in younger and older adults. Gesture 11(1):24–39. doi:10.
1075/gest.11.1.02coc

83. Kane SK, Wobbrock JO, Ladner RE (2011) Usable gestures
for blind people: understanding preference and performance. In:
Proceedings of the SIGCHI conference on human factors in com-
puting systems, CHI’11. ACM, New York, pp 413–422. doi:10.
1145/1978942.1979001

84. Mott ME, Vatavu RD, Kane SK, Wobbrock JO (2016) Smart
touch: improving touch accuracy for people with motor impair-
ments with template matching. In: Proceedings of the 34th ACM

conference on human factors in computing systems, CHI’16.
ACM, New York

85. Stößel C, Wandke H, Blessing L (2010) Gestural interfaces for
elderly users: help or hindrance? In: Proceedings of the 8th inter-
national conference on gesture in embodied communication and
human–computer interaction, GW’09. Springer, Berlin, pp 269–
280. doi:10.1007/978-3-642-12553-9_24

86. Bremmer JN, Roodenburg H (1992) A cultural history of gesture.
Cornell University Press, Ithaca

87. Ahlstrom D, Hasan K, Irani P (2014) Are you comfortable doing
that? acceptance studies of around-device gestures in and for
public settings. In: Proceedings of the 16th international confer-
ence on human–computer interaction with mobile devices and
services, MobileHCI’14. ACM, New York, pp 193–202. doi:10.
1145/2628363.2628381

88. Vatavu RD, Anthony L, Brown Q (2015) Child or adult? inferring
smartphone users’ age group from touch measurements alone. In:
Proceedings of the 15th IFIP TC.13 international conference on
human–computer interaction, INTERACT’15. Springer, pp 1–9.
doi:10.1007/978-3-319-22723-8_1

89. Leiva LA,Martin-Albo D, Vatavu RD (2017) Synthesizing stroke
gestures across user populations: a case for users with visual
impairments. In: Proceedings of the 35th ACM conference on
human factors in computing systems, CHI’17. ACM, New York.
doi:10.1145/3025453.3025906

90. Vatavu RD (2017) Improving gesture recognition accuracy on
touch screens for users with low vision. In: Proc. of the 35th ACM
conf. on human factors in computing systems, CHI’17. ACM,
New York. doi:10.1145/3025453.3025941

91. Rekik Y, Vatavu RD, Grisoni L (2014) Understanding users’
perceived difficulty of multi-touch gesture articulation. In: Pro-
ceedings of the 16th international conference on multimodal
interaction, ICMI’14.ACM,NewYork, pp 232–239. doi:10.1145/
2663204.2663273

92. Vatavu RD, Anthony L, Wobbrock JO (2013) Relative accuracy
measures for stroke gestures. In: Proceedings of the 15th ACM
on international conference on multimodal interaction, ICMI’13.
ACM, New York, pp 279–286. doi:10.1145/2522848.2522875

93. Isokoski P (2001) Model for unistroke writing time. In: Proceed-
ings of the SIGCHI conference on human factors in computing
systems, CHI’01. ACM, New York, pp 357–364. doi:10.1145/
365024.365299

94. Vatavu RD, Vogel D, Casiez G, Grisoni L (2011) Estimating
the perceived difficulty of pen gestures. In: Proceedings of the
13th IFIP TC 13 international conference on human–computer
interaction—volume part II, INTERACT’11. Springer, Berlin, pp
89–106. http://dl.acm.org/citation.cfm?id=2042118.2042130

95. Ruiz N, Taib R, Shi YD, Choi E, Chen F (2007) Using pen
input features as indices of cognitive load. In: Proceedings of the
9th international conference on multimodal interfaces, ICMI’07.
ACM, New York, pp 315–318. doi:10.1145/1322192.1322246

96. Kieffer S, CoyetteA,Vanderdonckt J (2010)User interface design
by sketching: a complexity analysis of widget representations. In:
Proceedings of the 2NdACMSIGCHI symposiumon engineering
interactive computing systems, EICS’10. ACM, New York, pp
57–66. doi:10.1145/1822018.1822029

97. Ruiz J, Li Y, Lank E (2011) User-defined motion gestures for
mobile interaction. In: Proceedings of the SIGCHI conference on
human factors in computing systems, CHI’11. ACM, New York,
pp 197–206. doi:10.1145/1978942.1978971

98. Rust K, Malu M, Anthony L, Findlater L (2014) Understand-
ing childdefined gestures and children’s mental models for
touchscreen tabletop interaction. In: Proceedings of the 2014 con-
ference on interaction design and children, IDC’14. ACM, New
York, pp 201–204. doi:10.1145/2593968.2610452

123

http://download.microsoft.com/download/2/B/0/2B0FE92A-73B9-4FC7-88D2-3A5FF3588154/XboxOneKinectVoiceGestureLibrary.pdf
http://download.microsoft.com/download/2/B/0/2B0FE92A-73B9-4FC7-88D2-3A5FF3588154/XboxOneKinectVoiceGestureLibrary.pdf
http://download.microsoft.com/download/2/B/0/2B0FE92A-73B9-4FC7-88D2-3A5FF3588154/XboxOneKinectVoiceGestureLibrary.pdf
https://support.xbox.com/en-US/xbox-360/accessories/body-controller
https://support.xbox.com/en-US/xbox-360/accessories/body-controller
http://dx.doi.org/10.1037/0022-3514.76.6.893
http://dx.doi.org/10.1145/1180875.1180877
http://dx.doi.org/10.1145/2669485.2669551
http://dx.doi.org/10.1145/2669485.2669551
http://dx.doi.org/10.1145/2774225.2774847
http://dx.doi.org/10.1145/2774225.2774847
http://dx.doi.org/10.1145/1054972.1055055
http://dx.doi.org/10.1145/2642918.2647352
http://dx.doi.org/10.1145/2702123.2702461
http://dx.doi.org/10.1145/2702123.2702461
http://dx.doi.org/10.1016/j.ijhcs.2014.10.007
http://dx.doi.org/10.1016/j.ijhcs.2014.10.007
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1145/1047671.1047703
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
http://dx.doi.org/10.1016/S0953-5438(03)00010-9
http://dx.doi.org/10.2307/41165954
http://dx.doi.org/10.2307/41165954
http://dx.doi.org/10.1075/gest.11.1.02coc
http://dx.doi.org/10.1075/gest.11.1.02coc
http://dx.doi.org/10.1145/1978942.1979001
http://dx.doi.org/10.1145/1978942.1979001
http://dx.doi.org/10.1007/978-3-642-12553-9_24
http://dx.doi.org/10.1145/2628363.2628381
http://dx.doi.org/10.1145/2628363.2628381
http://dx.doi.org/10.1007/978-3-319-22723-8_1
http://dx.doi.org/10.1145/3025453.3025906
http://dx.doi.org/10.1145/3025453.3025941
http://dx.doi.org/10.1145/2663204.2663273
http://dx.doi.org/10.1145/2663204.2663273
http://dx.doi.org/10.1145/2522848.2522875
http://dx.doi.org/10.1145/365024.365299
http://dx.doi.org/10.1145/365024.365299
http://dl.acm.org/citation.cfm?id=2042118.2042130
http://dx.doi.org/10.1145/1322192.1322246
http://dx.doi.org/10.1145/1822018.1822029
http://dx.doi.org/10.1145/1978942.1978971
http://dx.doi.org/10.1145/2593968.2610452


314 J Multimodal User Interfaces (2017) 11:301–314

99. Vatavu RD, Wobbrock JO (2016) Between-subjects elicitation
studies: formalization and tool support. In: Proceedings of the
2016 CHI conference on human factors in computing systems,
CHI’16. ACM, New York, pp 3390–3402. doi:10.1145/2858036.
2858228

100. Gillian N, Pfenninger S, Russell S, Paradiso JA (2014) Gestures
everywhere: a multimodal sensor fusion and analysis framework
for pervasive displays. In: Proceedings of the international sym-
posium on pervasive displays, PerDis’14. ACM, New York, pp
98:98–98:103. doi:10.1145/2611009.2611032

101. Vatavu RD, Anthony L, Wobbrock JO (2012) Gestures as point
clouds: a $P recognizer for user interface prototypes. In: Proceed-
ings of the 14th ACM international conference on multimodal
interaction, ICMI’12.ACM,NewYork, pp 273–280. doi:10.1145/
2388676.2388732

102. Morris MR, Wobbrock JO, Wilson AD (2010) Understand-
ing users’ preferences for surface gestures. In: Proceedings of
graphics interface 2010, GI’10. Canadian Information Process-
ing Society, Toronto, pp 261–268. http://dl.acm.org/citation.cfm?
id=1839214.1839260

103. Hutchins EL, Hollan JD, Norman DA (1985) Direct manipula-
tion interfaces. HumComput Interact 1(4):311–338. doi:10.1207/
s15327051hci0104_2

104. Martín-Albo D, Leiva LA (2016) G3: bootstrapping stroke ges-
tures design with synthetic samples and built-in recognizers. In:
Proceedings of the 18th international conference on human–
computer interaction with mobile devices and services adjunct,
MobileHCI’16. ACM, New York, pp 633–637. doi:10.1145/
2957265.2961833

105. Kerber F, Schardt P, Löchtefeld M (2015) WristRotate: a per-
sonalized motion gesture delimiter for wrist-worn devices. In:
Proceedings of the 14th international conference on mobile and
ubiquitous multimedia, MUM’15. ACM, New York, pp 218–222.
doi:10.1145/2836041.2836063

106. Benko H, Saponas TS, Morris D, Tan D (2009) Enhancing input
on and above the interactive surface with muscle sensing. In:
Proceedings of the ACM international conference on interactive
tabletops and surfaces, ITS’09. ACM, New York, pp 93–100.
doi:10.1145/1731903.1731924

107. Chang SHH, Blagojevic R, Plimmer B (2012) RATA. Ges-
ture: a gesture recognizer developed using data mining. Artif
Intell Eng Des Anal Manuf 26(3):351–366. doi:10.1017/
S0890060412000194

108. PittmanC,Taranta EMII, LaViola JJ Jr (2016)A$-family friendly
approach to prototype selection. In: Proceedings of the 21st inter-
national conference on intelligent user interfaces, IUI’16. ACM,
New York, pp 370–374. doi:10.1145/2856767.2856808

109. Leiva LA, Martín-Albo D, Plamondon R (2015) Gestures à go
go: authoring synthetic human-like stroke gestures using the kine-
matic theory of rapid movements. ACMTrans Intell Syst Technol
7(2):15:1–15:29. doi:10.1145/2799648

110. Castellucci SJ, MacKenzie IS (2008) Graffiti vs. unistrokes: an
empirical comparison. In: Proceedings of the SIGCHI conference
on human factors in computing systems, CHI’08. ACM, New
York, pp 305–308. doi:10.1145/1357054.1357106

111. Delamare W, Janssoone T, Coutrix C, Nigay L (2016) Design-
ing 3D gesture guidance: visual feedback and feedforward design
options. In: Proceedings of the international working conference
on advanced visual interfaces, AVI’16. ACM, NewYork, pp 152–
159. doi:10.1145/2909132.2909260

112. Rekik Y, Vatavu RD, Grisoni L (2017) Spontaneous ges-
ture production patterns on multi-touch interactive surfaces. In:
Anslow C, Campos P, Jorge J (eds) Collaboration meets inter-
active spaces. Springer, Amsterdam, pp 33–46. doi:10.1007/
978-3-319-45853-3_3

113. Norman DA (2010) Natural user interfaces are not natural. Inter-
actions 17(3):6–10. doi:10.1145/1744161.1744163

114. Norman DA, Nielsen J (2010) Gestural interfaces: a step
backward in usability. Interactions 17(5):46–49. doi:10.1145/
1836216.1836228

115. Willems D, Niels R, van Gerven M, Vuurpijl L (2009) Iconic and
multi-stroke gesture recognition. Pattern Recogn 42(12):3303–
3312. doi:10.1016/j.patcog.2009.01.030

123

http://dx.doi.org/10.1145/2858036.2858228
http://dx.doi.org/10.1145/2858036.2858228
http://dx.doi.org/10.1145/2611009.2611032
http://dx.doi.org/10.1145/2388676.2388732
http://dx.doi.org/10.1145/2388676.2388732
http://dl.acm.org/citation.cfm?id=1839214.1839260
http://dl.acm.org/citation.cfm?id=1839214.1839260
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1145/2957265.2961833
http://dx.doi.org/10.1145/2957265.2961833
http://dx.doi.org/10.1145/2836041.2836063
http://dx.doi.org/10.1145/1731903.1731924
http://dx.doi.org/10.1017/S0890060412000194
http://dx.doi.org/10.1017/S0890060412000194
http://dx.doi.org/10.1145/2856767.2856808
http://dx.doi.org/10.1145/2799648
http://dx.doi.org/10.1145/1357054.1357106
http://dx.doi.org/10.1145/2909132.2909260
http://dx.doi.org/10.1007/978-3-319-45853-3_3
http://dx.doi.org/10.1007/978-3-319-45853-3_3
http://dx.doi.org/10.1145/1744161.1744163
http://dx.doi.org/10.1145/1836216.1836228
http://dx.doi.org/10.1145/1836216.1836228
http://dx.doi.org/10.1016/j.patcog.2009.01.030

	Characterizing gesture knowledge transfer across multiple contexts of use
	Abstract
	1 Introduction
	2 Related work
	2.1 Gesture interaction in smart environments
	2.2 Knowledge and transfer of knowledge
	2.3 Gesture innate knowledge

	3 Gesture knowledge and gesture knowledge transfer: taxonomy and characterization
	3.1 Gesture knowledge
	3.2 Gesture knowledge transfer
	3.3 A taxonomy of gesture knowledge and gesture knowledge transfer scenarios
	3.3.1 Tacit versus explicit gesture knowledge
	3.3.2 Individual versus social gesture knowledge
	3.3.3 Innate versus educated gesture knowledge

	3.4 Factors for gesture knowledge transfer

	4 AIS: a space for gesture knowledge transfer
	5 Case studies for gesture knowledge transfer
	5.1 Gesture transfer on the articulation dimension: a case study for pen gestures
	5.2 Gesture transfer on the interpretation timessensing dimensions: a case study for mid-air gestures

	6 Conclusion
	Acknowledgements
	References




